Machine Learning System-Enabled
GPU Acceleration for EDA

Dr. Tsung-Wei Huang

Department of Electrical and Computer Engineering,
University of Utah, UT

Integrated Circuits (ICs) Design Flow

(1 Electronic design automation (EDA) is a key step

Fabless Design House Fab/Foundry
System Design Logic Design Backend Design
module test ===
> . input in[3]; _ E - DRC / i i
= endn.{édule ‘h-|* ;\!ri '\ |
System Level Logic Physical Physical Fabricate Package
Synthesis Synthesis Design Verification Test

FIoorpIannlng

Placement]
Routing
vy 4

Timing Analysis u

EDA is an Extremely Challenging Step

* Large scale: billions of transistors

* Numerous constraints from low-level manufacturing
& high-level architecture

 Complicated design flow

* Lo ng dESIgn CyCIeS Transistors How can we keep CAD up with Moore’s Law? (5M)

10B 100
o === Transistors per chip I Design cost

= m1 Total HW cost I Verification cost

100M 75

—
i -
"
S='A
=

e
J

1M 50

Fundamental challenges in CAD

must be solved to reduce large
100 design time and effort ‘i

1980 85 90 95 2000 10 15
Technology node 180 130 65 45 32 22 14

10K —F25

QA
))
/i

Source: DARPA IDEA Program L 2))
,//3

EDA Must Incorporate New Parallelism

(1 Manycore central processing units (CPUs)
1 Graphics processing units (GPUs)

Time to Solve a Static Timing Analysis Workload

1 CPU | ——

10x faster
40 CPUs R
100x faster
1 GPU |
0 100 200 300 400 500 600

W Static Timing Analysis Workload

GFLOPS

Advance in Graphics Processing Units (GPUs)

Peak Double Precision FLOPS

V100
7000 A
6000 -
5000 A
4000 - GPU
3000 A
2000 A
M2090
1000 -
O-M1060 —a | Haswe“Skylake
andy Ivy
Nehmen}BHdgeBﬂdge

2008 2010 2012 2014 2016
Year

Over 60x speedup in neural
network training since 2013

2018

GB/Sec

NVLink Performance

A100
600
3rd-generation NVLINK
500
400
300 V100
200 2nd-generation NVLINK
100 [P100 |
1st-generation NVLINK
0 m Architecture
Release
2015 2020
PASCAL TURING TENSOR CORE TURING TENSOR CORE TURING TENSOR CORE
FP16 INT 8
ccf I
B e W
0292
C2S2S2
L >< >< >< 2
0.:00

Tensor core

GPU Programming is NOT EASY

[You need to deal with many difficult technical details
J Standard concurrency control
J Task dependencies
d Scheduling
] Data layout
d Kernel launch

4 ... (more) | b % 2 = Taskand
Wi \ # data race
eN e\ope(;\ Syl
N\a(\\l a(d ‘\me \\’ﬁ.\'
V™ & et “
ettt

Well, We have Seen Vast Success in ML

Machine learning (ML) frameworks judiciously hide
implementation complexities of GPU parallelism!

4 juia v Y

Q) LEA + NING theano
¥ Microsoft
CNTK Cafer

You don’t need to know much GPU programing when running ML algonthg\\.\ 7

How can we take advantage of existing deep learning
frameworks to create GPU-accelerated EDA
algorithms?

Key Abstraction of Deep Learning Frameworks

1 All deep learning frameworks rely on “"tensor”

J What s a tensor?
J A multidimensional view of a data layout
J A unified data abstraction to utilize GPU
J A GPU-efficient data representation

. Vector of Matrixes Matrix of Matrixes
Vector Matrix Matrixes (4D Tensor) e
(1D Tensor) (2D Tensor) (3D Tensor)

| -1 -1f -5[84] 5

| 2] 2|0.5| 56| 7 -1 -5/ 84| 5

| 7] 711.9] 1]|8.4 2|0.5] 56| 7

| 19] 19| 6| 8/0.3 7019 1|84

5 19| 6| 8l03

0.5}

1.9]

ML System-Enabled GPU Acceleration for EDA

J Rethink an EDA algorithm from tensor’s perspective
J Flat the data layout into N-dimensional arrays
J Design algorithms on top these array
J Reuse existing GPU facility in ML frameworks

