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Static Timing Analysis

] Static timing analysis (STA)
d Key step in the VLSI design

 Verify the circuit timing

(J Analyze worst-case timing

J Minimum timing values

d Maximum timing values
1 Challenges

d Compute giant graphs

d Analyze millions of paths

(] Balance the loads
I
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Timing Checks (Required Arrival Time)

1 Modern circuits are sequential
J Drive data signal via clocks
J Capture data via flip-flops (FF)s

Timing path FF2

d Timing constraints ZiL I

 —————— 0 Q4

d Min required arrival time ke
 After clock: hold CLK V

J Max required arrival time
[ ] [ ]

Combinational
logic

D QF—

-

* Before clock: setup LK e, f g)f

Setup” Hold
Hold
violation

Required arrival time interval

Setup Hold

violation

LN '7
CLKFr2 f f

OK — no violation

\ 4

o
—_
o
[\~
o
()
o



The “Traffic Light” Analogy
|

Can | pass the block before the next
od light with 40 mph?



Building a Good Traffic System is Hard

] Trillions of sections and traffic lights to analyze ...
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Same, STA is Computationally Challenging

(1 STA graphs is extremely large and irregular
J Millions to billions of nodes and edges
J Propagate timing information along giant graphs

Complete analysis can take 8 hours and 800 GB RAM

STA graphs A datapath

STA graphs are extremely large and irregular



Our STA Solution: OpenTimer

(J CPU-parallel timing analysis engine
J Two major versions: v1 (2015) and v2 (2020)
d https://github.com/OpenTimer/OpenTimer
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T.-W. Huang et al., “OpenTimer: A High-performance Timing Analysis Tool,” IEEE/ACM ICCAD15

T.-W. Huang et al., “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD21
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https://github.com/OpenTimer/OpenTimer

Key Idea: Parallel Timing Analysis

(1 Leverage many-core CPUs to speed up the runtime
(J Dramatic speed-up using 8 cores
 Yet, scalability saturates at about 10—16 cores

Runtime vs CPUs

1 CPUs
S CPUs m 4-8x faster
16 CPUs s
saturated
40 CPUs s
80 CPUs mmmmm
0 500 1000 1500 2000 2500

m Full Timing Analysis



Observed Scalability Bottleneck

(J CPU-only parallelism stagnates at about 10 cores
d “Amdahl’s Law” limits the strong scalability

 Circuit graph structures limits the maximum parallelism

* If the graph has only 10 parallel nodes at a level, we won’t
achieve 40x speed-up

 Irregular computations limits the memory bandwidth
e STA is graph-oriented, not cache-friendly
(1 Need to incorporate new parallel paradigms

J GPU opens opportunities for new scalability milestones
e e.g., 100x speed-up reported in logic simulation
e e.g., 20—80x speed-up reported in placement



CPU vs GPU

1 CPU is built for compute-driven applications

d A few powerful threads to compute critical blocks fast

1 GPU is built for throughput-driven applications

d Many lightweight threads to compute data at one time
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CPU vs GPU (cont’d)

(J CPU: graph algorithms, irregular data structures, etc.
( GPU: matrix operations, gaming, video, etc.
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Leverage GPU to Accelerat STA

1 We target two important STA steps:
J Graph-based analysis (GBA)
J Path-based analysis (PBA)

(J We desigh CPU-GPU collaborative STA algorithms
(J CPU-GPU task decomposition

1 GPU kernels for timing update PBA analyzes critical paths one
by one on a updated graph

GBA computes the delay, slew, arrival — gs p M g Clock Path ™ Data path 1 I ata Path 2
time at each node and edge
o ] GBE| e o
B Ty e 4 -
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Z Guo, T-W Huang, and Y Lin, “GPU-Accelerated Static
Timing Analysis,” IEEE/ACM ICCAD, 2020
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Runtime Breakdown of GBA

1 GBA has three time-consuming steps

1. Prepare tasks through levelization =2 42% runtime
2. Compute RC delay = 48% runtime

3. Propagate timing =2 10% runtime

100 i ,
§ OpenTimer with 40 CPU cores
80 |- leon2: 1.6M gates |
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GPU-Accelerated GBA Algorithm Flow
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Step #1: Levelization

