
Distributed Timing Analysis in 100
Line Code
Tsung-Wei Huang
Research Assistant Professor
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, IL, USA

1

What we Need Today

q OpenTimer
qStatic timing analysis (STA) tool
q Installation guide (by Kunal Ghosh):

https://www.udemy.com/vsd-a-complete-guide-to-install-open-
source-eda-tools/

q DtCraft
qDistributed programming system
qWebsite: http://dtcraft.web.engr.illinois.edu/
qGitHub: https://github.com/twhuang-uiuc/DtCraft

q A Linux machine (Ubuntu recommended)
qG++ 7.2 (for C++17)

q Demo code:
http://web.engr.illinois.edu/~thuang19/webinar.tar.gz

2

https://www.udemy.com/vsd-a-complete-guide-to-install-open-source-eda-tools/
http://dtcraft.web.engr.illinois.edu/
https://github.com/twhuang-uiuc/DtCraft
http://web.engr.illinois.edu/~thuang19/webinar.tar.gz

Install DtCraft

q Download DtCraft
qhttp://dtcraft.web.engr.illinois.edu/download.html

q Build DtCraft
qDisable shared library for simplicity (--disable-shared)

q Make sure you have GCC/G++ 7 installed (C++17)

3

~$ git clone https://github.com/twhuang-uiuc/DtCraft.git
~$ cd DtCraft

~$./configure --disable-shared
~$ make

~$ sudo apt-get update
~$ sudo apt-get install gcc-7 g++-7

http://dtcraft.web.engr.illinois.edu/download.html

Outline

q Express your parallelism in the right way
qA “hard-coded” distributed timing analysis framework

q Boost your productivity in writing parallel code
qDtCraft system

q Leverage your time to produce promising results
qDemo 1: A vanilla example
qDemo 2: Distributed timing using DtCraft
q Lab

4

Outline

q Express your parallelism in the right way
qA “hard-coded” distributed timing analysis framework

q Boost your productivity in writing parallel code
qDtCraft system

q Leverage your time to produce promising results
qDemo 1: A vanilla example
qDemo 2: Distributed timing using DtCraft
q Lab

5

Distributed Timing

q Deal with the ever-increasing design complexity
qBillions of transistors result in very large timing graphs
qAnalyze the timing under different conditions
qVertical scaling is not cost efficient

q Want to scale out our computations
q Leverage the power of computer clusters (cloud computing)

6

Datacenter (distributed)

6

Single node (threaded)

Motivation: Speed up Timing Closure

q Multi-mode multi-corner (MMMC) timing analysis
qTest modes, functional modes
qProcess, voltage, temperature (PVT)
qTiming runs across all combinations

• Temperature: Tmax/Tmin
• Volgate: Vmin/Vmax

qEach combination is referred to as a timing view

7

2x2 combinations (timing
views/reports)

Good News and Bad News

8

q Each timing view is logically parallel to each other
q Developing a distributed program is very difficult

qSeveral weeks more than a single-machine counterpart
qNetwork programming, subtly buggy code, etc

q Scalability and transparency
q Intend to focus on high level rather than low level
qWant better productivity
qWant better flexibility
qWant better performance

0
5

10
15

weeks

Development time

Localhost Distributed

Distributed Systems in Big Data

q Hadoop
qDistributed MapReduce platform on HDFS

q Cassandra
qScalable multi-master database

q Chukwa
qA distributed data collection system

q Zookeeper
qCoordination service for distributed application

q Mesos
qA high-performance cluster manager

q Spark
qA fast and general computing engine for big-data analytics

9

The Questions are

q Are these packages suitable for timing?
q What are the potential hurdles for EDA to use them?
q How much code rewrite do I need?
q What is the significance of adopting new languages?
q Will I lose performance?

10

Big-data Tool is Not an Easy Fit!