(1 We have seen some successful examples

(J DREAMPIace (DAC19)
(1 ABCDPlace (TCAD20) [

| //
O RTL simulation (ICCAD20) Agortims - §>

Python \ SGD
Automatic
GP .
T Gradient
/
A /
Conv WL
Low-level OP Q
C++/CUDA / ’\\
e en

10

Case S’ruolg

Z Guo, T-W Huang, and Y Lin,
“GPU-Accelerated Static
Timing Analysis,” IEEE/ACM
ICCAD, 2020

G Guo, T-W Huang, Y Lin, and
M Wong, “GPU-Accelerated
Path-based Timing Analysis,”
IEEE/ACM DAC, 2021

©)

Static Timing Analysis

] Static timing analysis (STA)
d Key step in the VLSI design

 Verify the circuit timing

(J Analyze worst-case timing

J Minimum timing values

d Maximum timing values
1 Challenges

d Compute giant graphs

d Analyze millions of paths

(] Balance the loads
I

/ Timing paths \

What paths violate the timing

constraint? | 4R\

A Y)

Timing Checks (Required Arrival Time)

1 Modern circuits are sequential
J Drive data signal via clocks
J Capture data via flip-flops (FF)s

Timing path FF2

d Timing constraints LI

 ————— Q4

d Min required arrival time ke
 After clock: hold CLK V

J Max required arrival time
[] []

Combinational
logic

D QF—

-

* Before clock: setup LK e, f g)f

Setup” Hold
Hold
violation

Required arrival time interval

Setup Hold

violation

LN '7
CLKFr2 f T

OK — no violation

\ 4

o
—_
o
]
<
%

13

The “Traffic Light” Analogy

|
|

Can | pass the block before the next
' ith 40 mph?

.. \‘ A
4'
-

-~ ;b“-.

44

Building a Good Traffic System is Hard

] Trillions of sections and traffic lights to analyze ...

14

Same, STA is Computationally Challenging

(1 STA graphs is extremely large and irregular
J Millions to billions of nodes and edges

J Propagate timing information along giant graphs

Complete analysis can take 8 hours and 800 GB RAM

STA graphs A datapath

ISPD circuit design (10M gates)

STA graphs are extremely large and irregular "
) 16

Parallel Timing Analysis is a MUST

(1 Leverage many-core CPUs to speed up the runtime
(J Dramatic speed-up using 8 cores
 Yet, scalability saturates at about 10—16 cores

Runtime vs CPUs

1 CPUs
S CPUs m 4-8x faster
16 CPUs s
saturated
40 CPUs s
80 CPUs mmmmm
0 500 1000 1500 2000 2500

m Full Timing Analysis

14

Observed Scalability Bottleneck

(J CPU-only parallelism stagnates at about 10 cores
d “Amdahl’s Law” limits the strong scalability

 Circuit graph structures limits the maximum parallelism

* If the graph has only 10 parallel nodes at a level, we won’t
achieve 40x speed-up

 Irregular computations limits the memory bandwidth
e STA is graph-oriented, not cache-friendly

(1 Need to incorporate new parallel paradigms

J GPU opens opportunities for new scalability milestones
* e.g., 100x speed-up reported in logic simulation

e e.g., 20—80x speed-up reported in placement

J Implement our algorithms using PyTorch’s tensor library
.

Leverage GPU to Accelerates STA

1 We target two important STA steps:
J Graph-based analysis (GBA)
J Path-based analysis (PBA)

(J We desigh CPU-GPU collaborative STA algorithms
(J CPU-GPU task decomposition

J GPU kernels for timing update PBA analyzes critical paths one
by one on a updated graph
GBA computes the delay, slew, arrival g p M g clock Path ™ pata path 1 I ata Path 2
time at each node and edge
7 S e T e e
N - — P . ra
fgm M B 1
i] s H i
1R 1 w1 ; d,5, [outRet e
I E-: 3 '8 ! ,/:—\ \\E E ; ! InputSIew,s,H‘d/'.Yq_
g & ' 4 — 3\ B>Y
: E i i “'"T"T‘ 1‘ 5 E B
F | R S, \
e i Interconnect S

19

Runtime Breakdown of GBA

1 GBA has three time-consuming steps

1. Prepare tasks through levelization =2 42% runtime
2. Compute RC delay = 48% runtime

3. Propagate timing =2 10% runtime

100 i i
§ OpenTimer with 40 CPU cores
80 - leon2: 1.6M gates |
E 60} .
o
S A0t -
a Prepare
90 L Delay |
Prop N
0 S 3 4
RC Delay Timing Propagation L [d))