] Levelize the circuit graph to a 2D levellist

(J Nodes at the same level can run in parallel (red circle)

] Nodes at the same level can be modeled as a batch

Forward propagation for arrival time
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Step #1: Levelization (cont’d)

 Levelize the graph backward rather than forward

Forward propagation for arrival time Forward propagation for arrival time

30ns/35ns

30ns/35ns
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Step #2: RC Update

d The Elmore delay model
4 Phase 1: load,, = ), is child of u CAPv

U For example, load, = capy + capg + cap. + capp = capy +
loadg + loadp

4 Phase 2: delay, = 2.y is any node CaPv X Rz 1cauw)

U For example, delayg = capyR;_4 + cappR;_,4 + capgR;_5 +
capcR;_p = delayy + Ry_gloadp

I 1. 1.
S L SO S

\
Ra-s B Re-c C
Two-phase tree (s

Rz ————O-I
Ce | traversal to
I| RA—»D D CD
H compute delay

(a) Upward (b) Downward
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Step #2: RC Update Upward Phase

(] Store the parent index of each node on GPU

J Perform dynamic programming on trees

DFS_load(u): GPU_load:
load[u] = cap[u] Foruin[C, D, B, E, Al:
For child v of u: load[u] += cap|[u]
DFS_load(v) load[u.parent] += load[u]
load[u] += load]V]

a6 600

Parent list representation in memory

o (2 [ [ [ [

(a) Upward
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Step #2: RC Update Downward Phase

(] Store the parent index of each node on GPU

J Perform dynamic programming on trees

DFS_delay(u): GPU_delay:
For child v of u: Foruin [A, E, B, D, C]:
temp := R[u,v]*load[v] temp := R[u.parent,u]*load[u]
delay[v] = delay[u] + temp delay[u]=delay[u.parent] + temp
DFS_delay(v)

»6@%9‘ ® ®

Parent list representation in memory

o [ [ [ [ (e
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Step #2: RC Update Memory Coalesce

[ Consecutive threads access consecutive memory

( RC update has four cases: {Rise, Fall} x {Early, Late}

Early, Rise Early, Fall Late, Rise Late, Fall

(a)

-~ __

Early, Rise

(b)
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Step #3: Cell Delay Update

d Perform linear inter- and extra-polation in batches
J x-axis and then y-axis

4\ . _
AT Sy S8 m—

e

® nodes queries $1 segments
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Experiment Setting

(1 Machine configuration
J Nvidia CUDA, RTX 2080
1 40 Intel Xeon Gold 6138 CPU cores

J Execution parameters for GPU kernels
d RC Tree Flattening
* 64 threads per block with one block for each net
 Levelization
e 128 threads per block

d RC delay computation

* 4 threads for each net (one for each Early/Late and Rise/Fall
condition) with a block of 64 nets

J Cell delay computation
e 4 threads for each arc, with a block of 32 arcs
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Overall Performance

(J Comparison with OpenTimer of 40 CPUs
J Run on large TAU15 Benchmarks (>20K gates)

OpenTimer Our Runtime
Benchmark #PIs | #POs | # Gates | # Nets #Pins | #Nodes | #Edges Runtime (40 CPUs 1 GPU)
(40 CPUs) | Runtime | Speed-up
aes_core 260 129 22938 23199 66751 413588 453508 156 ms 138 ms 1.13%
vga_lcd 85 99 139529 139635 397809 1966411 2185601 829 ms 311 ms 2.67X
vga_lcd_iccad 85 99 259067 259152 679258 3556285 3860916 1480 ms 496 ms 2.98%
b19 22 25 255278 255300 782914 4423074 4961058 1831 ms 585 ms 3.13%x
cordic 34 64 45359 45393 127993 7464477 820763 274 ms 167 ms 1.64X
des_perf 234 140 138878 139112 371587 2128130 2314576 832 ms 325 ms 2.56%
edit_dist 2562 12 147650 150212 416609 2638639 2870985 1059 ms 376 ms 2.86%
fit 1026 | 1984 38158 39184 116139 646992 718566 241 ms 148 ms 1.63%
leon2 615 85 1616369 | 1616984 | 4328255 | 22600317 | 24639340 10200 ms 2762 ms 3.69%
leon3mp 254 79 1247725 | 1247979 | 3376832 | 17755954 | 19408705 7810 ms 2585 ms 3.02x
netcard 1836 10 1496719 | 1498555 | 3999174 | 21121256 | 23027533 9225 ms 2571 ms 3.60x
mgc_edit_dist 2562 12 161692 164254 | 450354 2436927 2674934 1021 ms 368 ms 2.77X
mgc_matrix_mult | 3202 | 1600 171282 174484 492568 2713241 2994343 1138 ms 377 ms 3.02x
tip_master 778 857 37715 38493 95524 533690 570154 163 ms 143 ms 1.14%

