
1

Machine Learning System-Enabled
GPU Acceleration for EDA

Dr. Tsung-Wei Huang
Department of Electrical and Computer Engineering,

University of Utah, UT

2

Integrated Circuits (ICs) Design Flow

q Electronic design automation (EDA) is a key step

System Level
Synthesis

Logic
Synthesis

Physical
Design

Physical
Verification Fabricate Package

Test

System Design Logic Design Backend Design

����	����	��
�����	 ����������

Floorplanning

Placement

Routing

Timing Analysis

Timing Closure
DFM Closure

3

EDA is an Extremely Challenging Step

• Large scale: billions of transistors
• Numerous constraints from low-level manufacturing

& high-level architecture
• Complicated design flow
• Long design cycles

IBM Power7
1.2B

Fundamental challenges in CAD
must be solved to reduce large
design time and effort

Transistors ($M)How can we keep CAD up with Moore’s Law?

Technology node 180 130 65 45 32 22 14

100

75

50

25

0
1980 85 90 95 2000 05 10 15

10B

100M

1M

10K

100

Transistors per chip
Total HW cost

Design cost
Verification cost

Source: DARPA IDEA Program

4

EDA Must Incorporate New Parallelism

0 100 200 300 400 500 600

1 GPU

40 CPUs

1 CPU

Time to Solve a Static Timing Analysis Workload

Static Timing Analysis Workload

10x faster

100x faster

q Manycore central processing units (CPUs)
q Graphics processing units (GPUs)

5

Advance in Graphics Processing Units (GPUs)

CPU

GPU

Over 60x speedup in neural
network training since 2013

NVLink Performance

Tensor core

6

GPU Programming is NOT EASY

q You need to deal with many difficult technical details
q Standard concurrency control
q Task dependencies
q Scheduling
q Data layout
q Kernel launch
q … (more)

Concurrency
control

Dependency
constraints

Task and
data race

Scheduling
efficiencies

Many developers

have hard time in

getting them right!
Debug

7

Well, We have Seen Vast Success in ML

Machine learning (ML) frameworks judiciously hide
implementation complexities of GPU parallelism!

You don’t need to know much GPU programing when running ML algorithms

8

How can we take advantage of existing deep learning
frameworks to create GPU-accelerated EDA

algorithms?

9

Key Abstraction of Deep Learning Frameworks

q All deep learning frameworks rely on ”tensor”
q What is a tensor?

q A multidimensional view of a data layout
q A unified data abstraction to utilize GPU
q A GPU-efficient data representation

10

ML System-Enabled GPU Acceleration for EDA

q Rethink an EDA algorithm from tensor’s perspective
q Flat the data layout into N-dimensional arrays
q Design algorithms on top these array
q Reuse existing GPU facility in ML frameworks

q We have seen some successful examples
q DREAMPlace (DAC19)
q ABCDPlace (TCAD20)
q RTL simulation (ICCAD20)
q …

11

1. Z Guo, T-W Huang, and Y Lin,
“GPU-Accelerated Static
Timing Analysis,” IEEE/ACM
ICCAD, 2020

2. G Guo, T-W Huang, Y Lin, and
M Wong, “GPU-Accelerated
Path-based Timing Analysis,”
IEEE/ACM DAC, 2021

12

Static Timing Analysis

q Static timing analysis (STA)
q Key step in the VLSI design
q Verify the circuit timing

q Analyze worst-case timing
q Minimum timing values
q Maximum timing values

q Challenges
q Compute giant graphs
q Analyze millions of paths
q Balance the loads
q … What paths violate the timing

constraint?

13

Timing Checks (Required Arrival Time)

q Modern circuits are sequential
q Drive data signal via clocks
q Capture data via flip-flops (FF)s

q Timing constraints
q Min required arrival time

• After clock: hold

q Max required arrival time
• Before clock: setup

Required arrival time interval

OK – no violation

Hold
violation

Setup
violation

14

The “Traffic Light” Analogy

Can I pass the block before the next
red light with 40 mph?

