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What we Need Today

q OpenTimer
qStatic timing analysis (STA) tool
q Installation guide (by Kunal Ghosh): 

https://www.udemy.com/vsd-a-complete-guide-to-install-open-
source-eda-tools/

q DtCraft
qDistributed programming system
qWebsite: http://dtcraft.web.engr.illinois.edu/
qGitHub: https://github.com/twhuang-uiuc/DtCraft

q A Linux machine (Ubuntu recommended)
qG++ 7.2 (for C++17)

q Demo code: 
http://web.engr.illinois.edu/~thuang19/webinar.tar.gz
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https://www.udemy.com/vsd-a-complete-guide-to-install-open-source-eda-tools/
http://dtcraft.web.engr.illinois.edu/
https://github.com/twhuang-uiuc/DtCraft
http://web.engr.illinois.edu/~thuang19/webinar.tar.gz


Install DtCraft

q Download DtCraft
qhttp://dtcraft.web.engr.illinois.edu/download.html

q Build DtCraft
qDisable shared library for simplicity (--disable-shared)

q Make sure you have GCC/G++ 7 installed (C++17)
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~$ git clone https://github.com/twhuang-uiuc/DtCraft.git
~$ cd DtCraft

~$ ./configure --disable-shared
~$ make

~$ sudo apt-get update 
~$ sudo apt-get install gcc-7 g++-7

http://dtcraft.web.engr.illinois.edu/download.html


Outline

q Express your parallelism in the right way
qA “hard-coded” distributed timing analysis framework

q Boost your productivity in writing parallel code
qDtCraft system

q Leverage your time to produce promising results
qDemo 1: A vanilla example
qDemo 2: Distributed timing using DtCraft
q Lab
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Distributed Timing

q Deal with the ever-increasing design complexity
qBillions of transistors result in very large timing graphs
qAnalyze the timing under different conditions
qVertical scaling is not cost efficient

q Want to scale out our computations
q Leverage the power of computer clusters (cloud computing)
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Datacenter (distributed)

6

Single node (threaded)



Motivation: Speed up Timing Closure

q Multi-mode multi-corner (MMMC) timing analysis
qTest modes, functional modes
qProcess, voltage, temperature (PVT)
qTiming runs across all combinations

• Temperature: Tmax/Tmin
• Volgate: Vmin/Vmax

qEach combination is referred to as a timing view
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2x2 combinations (timing 
views/reports)



Good News and Bad News
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q Each timing view is logically parallel to each other
q Developing a distributed program is very difficult

qSeveral weeks more than a single-machine counterpart
qNetwork programming, subtly buggy code, etc

q Scalability and transparency
q Intend to focus on high level rather than low level
qWant better productivity
qWant better flexibility
qWant better performance

0
5

10
15

# weeks

Development time

Localhost Distributed



Distributed Systems in Big Data

q Hadoop 
qDistributed MapReduce platform on HDFS

q Cassandra
qScalable multi-master database

q Chukwa
qA distributed data collection system

q Zookeeper
qCoordination service for distributed application

q Mesos
qA high-performance cluster manager

q Spark
qA fast and general computing engine for big-data analytics
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The Questions are

q Are these packages suitable for timing?
q What are the potential hurdles for EDA to use them?
q How much code rewrite do I need?
q What is the significance of adopting new languages?
q Will I lose performance?
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Big-data Tool is Not an Easy Fit!
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Method Spark
(RDD + GraphX Pregel)

Java
(SP)

C++
(SP)

Runtime (s) 68.45 9.5 1.50
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A Hard-coded Distributed MMMC Framework
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q Non-blocking IO
q Event-driven programming
q Serialization/Deserialization

Huang et al., “A Distributed Timing Analysis Framework for Large Designs,” IEEE/ACM DAC16

q Built from the scratch using raw Linux Socket
qHard code using Linux sockets 
qExplicit data movement
qExplicit job execution
qExplicit parallelism management
q ...

Timing 
view 1

Timing 
view 2

Timing 
view 3

Master
(server)Which machine does 

which view?