# Nets: number of nets

# Gates: number of gates
# Edges: number of edges in the STA graph

# PIs: number of primary inputs # POs: number of primary outputs
# Pins: number of pins # Nodes: number of nodes in the STA graph



Runtime Breakdown

1 Circuit leon2 (21 M nodes)

OpenTimer Ours

e

845 ms /
41 ms
» Update RC Timing m Build Prop Tasks m Update RC Timing M Levelization
m Update Graph Timing B Update Graph Timing
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Runtime vs CPUs

 Significant performance gap between CPU and GPU

leon2 (22.6M nodes) netcard (21.1M nodes)
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Our runtime of 1 CPU and 1 GPU is very close to OpenTimer of 40 CPUs



Runtime vs Problem Sizes

] Problem size matters for GPU acceleration

J When to enable GPU acceleration?

J Net count > 20K
] Gate count > 50K

J Propagation candidate count > 15K

Runtime vs Net Count
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G guo, T-W Huang, Y Lin, and M Wong, “GPU-
Accelerated Path-based Timing Analysis,” IEEE/ACM
DAC, 2021
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Pessimism-Removal Slack (ps)

Path-based Analysis (PBA)

1 Identify a set of critical paths from a updated graph

J Exponential number of paths in the circuit graph

(1 Re-analyze each path with path-specific update
J Re-propagate the slew and remove pessimism
J Advanced on-chip variation (AOCV)
(d Common path pessimism removal (CPPR)

3 Paths marked failing at GBA may become passing
after PBA!
» ‘SIack Difference‘ with/wit‘hout Clo‘ck Netw‘ork Pes?imism I‘Removal‘ INy D FFy Q‘ ‘ Clock Path Data Path 1 . Data Path 2 ‘

—— data point
i slack ratio 1.0
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]
Setup
Hold
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—
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PBA is Extremely Time-Consuming

(] Speed vs Accuracy (pessimism removal) tradeoff
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A Key Step: Generate Critical Paths

 OpenTimer adopts implicit path representation
J Each path is represented using O(1) space and time
d Each path is ranked through a prefix tree & a suffix tree

Path node

Path suffix: <e;,> + Path prefix: <e;, eg, ;> = Path: <e;, ey, €55, €14~

T.-W. Huang et al., “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD21
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GPU-Accelerated PBA Algorithm Flow

Construct Shortest Path Forest CPU Execution
GPU Execution

Look-ahead Level Allocation

Interlevel Expansion
Increment level
Intralevel Compression
4
—

@ i €11 I Level 1

Y —
(QI@) Level 2
Path Recovery @ Path node

Deviation: e;;
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Step #1: Generate Suffix Tree on GPU

O Endpoint

(a) STA Graph.

©®
=
©—0

. Shortest Path Tree Shortest Path Tree
Rooted atJ Rooted at K

(b) Shortest path forest.