15

Building a Good Traffic System is Hard

q Trillions of sections and traffic lights to analyze …

16

Same, STA is Computationally Challenging

q STA graphs is extremely large and irregular
q Millions to billions of nodes and edges
q Propagate timing information along giant graphs

ISPD circuit design (10M gates)

STA graphs are extremely large and irregular

STA graphs A datapath

Complete analysis can take 8 hours and 800 GB RAM

17

Parallel Timing Analysis is a MUST

q Leverage many-core CPUs to speed up the runtime
q Dramatic speed-up using 8 cores
q Yet, scalability saturates at about 10—16 cores

0 500 1000 1500 2000 2500

80 CPUs
40 CPUs
16 CPUs

8 CPUs
1 CPUs

Runtime vs CPUs

Full Timing Analysis

4-8x faster

saturated

18

Observed Scalability Bottleneck

q CPU-only parallelism stagnates at about 10 cores
q “Amdahl’s Law” limits the strong scalability
q Circuit graph structures limits the maximum parallelism

• If the graph has only 10 parallel nodes at a level, we won’t
achieve 40x speed-up

q Irregular computations limits the memory bandwidth
• STA is graph-oriented, not cache-friendly

q Need to incorporate new parallel paradigms
q GPU opens opportunities for new scalability milestones

• e.g., 100x speed-up reported in logic simulation
• e.g., 20—80x speed-up reported in placement

q Implement our algorithms using PyTorch’s tensor library

19

Leverage GPU to Accelerates STA

q We target two important STA steps:
q Graph-based analysis (GBA)
q Path-based analysis (PBA)

q We design CPU-GPU collaborative STA algorithms
q CPU-GPU task decomposition
q GPU kernels for timing update PBA analyzes critical paths one

by one on a updated graph

GBA computes the delay, slew, arrival
time at each node and edge

20

Runtime Breakdown of GBA

q GBA has three time-consuming steps
1. Prepare tasks through levelization à 42% runtime
2. Compute RC delay à 48% runtime
3. Propagate timing à 10% runtime

21

GPU-Accelerated GBA Algorithm Flow

22

Step #1: Levelization

q Levelize the circuit graph to a 2D levellist
q Nodes at the same level can run in parallel (red circle)
q Nodes at the same level can be modeled as a batch

q GPU-accelerated levelization using parallel frontiers

23

Step #2: RC Update

q The Elmore delay model
q Phase 1: 𝑙𝑜𝑎𝑑! = ∑" #$ %&#'()* ! 𝑐𝑎𝑝"

q For example, 𝑙𝑜𝑎𝑑! = 𝑐𝑎𝑝! + 𝑐𝑎𝑝" + 𝑐𝑎𝑝# + 𝑐𝑎𝑝$ = 𝑐𝑎𝑝! +
𝑙𝑜𝑎𝑑" + 𝑙𝑜𝑎𝑑$

q Phase 2: 𝑑𝑒𝑙𝑎𝑦! = ∑" #$ +,- ,)(. 𝑐𝑎𝑝"×𝑅/→123 !,"
q For example, 𝑑𝑒𝑙𝑎𝑦" = 𝑐𝑎𝑝!𝑅%→! + 𝑐𝑎𝑝$𝑅%→! + 𝑐𝑎𝑝"𝑅%→" +

𝑐𝑎𝑝#𝑅%→" = 𝑑𝑒𝑙𝑎𝑦! + 𝑅!→"𝑙𝑜𝑎𝑑"

Two-phase tree
traversal to

compute delay

24

Step #2: RC Update Upward Phase

q Store the parent index of each node on GPU
q Perform dynamic programming on trees

DFS_load(u):
load[u] = cap[u]
For child v of u:

DFS_load(v)
load[u] += load[v]

GPU_load:
For u in [C, D, B, E, A]:

load[u] += cap[u]
load[u.parent] += load[u]

25

Step #2: RC Update Downward Phase

q Store the parent index of each node on GPU
q Perform dynamic programming on trees

DFS_delay(u):
For child v of u:

temp := R[u,v]*load[v]
delay[v] = delay[u] + temp
DFS_delay(v)

