General Heterogeneous Framework
for Path-based Timing Analysis

Yasin Zamani, PhD Student
Department of Electrical & Computer Engineering
University of Utah, Salt Lake City, UT
Supervisor: Dr. Tsung-Wei Huang

Path-based Timing Analysis

e Static timing analysis (STA) computes the
propagation of time signals in a circuit from
Its primary inputs to its primary outputs
through various circuit elements and
interconnect.

* Graph-based analysis (GBA) is a step of STA
used to perform a worst-case (i.e., early and
late) analysis of a circuit over all possible
paths to update the graph with timing
Information.

* Path-based analysis (PBA) is another step
of STA that is typically applied after GBA to
reanalyze timing with path-specific updates,
such as common path pessimism removal
(CPPR).

(

(Timing paths
Path 1

R

STA Goal: What paths violate the .

. timing constraint?

Runtime Challenges of PBA

A

CPA

g CPU-based Path Analyzer
=
-
é How can we break the runtime bottleneck of
CPU-based critical path analysis?
\ GPA
\ GPU-based Path Analyzer
~ -_ s e-s s = -

CPU vs GPU

* CPU is built for compute-driven applications
* A few powerful threads to compute critical blocks fast

* GPU is built for throughput-driven applications
* Many lightweight threads to compute data at one time

Control ALU ALU

ALU ALU

FEREEREE

Problem Formulation

* Hold Test
 Data must be stable after clock signal arrives at the capturing flip-flop

* Setup Test

 Data must be stable before clock signal arrives at the capturing flip-flop
> Input

» Set of critical paths generated after GBA

» Output
» Sorted critical paths after path-specific update (here we apply to CPPR)

Capturing FF;
D

\fetup
Hold
Combinational

Logic CK
CLOCK 1w INnC . ol IS I ___ , __

Launching FF,

. Data Path
Clock Path

Parallel Decomposition

The set of critical paths is represented
in terms of timing-test, critical path, Critical Path Set
and pin of path traces

Test

Path

Parallel Decomposition in Term of Tests

Critical Path Set

Critical Path Set

+
\A

Path

Parallel Decomposition in Term of Paths

Critical Path Set

Critical Path Set

+
V

Path

Parallel Decomposition in Term of Pins

Critical Path Set

Challenges

s27 #Pins
16

 Computing critical paths involve very
irregular patterns because different
paths can have different lengths across
different timing tests
(e.g., hold/setup checks). S

* To support a large number of paths,
we need efficient data structures to fit
computations into relatively limited
GPU memory.

* GPU architectures are very different

Pin

0

30

Pin

0

Test 0 14

compared to CPUs, in terms of thread

70 14

Fig. 5: Uneven distribution of paths among tests causes
irregular parallelism on GPU. s27 and s344 are benchmarks
from from TAU 2014 CAD Contest [6]

scheduling, synchronization, and

10

Example

L e e e e e e

LI e e e e e

NN EEEEEEEEEEEE NN

EENNEEEEEEEEE NN

INEEEEEEEEE NN

AN EEEEEEEEEE NN

11

Example ...

EEEEEE T EEEEEE NN

EEEEEEEE SN EEN

IENEEEEEENEEEEEEEE

EEEEEENCEEEEEEE

EEEEEEEEEEE NN

IEEEEE S EEEEEEEEEEEE

find_if

find_if

find_if

find_if

find _if

find_if

12

Example ...

-7 EEEEEEs]

-2 EEEEEEEEE |

-3 EEEEEEEEEES | ||

-5 [T O I

-6 ERmEs

-1 EEEEEEs]

find_if

e

find_if

find_if

find_if

find_if

find_if

13

Example

-6 Hn EEEs]

-1 EEEN EEEs | |

-3 i EEEEEEEEs ||

-2 EEEN EEEms |

-3 mm mw

1 IDDDDDDIIIIIIIIIIII-

find_if

find_if

find_if

find_if

find_if

find_if

find_if

find_if

find_if

find_if

find_if

14

Example ...