Difficult scalability L
Large amount of code rewrites L



Observations

q Big data doesn’t fit well in timing
q IO-bound vs CPU-bound
qUnstructured data vs structured data
q JVM vs C/C++

q Life shouldn’t be hard-coded
qDeal with low-level socket programming
qMove data explicitly between compute nodes
qManage cluster resources on your own
qResult in a large amount of development efforts

q Want parallel programming at scale more productive

13



Outline
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What does “Productivity” really mean?
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Programming 
language

Transparency Performance



A New Solution: DtCraft

q A unified engine to simplify cluster programming
qCompletely built from the ground up using C++17

q Save your time away from the pain of DevOps
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DtCraft Programming Environment

Network 
programming I/O stream Event-driven 

reactor
Resource 
control

…

Serialization

High-level C++17-based Stream Graph API

T.-W. Huang, C.-X. Lin, and M. D. F. Wong, “DtCraft: A high-performance distributed execution engine 
at scale,” IEEE TCAD, to appear, 2018



System Architecture
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q Express your parallelism in our stream graph model
qGeneric dataflow at any granularity

q Deliver transparent concurrency through the kernel
qAutomatic workload distribution and message passing

DtCraft website: http://dtcraft.web.engr.illinois.edu/
DtCraft github: https://github.com/twhuang-uiuc/DtCraft

http://dtcraft.web.engr.illinois.edu/
https://github.com/twhuang-uiuc/DtCraft


Stream Graph Programming Model

q A general representation of a dataflow
qAbstraction over computation and communication

q Analogous to the assembly line model
qVertex storage è goods store
qStream processing unit è independent workers
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A B

Data stream

Data stream

ostream
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istream
B

istream
A

Stream graph
ostream
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AèB
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AèB
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Generate data
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Write a DtCraft Application

q Step 1: Decide the stream graph of your application
q Step 2: Specify the data to stream between vertices
q Step 3: Define the stream computation callback
q Step 4: Attach resources on vertices (optional)
q Step 5: Submit
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A B

Container 1 
(1 CPU / 4GB RAM)

Container 2 
(1 CPU / 8GB RAM)

A B

String str;
int id;

String str;
int id;

ostream istream

./submit –master=host hello-world 



A Vanilla Example

q A cycle of two vertices and two streams
qEach vertex sends a hello message to the other
qCloses the underlying stream channel
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A B

“hello from A”

“hello from B”

Stop when no 
active streams

Step 1: stream graph
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A B

“hello from A”

“hello from B”

Stop when no 
active streams

Step 1: stream graph

Step 2:
string msg;

Step 2:
string msg;
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A B

“hello from A”

“hello from B”

Stop when no 
active streams

Step 1: stream graph

Step 2:
string msg;

Step 2:
string msg;

[=] (auto& B, auto& is) {
Extract string from is;
print string;

}  

istream B

Step 3: AèB callback

[=] (auto& A, auto& is) {
Extract string from is;
print string

}  

istreamA

Step 3: AçB callback
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A B

“hello from A”

“hello from B”

Stop when no 
active streams

Step 1: stream graph

Step 2:
string msg;

Step 2:
string msg;

[=] (auto& B, auto& is) {
Extract string from is;
print string;

}  

istream B

Step 3: AèB callback

[=] (auto& A, auto& is) {
Extract string from is;
print string

}  

istreamA

Step 3: AçB callback

Step 4: A’s resource 
1 CPU / 1 GB RAM

Step 4: B’s resource
1 CPU / 1 GB RAM



A Vanilla Example

q A cycle of two vertices and two streams
qEach vertex sends a hello message to the other

qCloses the underlying stream channel
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A B

“hello from A”

“hello from B”

Stop when no 
active streams

Step 1: stream graph

Step 2:

string msg;

Step 2:

string msg;

[=] (auto& B, auto& is) {
Extract string from is;
print string;

}  

istream B

Step 3: AèB callback

[=] (auto& A, auto& is) {
Extract string from is;
print string

}  

istreamA

Step 3: AçB callback

Step 4: A’s resource 
1 CPU / 1 GB RAM

Step 4: B’s resource
1 CPU / 1 GB RAM

Step 5: ./submit –master=127.0.0.1 hello-world



Demo (hello_world.cpp)

q Hello world
qCreate a stream graph of two vertices and two streams
qUse container interface to manage cluster resources

q Local mode execution
qSingle process

q Distributed mode execution
q Launch master and agents to set up a DtCraft cluster
qSubmit hello_world to the cluster
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Login user host DtCraft home

twhuang csl-408-08.csl.Illinois.edu /home/twhuang/DtCraft

twhuang csl-408-14.csl.Illinois.edu /home/twhuang/DtCraft

Notice: Replace with your own login/hosts/DtCraftHome.