20

GPU-Accelerated GBA Algorithm Flow

Copy Edge Copy Look-up Copy Timing
List to GPU Tablesto GPU Arcs to GPU

RC Tree

. Levelization
Flattening

Forward

Propagation Levelization

RC Delay

Computation
Backward

RC Delay Propagation
Computation

Timing
Propagation

. 1 N\
CPU Tasks GPU Tasks O PYTO I"Ch [/ \‘j‘y)

N

Step #1: Levelization

] Levelize the circuit graph to a 2D levellist

(J Nodes at the same level can run in parallel (red circle)

] Nodes at the same level can be modeled as a batch

Forward propagation for arrival time

30ns/35ns
a

Pl d f .
b J

10ns /8
P12 c e 15ns_44 20ns/P5ns

h

PI3 .

. |

(J GPU-accelerated levelization using parallel frontiers

<
Backward propagation for required arrival time

=
3

Parallel Parallel Parallel Parallel Parallel Parallel
Kernel Kernel Kernel Kernel Kernel Kernel

=%/
g

Z
I

+

\
Bl e ..
“ | k|

| PO1 |

\
EE @ = 3

o|©
-

N

1 o
N

.

Step #2: RC Update

d The Elmore delay model
4 Phase 1: load,, =), is child of u CAPv

U For example, load, = capy + capg + cap. + capp = capy +
loadg + loadp

4 Phase 2: delay, = 2.y is any node CaPv X Rz 1cauw)

U For example, delayg = capyR;_4 + cappR;_,4 + capgR;_5 +
capcR;_p = delayy + Ry_gloadp

L. 1. L

\
Ra-8 B Re-c C .
Two-phase tree (s

Rz ——=—Q{I
Ce | traversal to
I| RA—»D D CD
H compute delay

(a) Upward (b) Downwa[‘)))
23

Step #2: RC Update Upward Phase

(] Store the parent index of each node on GPU

J Perform dynamic programming on trees

DFS_load(u): GPU_load:
load[u] = cap[u] Foruin[C, D, B, E, Al:
For child v of u: load[u] += cap|[u]
DFS_load(v) load[u.parent] += load[u]
load[u] += load]V]

a6 600

Parent list representation in memory

o [[[[[

(a) Upward

Step #2: RC Update Downward Phase

(] Store the parent index of each node on GPU

J Perform dynamic programming on trees

DFS_delay(u): GPU_delay:
For child v of u: Foruin [A, E, B, D, C]:
temp := R[u,v]*load[v] temp := R[u.parent,u]*load[u]
delay[v] = delay[u] + temp delay[u]=delay[u.parent] + temp
DFS_delay(v)

60000 ®)

@

Parent list representation in memory

o [[[[[

(b) Downward

Step #3: Cell Delay Update

d Perform linear inter- and extra-polation in batches
J x-axis and then y-axis

4\) /
B SRy PR e

P

® nodes queries S1 segments

X1 X2 X3 X4

26

Overall Performance

J Implemented based on PyTorch’s Tensor Library
J Comparison with OpenTimer of 40 CPUs

(d Run on large TAU15 Benchmarks (>20K gates)

(d Run on one Nvidia RTX 2080

OpenTimer Our Runtime
Benchmark #PIs | #POs | # Gates | # Nets # Pins # Nodes | #Edges Runtime (40 CPUs 1 GPU)
(40 CPUs) | Runtime | Speed-up
aes_core 260 129 22938 23199 66751 413588 453508 156 ms 138 ms 1.13X
vga_lcd 85 99 139529 139635 397809 1966411 2185601 829 ms 311 ms 2.67X
vga_lcd_iccad 85 99 259067 259152 679258 3556285 3860916 1480 ms 496 ms 2.98%x
b19 22 25 255278 255300 782914 4423074 4961058 1831 ms 585 ms 3.13%x
cordic 34 64 45359 45393 127993 7464477 820763 274 ms 167 ms 1.64X
des_perf 234 140 138878 139112 371587 2128130 2314576 832 ms 325 ms 2.56X
edit_dist 2562 12 147650 150212 416609 2638639 2870985 1059 ms 376 ms 2.86%
fit 1026 | 1984 38158 39184 116139 646992 718566 241 ms 148 ms 1.63X
leon2 615 85 1616369 | 1616984 | 4328255 | 22600317 | 24639340 10200 ms 2762 ms 3.69%
leon3mp 254 79 1247725 | 1247979 | 3376832 | 17755954 | 19408705 7810 ms 2585 ms 3.02%
netcard 1836 10 1496719 | 1498555 | 3999174 | 21121256 | 23027533 9225 ms 2571 ms 3.60%
mgc_edit_dist 2562 12 161692 164254 450354 2436927 2674934 1021 ms 368 ms 2.77X
mgc_matrix_mult | 3202 | 1600 171282 174484 492568 2713241 2994343 1138 ms 377 ms 3.02x
tip_master 778 857 37715 38493 95524 533690 570154 163 ms 143 ms 1.14X