GPU_delay:
For u in [A, E, B, D, C]:

temp := R[u.parent,u]*load[u]
delay[u]=delay[u.parent] + temp

26

Step #3: Cell Delay Update

q Perform linear inter- and extra-polation in batches
q x-axis and then y-axis

27

Overall Performance

q Implemented based on PyTorch’s Tensor Library
q Comparison with OpenTimer of 40 CPUs

q Run on large TAU15 Benchmarks (>20K gates)
q Run on one Nvidia RTX 2080

28

Runtime Breakdown

q Circuit leon2 (21 M nodes)

29

Runtime vs CPUs

Our runtime of 1 CPU and 1 GPU is very close to OpenTimer of 40 CPUs

q Significant performance gap between CPU and GPU

Improvement
by GPU

30

Path-based Analysis (PBA)

q Identify a set of critical paths from a updated graph
q Exponential number of paths in the circuit graph

q Re-analyze each path with path-specific update
q Re-propagate the slew and remove pessimism
q Advanced on-chip variation (AOCV)
q Common path pessimism removal (CPPR)
q … Paths marked failing at GBA may become passing

after PBA!

31

PBA is Extremely Time-Consuming

q Speed vs Accuracy (pessimism removal) tradeoff

/RJDULWKPLF�5XQWLPH

3H
VV
LP
LVP

PLQ PD[

PD[

�

2XU�3%$
�&38��*38

)XQGDPHQWDO�FRPSXWDWLRQDO�FKDOOHQJHV�RI�3DWK�
EDVHG�$QDO\VLV�PXVW�EH�VROYHG

32

A Key Step: Generate Critical Paths

q OpenTimer adopts implicit path representation
q Each path is represented using O(1) space and time
q Each path is ranked through a prefix tree & a suffix tree

T.-W. Huang et al., “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD21

33

GPU-Accelerated PBA Algorithm Flow

&RQVWUXFW�6KRUWHVW�3DWK�)RUHVW

/RRN�DKHDG�/HYHO�$OORFDWLRQ

,QWHUOHYHO�([SDQVLRQ

,QWUDOHYHO�&RPSUHVVLRQ

PD[�OHYHO

,QFUHPHQW�OHYHO

<

1

3DWK�5HFRYHU\

&38�([HFXWLRQ

*38�([HFXWLRQ

Level 1

Level 2

34

Step #1: Generate Suffix Tree on GPU

35

Step #2: Expand Prefix Tree on GPU

$ '

(

*

+ .

% (

*

+ .

(

&) ,

.

6WDUWSRLQW (QGSRLQW'HYLDWLRQ�(GJH 6XIIL[�(GJH

3DWK�$(+.

3DWK�%(+.

3DWK�&).

/HYHO�� /HYHO��

36

Step #2: Expand Prefix Tree on GPU (cont’d)

q Iteratively grow GPU memory at each expansion
q Each iteration uses GPU to decide path candidates
q Each iteration uses CPU to prune path candidates
q Each path candidate takes O(1) space “deviation edge”

100 paths

1000 paths

10000 paths

More levels = More paths
= Higher accuracy

37

Overall Performance

q Implemented based on PyTorch’s Tensor library
q Compare with OpenTimer’s CPU-based PBA

q Report speed-up at different MDLs

q Achieve significant speed-up at large designs
q 611x speed-up in leon2 (1.3M gates)
q 221x speed-up in leon3mp (1.2M gates)

38

Path Accuracy vs MDL

q one GPU is even faster than OpenTimer with 40 CPUs
q 44x on leon2
q 25x on leon3mp
q 46x on netcard
q 35x on b19

39

Conclusion

q Introduced the runtime challenges of EDA
q EDA tools must incorporate new parallel paradigms to allow

more efficient design space exploration and optimization
q Deep learning systems can simplify the implementation

complexities of GPU programming
q Studied GPU-accelerated STA opportunities

q Graph-based analysis
q Path-based analysis

q Accelerated the graph-based analysis using GPU
q Achieved 4x speed-up on large designs

q Accelerated the path-based analysis using GPU
q Achieved 600x speed-up on large designs