Demo code: http://web.engr.illinois.edu/~thuang19/webinar.tar.gz

http://web.engr.illinois.edu/~thuang19/webinar.tar.gz


Debrief
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Ø Only a couple lines of code
Ø Single sequential program
Ø Distributed across computers
Ø No explicit data management
Ø Easy-to-use streaming interface
Ø Asynchronous by default
Ø Scalable to many threads
Ø Scalable to many machines
Ø In-context resource controls
Ø Scale out to heterogeneous devices
Ø Transparent concurrency controls
Ø Robust runtime via Linux container
… and more

Vertex

Stream 
AàB

Stream 
BàA



Distributed Hello-world without DtCraft …
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A lot of boilerplate code 
for this trivial distributed 
program…

Branch your code to server and client for 
distributed computation!
simple.cpp à server.cpp + client.cpp

server.cpp

client.cpp



Distributed Timing with DtCraft

q Three timing views
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Timing 
view 1

Timing 
view 2

Timing 
view 3

.v
.lib

.spef

.v
.lib

.spef

.v
.lib

.spef

Report 1 Report 2 Report 3

With DtCraft (<100 lines of code)

Wrap up with scripts

Explicit data movement and partitions

Without DtCraft (hard-coded)

Code duplication, separate control flows

DtCraft runtime



Demo (dta.cpp)

q Distributed timing analysis with three timing views
q simple_tv1 (P=1, V=0.7, T=70)
q simple_tv2 (P=0.5, V=0.95, T=85)
q simple_tv3 (P=0.9, V=0.5, T=60)

q OpenTimer how-to (by Kunal)
qhttps://www.udemy.com/vlsi-academy-sta-checks-2/

q Local mode execution
q Distributed mode execution
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Login user host DtCraft home

twhuang csl-408-08.csl.Illinois.edu /home/twhuang/DtCraft

twhuang csl-408-14.csl.Illinois.edu /home/twhuang/DtCraft

Notice: Replace with your own login/hosts/DtCraftHome.

Demo code: http://web.engr.illinois.edu/~thuang19/webinar.tar.gz

https://www.udemy.com/vlsi-academy-sta-checks-2/
http://web.engr.illinois.edu/~thuang19/webinar.tar.gz


Debrief

q Transparency
qNo low-level network programming details
qAutomatic workload distribution

q Scalability
qSame code scales out automatically when new machines added
qDynamic scaling
qFlexible partitions and in-context resource controls

q Programmability
qCan incorporate other programs together

q Productivity
q Less than 100 lines of code
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Exercise (lab.cpp)

q Distributed timing for two designs each with four views
q c17_v1, c17_v2, c17_v3, c17_v4
q c499_v1, c499_v2, c499_v3, c499_v4

q Implement a stream graph
qEight vertices each operating on one timing view
qTwo containers, one for c17_v* and another for c499_v*
qTry different resource assignments for each container

q Submit the graph to your DtCraft cluster
q Local mode and distributed mode

q Report TNS and WNS for each view
q Report elapsed time and peak memory for each container
q Use at most 50 lines of code J
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Example Solution (20 lines)
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#include <dtc/dtc.hpp>

int main(int argc, char* argv[]) { 

using namespace dtc::literals; 

dtc::Graph G; 

auto c17tv1 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c17_tv1 tv1.report"); 

auto c17tv2 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c17_tv2 tv2.report"); 

auto c17tv3 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c17_tv3 tv3.report"); 

auto c17tv4 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c17_tv4 tv4.report"); 

auto c499tv1 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c499_tv1 tv1.report"); 

auto c499tv2 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c499_tv2 tv2.report"); 

auto c499tv3 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c499_tv3 tv3.report"); 

auto c499tv4 = G.vertex().program("path_to_webinar/ot.sh path_to_webinar/c499_tv4 tv4.report"); 

G.container().add(c17tv1).add(c17tv2).add(c17tv3).add(c17tv4).cpu(1).memory(1_GB); 

G.container().add(c499tv1).add(c499tv2).add(c499tv3).add(c499tv4).cpu(1).memory(1_GB); 

dtc::Executor(G).run(); 

return 0; 

}



Example Report
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Design TNS (ps) WNS (ps) Elapsed Time Peak Memory

c17_tv1 -8.14469e+02 -2.29314e+01 0.23s 86M

c17_tv2 -2.79547e+03 -7.32566e+01

c17_tv3 -7.15888e+02 -1.91890e+01

c17_tv4 -1.69670+e03 -4.53052e+01

c499_tv1 -4.97395e+05 -5.16786e+02 0.25s 90M

c499_tv2 -4.86524e+05 -5.05552e+02

c499_tv3 -2.34709e+05 -2.44073e+02

c499_tv4 -1.69093e+06 -1.75538e+03
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Please star and watch DtCraft at GitHub to receive updates!
(https://github.com/twhuang-uiuc/DtCraft) 

https://github.com/twhuang-uiuc/DtCraft


Thank you!
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Dr. Tsung-Wei Huang
twh760812@gmail.com

Github: https://github.com/twhuang-uiuc
Website: http://web.engr.illinois.edu/~thuang19/

mailto:twh760812@gmail.com
https://github.com/twhuang-uiuc
http://web.engr.illinois.edu/~thuang19/