PIs: number of primary inputs # POs: number of primary outputs # Gates: number of gates # Nets: number of nets B
Pins: number of pins # Nodes: number of nodes in the STA graph # Edges: number of edges in the STA graph —

Runtime Breakdown

1 Circuit leon2 (21 M nodes)

OpenTimer Ours

s

845 ms

>~

41 ms

®m Update RC Timing m Build Prop Tasks m Update RC Timing M Levelization

m Update Graph Timing B Update Graph Timing

1)

Runtime vs CPUs

 Significant performance gap between CPU and GPU

leon2 (22.6M nodes) netcard (21.1M nodes)
T T T T T T T T
n —e— Ours (1 GPU) ool ™ —e— Ours (1 GPU) | |
200 | —a— OpenTimer | | - “. —m— OpenTimer
_ ‘. 15k |
o - 2 :
5} . 5} n
= \ . e |2 | .\ J—
St - A e 1 22 L ’ el Tm
| ".\ Improvement
\ \
\\ TN by GPU
—e ————— ¢ \.»7 — @ ——— "y
| | | | | | | |
124 8 16 32 40 124 8 16 32 40
Number of CPUs Number of CPUs

Our runtime of 1 CPU and 1 GPU is very close to OpenTimer of 40 CPUs

Pessimism-Removal Slack (ps)

Path-based Analysis (PBA)

1 Identify a set of critical paths from a updated graph
J Exponential number of paths in the circuit graph
(1 Re-analyze each path with path-specific update
J Re-propagate the slew and remove pessimism
J Advanced on-chip variation (AOCV)
(d Common path pessimism removal (CPPR)

W Paths marked failing at GBA may become passing
after PBA!
Slack Difference with/without Clock Network Pessimism Removal INy FFy ‘ . ‘
80 T T T T T T T - - [| D Qg Clock Path Data Path 1 || Data Path 2
|| —¢ data point
— slack ratio 1.0
/\CK A FF3 ouT
F 'X ae—2
Setup
Hold
INy D FF CK
cLOCK = . 4 L

Pessimism-Oblivious Slack (ps)

PBA is Extremely Time-Consuming

(] Speed vs Accuracy (pessimism removal) tradeoff

Yw
Q)
« &
Y @b
' &
\‘ @O
) 0 Y,
‘\‘ "0 . %QZ?'
'® Fundamental computational challenges of Path- SR
¥ O
g based Analysis must be solved C% oi@?’
=
Z
<>
=5

min Logarithmic Runtime mar-

31

A Key Step: Generate Critical Paths

 OpenTimer adopts implicit path representation
J Each path is represented using O(1) space and time
d Each path is ranked through a prefix tree & a suffix tree

€3
5@ o

Deviation: e;;

Path node

Path suffix: <e;,> + Path prefix: <e;, eg, ;7> = Path: <e;, ey, €55, €14~

T.-W. Huang et al., “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TC)rL,‘ 17)

32

GPU-Accelerated PBA Algorithm Flow

Construct Shortest Path Forest CPU Execution
GPU Execution

Look-ahead Level Allocation O PyTO rch

Interlevel Expansion
Increment level
Intralevel Compression
i €11 I Level 1

@ -
Y (@i@) Level 2

Deviation: e;;

¢
ne—

Step #1: Generate Suffix Tree on GPU

O Endpoint

(a) STA Graph.

®
> —0
©

Shortest Path Tree Shortest Path Tree
Rooted atJ Rooted at K

(b) Shortest path forest.