-6 Hn EEEs]

-3 i EEEEEEEEs

-2 mn ms

-1 EEEE EEES | |

0 EEE EEmms

1 IDDDDDDIIIIIIIIIIII-

find_if

find_if

find_if

find_if

find_if

find_if

find_if

find_if

‘ sort ‘

find if [—

find_if

find_if

15

Task Graph-based Decomposition and Efficient GPU Kernels

d2h_post_cppr_slacks

devicel::get slacks

d2h_sorted_ids

d2h_sorted_ids d2h_post_cppr_slacks d2h_sorted_ids

16

device0::get slacks

Results

TABLE II: Elapsed time (seconds) comparison between CPU Path Analyzer (CPA) and GPU Path Analyzer (GPA).
Benchmarks are from TAU 2014 CAD contest [6].

denchmark VI [E| #Tests # Paths 1%)1% 1 GPU 3 GPUs e 3 GPUs 4 GPUs
Systemcdes 10836 13327 380 31436 0.84 396 (0.2%) 330 (0.3%) 34T (029 328 (03%)
wh_dma 14647 17428 1374 158 0.42 178 (0.2%) 160 (0.3x) 161 (0.3%) 176 (0.2x)
(v80 18080 23710 838 19227963 || 5.81 3052 (02x) | 2140 (03x) | 1948 (0.3x) | 1848 (0.3x)
systemeaes || 23909 29673 2500 13069928 || 6.85 3791 (02x) | 2627 (03x) | 2310 (03x) | 2229 (0.3x)
mem_ctr] 36493 45090 3754 62938 4.4] 2392 (02 | 1705 (03x) | 1530 (03x) | 1478 (0.3x)
ac97_ctrl 49276 55712 9370 148 123 128 (1.0x) 121 (1.0x) 128 (1.0x) 146 (0.8%)
ush_funct 53745 66183 4392 129854 3.52 1660 (02x) | 1187 (03x) | 1107 (03x) | 1092 (0.3x)
pci_bridge32 || 70051 78282 16450 17296 6.87 292 (03x) | 1664 (04x) | 1488 (05x) | 1478 (0.5%)
aes._core 68327 86758 2528 21064 440 | 2069 (020 | 1481 (03x) | 1325 (03x) | 1288 (0.3x)
des_perf 330538 404257 19764 1682 2073 | 2926 (07x) | 2166 (1.0x) | 2007 (1.0x) | 1957 (LIx)
vga_led 449651 525615 50182 5281 5332 | 1716 (Gdx) | 1343 @40x) | 1263 (42x) | 1255 (4.2x)
Combo2 260636 284091 29574 62938 3105 | 4661 (07x) | 37.63 (08x) | 3651 (09%) | 3551 (0.9%)
Combo3 181831 284091 8294 129854 1654 | 4061 (04x) | 3240 (05x) | 3001 (0.6x) | 2942 (0.6x)
Combod 778638 866099 53520 19227963 || 11265 | 61.89 (1.8x) | 5136 (2.2x) | 4808 (23x) | 47.15 (2.4x)
ComboS 2051804 2228611 79050 19227963 || 43229 | 100.84 (4.3x) | 9104 (47x) | 86.68 (5.0x) | 8621 (5.0x)
Combo6 || 3577926 3843033 128266 19227963 || 1572.86 | 136.38 (11.5x) | 121.05 (13.0x) | 116.64 (13.5x) | 11495 (13.7x)
Combo7 || 2817561 3011233 109568 19227963 || 946.58 | 134.67 (7.0x) | 122.05 (7.8x) | 11852 (8.0x) | 117.07 (8.1x)

|V |: size of node set. |E|: size of edge set. #Tests: number of hold/setup tests. #Paths: max number of data paths per test.

CPA: CPU Path Analyzer. GPA: GPU Path Analyzer.

« CPU: Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz

 GPU: NVIDIA GeForce RTX 2080 Ti (Compute Capability 7.5)

17

On-Going Work

e QOur future work plans to improve our data
structures and algorithms to overcome the
unbalanced workload and limitation of
GPU memory challenges

* Apply the framework to other PBA
applications

* Evaluate the PBA algorithm on large Nvidia
benchmarks using A100

* We are planning to submit the preliminary
work to ASP-DAC 2022

18

If you were plowing a field, which
would you rather use? Two strong
oxen or 1024 chickens?

— S (’.t/rwwu/z C/‘lat/ =