11

Method Spark
(RDD + GraphX Pregel)

Java
(SP)

C++
(SP)

Runtime (s) 68.45 9.5 1.50

0

20

40

60

80

C++ Python Java Scala Spark
GraphX

Runtime comparison on arrival time propagation

Runtime (s)
1.5s 9.5s 10.68s

68.45s

7.4s

Industrial circuit graph
(2.5M nodes and 3.5M edges)

(4 cores)(1 core) (1 core) (1 core) (1 core)

Overhead of big data tools Language difference

A Hard-coded Distributed MMMC Framework

12

q Non-blocking IO
q Event-driven programming
q Serialization/Deserialization

Huang et al., “A Distributed Timing Analysis Framework for Large Designs,” IEEE/ACM DAC16

q Built from the scratch using raw Linux Socket
qHard code using Linux sockets
qExplicit data movement
qExplicit job execution
qExplicit parallelism management
q ...

Timing
view 1

Timing
view 2

Timing
view 3

Master
(server)Which machine does

which view?

Difficult scalability L
Large amount of code rewrites L

Observations

q Big data doesn’t fit well in timing
q IO-bound vs CPU-bound
qUnstructured data vs structured data
q JVM vs C/C++

q Life shouldn’t be hard-coded
qDeal with low-level socket programming
qMove data explicitly between compute nodes
qManage cluster resources on your own
qResult in a large amount of development efforts

q Want parallel programming at scale more productive

13

Outline

q Express your parallelism in the right way
qA “hard-coded” distributed timing analysis framework

q Boost your productivity in writing parallel code
qDtCraft system

q Leverage your time to produce promising results
qDemo 1: A vanilla example
qDemo 2: Distributed timing using DtCraft
q Lab

14

What does “Productivity” really mean?

15

Programming
language

Transparency Performance

A New Solution: DtCraft

q A unified engine to simplify cluster programming
qCompletely built from the ground up using C++17

q Save your time away from the pain of DevOps

16

DtCraft Programming Environment

Network
programming I/O stream Event-driven

reactor
Resource
control

…

Serialization

High-level C++17-based Stream Graph API

T.-W. Huang, C.-X. Lin, and M. D. F. Wong, “DtCraft: A high-performance distributed execution engine
at scale,” IEEE TCAD, to appear, 2018

System Architecture

17

q Express your parallelism in our stream graph model
qGeneric dataflow at any granularity

q Deliver transparent concurrency through the kernel
qAutomatic workload distribution and message passing

DtCraft website: http://dtcraft.web.engr.illinois.edu/
DtCraft github: https://github.com/twhuang-uiuc/DtCraft

http://dtcraft.web.engr.illinois.edu/
https://github.com/twhuang-uiuc/DtCraft

Stream Graph Programming Model

q A general representation of a dataflow
qAbstraction over computation and communication

q Analogous to the assembly line model
qVertex storage è goods store
qStream processing unit è independent workers

18

A B

Data stream

Data stream

ostream
A

istream
B

istream
A

Stream graph
ostream

B

AèB

AçB

AèB

AçB

Generate data

Compute unit

Compute unit

Generate data
buffer

Outline

q Express your parallelism in the right way
qA “hard-coded” distributed timing analysis framework

q Boost your productivity in writing parallel code
qDtCraft system

q Leverage your time to produce promising results
qDemo 1: A vanilla example
qDemo 2: Distributed timing using DtCraft
q Lab

19

Write a DtCraft Application

q Step 1: Decide the stream graph of your application
q Step 2: Specify the data to stream between vertices
q Step 3: Define the stream computation callback
q Step 4: Attach resources on vertices (optional)
q Step 5: Submit

20

A B

Container 1
(1 CPU / 4GB RAM)

Container 2
(1 CPU / 8GB RAM)

A B

String str;
int id;

String str;
int id;

ostream istream

./submit –master=host hello-world

A Vanilla Example

q A cycle of two vertices and two streams
qEach vertex sends a hello message to the other
qCloses the underlying stream channel

21

A B

“hello from A”

“hello from B”

Stop when no
active streams

Step 1: stream graph

A Vanilla Example

q A cycle of two vertices and two streams
qEach vertex sends a hello message to the other
qCloses the underlying stream channel