Shortest Path Tree
Rooted at L
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Step #2: Expand Prefix Tree on GPU

Level 0 Level 1

€4D

Path BEHK
€ua

Path CFK

=P Deviation Edge =P Suffix Edge O Startpoint
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Step #2: Expand Prefix Tree on GPU (cont’d)

] Iteratively grow GPU memory at each expansion
(d Each iteration uses GPU to decide path candidates
J Each iteration uses CPU to prune path candidates
(J Each path candidate takes O(1) space “deviation edge”

i CPU ranks top-k paths and decide
100 paths the next-level GPU memory

\.W

1000 paths
10000 paths
—/\
GPU expands path candidates in parallel ] More levels = More paths
- = Higher accuracy
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Experiment Setting

(1 Machine configuration
J Nvidia CUDA, RTX 2080
1 40 Intel Xeon Gold 6138 CPU cores

(1 Measure the accuracy-runtime tradeoff
d “MDL” stands for maximum deviation level

J Execution parameters for GPU kernels

] Suffix tree kernel
e 1024 threads per block

L Prefix tree kernel
e 1024 threads per block
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Overall Performance

(1 Compare with OpenTimer’s CPU-based PBA
J Report speed-up at different MDLs

OpenTimer Our Algorithm Our Algorithm Our Algorithm
Benchmark #Pins #Gates #Arcs Runtime #MDL=10 #MDL=15 #MDL=20
Runtime | Speed-up Runtime Speed-up | Runtime | Speed-up

leon2 4328255 | 1616399 | 7984262 2875783 4708.36 611x 5295.49ms 543 % 5413.84 531x
leon3mp 3376821 | 1247725 | 6277562 1217886 5520.85 221x 7091.79ms 172x 8182.84 149 x
netcard 3999174 | 1496719 | 7404006 752188 2050.60 367 2475.90ms 304 x 2484.08 303 %
vga_led 397809 139529 756631 53204 682.94 77.9%x 683.04ms 77.9% 706.16 75.3x
vga_lcd_iccad 679258 259067 1243041 66582 720.40 92.4x 754.35ms 88.3x 766.29 86.9 x
b19_iccad 782914 255278 1576198 402645 2144.67 188x 2948.94ms 137x 3483.05 116 %
des_perf_ispd 371587 138878 697145 24120 763.79 31.6x 766.31ms 31.5%x 780.56 30.9x
edit_dist_ispd 416609 147650 799167 614043 1818.49 338x% 2475.12ms 248 % 2900.14 212x
mgc_edit_dist 450354 161692 852615 694014 1463.61 474 % 1485.65ms 467 % 1493.90 465 %
mgc_matric_mult | 492568 171282 948154 214980 994.67 216x 1075.90ms 200x 1113.26 193 %

1 Achieve significant speed-up at large designs

J 611x speed-up in leon2 (1.3M gates)
d 221x speed-up in leon3mp (1.2M gates)




Path Accuracy vs MDL

(1 Achieve decent accuracy at 10—12 GPU iterations

Construct Shortest Path Forest
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Path Accuracy vs MDL

(1 one GPU is even faster than OpenTimer with 40 CPUs

d 44x on leon2

d 25x onleon3mp
 46x on netcard

J 35xonbl9

/In fact, according to
our experiments, our
GPU-accelerated PBA
is always faster than
OpenTimer’s CPU

baseline regardless of

the core count
\ %

leon2
543.00%
500
400
300
200 181,00x
100 0% 56.39x 50.65x[44.88x
—e— o | "o
0
1 8 16 24 32 W
netcard
303.80
300
200
100 75.95x
4.64X 49.24 46,100 45.68x
— —e

1

8

16 24 32 40

Number of CPU cores in baseline

Our speed-up/multi-core CPU speed-up . speed-up/multi-core CPU speed-up

leon3mp
171.73x
150
\
100 \
\
8.81x
8:81% 25.37x 24.32>424.90x
1 8 16 24 32 \ 40
b19 iccad
140 136.54 x
120
100 \
80 \
60 \
43176 m
40 55 36-31x 35.28>035.27x

1 8 16 24 32 40
Number of CPU cores in baseline
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Conclusion

1 Introduced the runtime challenges of STA
J Knew graph-based analysis
J Knew path-based analysis

(1 Accelerated the graph-based analysis using GPU
J Achieved 4x speed-up on large designs

(1 Accelerated the path-based analysis using GPU
J Achieved 600x speed-up on large designs

J Future work
J Design GPU-accelerated incremental timing

J Design load-balanced PBA algorithms on GPU
J Leverage modern GPU graph parallelism
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Thank You for Attending!

tsung-wei.huang@utah.edu
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