Shortest Path Tree
Rooted at L

Step #2: Expand Prefix Tree on GPU

Level 0 Level 1

€4D

Path BEHK
€ua

Path CFK

=P Deviation Edge =P Suffix Edge O Startpoint

35

Step #2: Expand Prefix Tree on GPU (cont’d)

] Iteratively grow GPU memory at each expansion
(d Each iteration uses GPU to decide path candidates
J Each iteration uses CPU to prune path candidates
(J Each path candidate takes O(1) space “deviation edge”

i CPU ranks top-k paths and decide
100 paths the next-level GPU memory

\.W

1000 paths
10000 paths
—/\
GPU expands path candidates in parallel] More levels = More paths |
- = Higher accuracy [

36

Overall Performance

J Implemented based on PyTorch’s Tensor library
J Compare with OpenTimer’s CPU-based PBA
(J Report speed-up at different MDLs

OpenTimer Our Algorithm Our Algorithm Our Algorithm
Benchmark #Pins #Gates #Arcs Runtime #MDL=10 #MDL=15 #MDL=20
Runtime | Speed-up Runtime Speed-up | Runtime | Speed-up

leon2 4328255 | 1616399 | 7984262 2875783 4708.36 611x 5295.49ms 543 x 5413.84 531x
leon3mp 3376821 | 1247725 | 6277562 1217886 5520.85 221x 7091.79ms 172x 8182.84 149 x
netcard 3999174 | 1496719 | 7404006 752188 2050.60 367 % 2475.90ms 304 x 2484.08 303 %
vga_led 397809 139529 756631 53204 682.94 77.9% 683.04ms 77.9% 706.16 75.3x
vga_lcd_iccad 679258 259067 1243041 66582 720.40 92.4x 754.35ms 88.3x 766.29 86.9 x
b19_iccad 782914 255278 1576198 402645 2144.67 188x 2948.94ms 137x 3483.05 116 x
des_perf_ispd 371587 138878 697145 24120 763.79 31.6x 766.31ms 31.5%x 780.56 30.9x
edit_dist_ispd 416609 147650 799167 614043 1818.49 338x 2475.12ms 248 x 2900.14 212x
mgc_edit_dist 450354 161692 852615 694014 1463.61 474 % 1485.65ms 467 x 1493.90 465 %
mgc_matric_mult | 492568 171282 948154 214980 994.67 216x 1075.90ms 200x 1113.26 193 %

J Achieve significant speed-up at large designs
d 611x speed-up in leon2 (1.3M gates)
d 221x speed-up in leon3mp (1.2M gates)

Path Accuracy vs MDL

(1 one GPU is even faster than OpenTimer with 40 CPUs

d 44x on leon2

d 25x onleon3mp
 46x on netcard

J 35xonbl9

/In fact, according to
our experiments, our
GPU-accelerated PBA
is always faster than
OpenTimer’s CPU
baseline regardless of

the core count
\ %

leon2
543.00 %
[]
500 \
400 \
300 \
200 181\00x
1 \69@5_593” 50.65x[44.88 x
— o —®
0
1 8 16 24 32 W
netcard
303.80 %
300
\
200 \

100

LSX
$-54.64% 4924 46,105 45.68x
< 49.24x 46

1 8 16 24 32 40
Number of CPU cores in baseline

Number of CPU cores in baseline

|

= leon3mp
=
B 171.73x
Q
(=9
wa
150 \
5
: |
& \
3 \
2 100
E \
E
5
< 50 39\‘1512 m
8 8.81x
2, 8:91% 25.37x 24.32>424.90x
e
a 1 8 16 24 32 \ 40
=Y b19 iccad
'§ 140 136.54x
o
7]
120
g
@) \
o 100
o]
]
= 80
=
5 \
% 60 \
o 43.76x m
8 36.51x
g 40 55x 36.31x 35.28:435.27
% —
a 18 16 24 32 \l.

38

Conclusion

 Introduced the runtime challenges of EDA

(d EDA tools must incorporate new parallel paradigms to allow
more efficient design space exploration and optimization

[Deep learning systems can simplify the implementation
complexities of GPU programming

(J Studied GPU-accelerated STA opportunities
[Graph-based analysis
d Path-based analysis

(J Accelerated the graph-based analysis using GPU
d Achieved 4x speed-up on large designs

(J Accelerated the path-based analysis using GPU
d Achieved 600x speed-up on large designs

39