22

A B

“hello from A”

“hello from B”

Stop when no
active streams

Step 1: stream graph

Step 2:
string msg;

Step 2:
string msg;

A Vanilla Example

q A cycle of two vertices and two streams
qEach vertex sends a hello message to the other
qCloses the underlying stream channel

23

A B

“hello from A”

“hello from B”

Stop when no
active streams

Step 1: stream graph

Step 2:
string msg;

Step 2:
string msg;

[=] (auto& B, auto& is) {
Extract string from is;
print string;

}

istream B

Step 3: AèB callback

[=] (auto& A, auto& is) {
Extract string from is;
print string

}

istreamA

Step 3: AçB callback

A Vanilla Example

q A cycle of two vertices and two streams
qEach vertex sends a hello message to the other
qCloses the underlying stream channel

24

A B

“hello from A”

“hello from B”

Stop when no
active streams

Step 1: stream graph

Step 2:
string msg;

Step 2:
string msg;

[=] (auto& B, auto& is) {
Extract string from is;
print string;

}

istream B

Step 3: AèB callback

[=] (auto& A, auto& is) {
Extract string from is;
print string

}

istreamA

Step 3: AçB callback

Step 4: A’s resource
1 CPU / 1 GB RAM

Step 4: B’s resource
1 CPU / 1 GB RAM

A Vanilla Example

q A cycle of two vertices and two streams
qEach vertex sends a hello message to the other

qCloses the underlying stream channel

25

A B

“hello from A”

“hello from B”

Stop when no
active streams

Step 1: stream graph

Step 2:

string msg;

Step 2:

string msg;

[=] (auto& B, auto& is) {
Extract string from is;
print string;

}

istream B

Step 3: AèB callback

[=] (auto& A, auto& is) {
Extract string from is;
print string

}

istreamA

Step 3: AçB callback

Step 4: A’s resource
1 CPU / 1 GB RAM

Step 4: B’s resource
1 CPU / 1 GB RAM

Step 5: ./submit –master=127.0.0.1 hello-world

Demo (hello_world.cpp)

q Hello world
qCreate a stream graph of two vertices and two streams
qUse container interface to manage cluster resources

q Local mode execution
qSingle process

q Distributed mode execution
q Launch master and agents to set up a DtCraft cluster
qSubmit hello_world to the cluster

26

Login user host DtCraft home

twhuang csl-408-08.csl.Illinois.edu /home/twhuang/DtCraft

twhuang csl-408-14.csl.Illinois.edu /home/twhuang/DtCraft

Notice: Replace with your own login/hosts/DtCraftHome.

Demo code: http://web.engr.illinois.edu/~thuang19/webinar.tar.gz

http://web.engr.illinois.edu/~thuang19/webinar.tar.gz

Debrief

27

Ø Only a couple lines of code
Ø Single sequential program
Ø Distributed across computers
Ø No explicit data management
Ø Easy-to-use streaming interface
Ø Asynchronous by default
Ø Scalable to many threads
Ø Scalable to many machines
Ø In-context resource controls
Ø Scale out to heterogeneous devices
Ø Transparent concurrency controls
Ø Robust runtime via Linux container
… and more

Vertex

Stream
AàB

Stream
BàA

Distributed Hello-world without DtCraft …

28

A lot of boilerplate code
for this trivial distributed
program…

Branch your code to server and client for
distributed computation!
simple.cpp à server.cpp + client.cpp

server.cpp

client.cpp

Distributed Timing with DtCraft

q Three timing views

29

Timing
view 1

Timing
view 2

Timing
view 3

.v
.lib

.spef

.v
.lib

.spef

.v
.lib

.spef

Report 1 Report 2 Report 3

With DtCraft (<100 lines of code)

Wrap up with scripts

Explicit data movement and partitions

Without DtCraft (hard-coded)

Code duplication, separate control flows

DtCraft runtime

Demo (dta.cpp)

q Distributed timing analysis with three timing views
q simple_tv1 (P=1, V=0.7, T=70)
q simple_tv2 (P=0.5, V=0.95, T=85)
q simple_tv3 (P=0.9, V=0.5, T=60)

q OpenTimer how-to (by Kunal)
qhttps://www.udemy.com/vlsi-academy-sta-checks-2/

q Local mode execution
q Distributed mode execution

30

Login user host DtCraft home

twhuang csl-408-08.csl.Illinois.edu /home/twhuang/DtCraft

twhuang csl-408-14.csl.Illinois.edu /home/twhuang/DtCraft

Notice: Replace with your own login/hosts/DtCraftHome.

Demo code: http://web.engr.illinois.edu/~thuang19/webinar.tar.gz

https://www.udemy.com/vlsi-academy-sta-checks-2/
http://web.engr.illinois.edu/~thuang19/webinar.tar.gz

Debrief

q Transparency
qNo low-level network programming details
qAutomatic workload distribution

q Scalability
qSame code scales out automatically when new machines added
qDynamic scaling
qFlexible partitions and in-context resource controls

q Programmability
qCan incorporate other programs together

q Productivity
q Less than 100 lines of code

31

Exercise (lab.cpp)

q Distributed timing for two designs each with four views
q c17_v1, c17_v2, c17_v3, c17_v4
q c499_v1, c499_v2, c499_v3, c499_v4

q Implement a stream graph
qEight vertices each operating on one timing view
qTwo containers, one for c17_v* and another for c499_v*
qTry different resource assignments for each container

q Submit the graph to your DtCraft cluster
q Local mode and distributed mode

q Report TNS and WNS for each view
q Report elapsed time and peak memory for each container
q Use at most 50 lines of code J

32

Example Solution (20 lines)

33

#include <dtc/dtc.hpp>

int main(int argc, char* argv[]) {

using namespace dtc::literals;

dtc::Graph G;

auto c17tv1 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c17_tv1 tv1.report");

auto c17tv2 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c17_tv2 tv2.report");

auto c17tv3 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c17_tv3 tv3.report");

auto c17tv4 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c17_tv4 tv4.report");

auto c499tv1 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c499_tv1 tv1.report");

auto c499tv2 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c499_tv2 tv2.report");

auto c499tv3 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c499_tv3 tv3.report");

auto c499tv4 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c499_tv4 tv4.report");

G.container().add(c17tv1).add(c17tv2).add(c17tv3).add(c17tv4).cpu(1).memory(1_GB);

G.container().add(c499tv1).add(c499tv2).add(c499tv3).add(c499tv4).cpu(1).memory(1_GB);

dtc::Executor(G).run();

return 0;

}

Example Report

34

Design TNS (ps) WNS (ps) Elapsed Time Peak Memory

c17_tv1 -8.14469e+02 -2.29314e+01 0.23s 86M

c17_tv2 -2.79547e+03 -7.32566e+01

c17_tv3 -7.15888e+02 -1.91890e+01

c17_tv4 -1.69670+e03 -4.53052e+01

c499_tv1 -4.97395e+05 -5.16786e+02 0.25s 90M

c499_tv2 -4.86524e+05 -5.05552e+02

c499_tv3 -2.34709e+05 -2.44073e+02

c499_tv4 -1.69093e+06 -1.75538e+03

Conclusion

q Express your parallelism in the right way
qA “hard-coded” distributed timing analysis framework

q Boost your productivity in writing parallel code
qDtCraft system

q Leverage your time to produce promising results
qDemo 1: A vanilla example
qDemo 2: Distributed timing using DtCraft
q Lab

35

Please star and watch DtCraft at GitHub to receive updates!
(https://github.com/twhuang-uiuc/DtCraft)

https://github.com/twhuang-uiuc/DtCraft

Thank you!

36

Dr. Tsung-Wei Huang
twh760812@gmail.com

Github: https://github.com/twhuang-uiuc
Website: http://web.engr.illinois.edu/~thuang19/

mailto:twh760812@gmail.com
https://github.com/twhuang-uiuc
http://web.engr.illinois.edu/~thuang19/

