
Performance Portability and
Optimization using Machine Learning

Dr. Tsung-Wei (TW) Huang, Assistant Professor
Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT
https://tsung-wei-huang.github.io/

https://tsung-wei-huang.github.io/

>$2M since 2019

Overarching View of My Research

Productivity

Performance

Portability

Applications

CAD ML

Quantum Computing

We create novel HPC software for ML, CAD, and QC

Our
Systems

2

My research group: https://tsung-wei-huang.github.io/

Today’s talk

https://tsung-wei-huang.github.io/

Modern Computing Systems are Heterogeneous

Tensor Processing Unit (TPU)Graphics Processing Unit (GPU)Central Processing Unit (CPU)

Quantum AcceleratorNeuromorphic DevicesFPGA

The future of computing is heterogeneous – DARPA ERI, DOE ASCR, NSF PPoSS, SRC Jump 2.0, etc.

3

4

Why Heterogeneous Computing (HC)?
• Advances performance to a new level previously out of reach

0

100

200

300

400

500

600

1 CPU 8 CPUs 16 CPUs 24 CPUs 32 CPUs 40 CPUs 1 GPU

Time (minutes) to solve a machine learning workload

CPU

GPU

Over 60x speedup in neural
network training since 2013

NVLink Performance

Tensor core

10-100x speed-up over manycore CPUs

HC Enabled Vast Success in Computing

5

Machine Learning (ML) Quantum Computing (QC)

Scientific Simulation

Computer Graphics

Gaming

Computer-aided Design (CAD)

New HC Workloads are Very Complex …
• GPU-accelerated circuit analysis on a design of 500M gates

• >100 kernels
• >100 dependencies
• >500s to finish
• >10 hrs turnaround

What are the output values of these
500M gates? (https://github.com/nvdla)

…
Simulation

Kernel

Task dependency

6

https://github.com/nvdla

Programming is a “Big” Challenge
• You need to deal with A LOT OF technical details

• Parallelism abstraction (software + hardware)
• Concurrency control
• Task and data race avoidance
• Dependency constraints
• Scheduling efficiencies (load balancing)
• Performance portability
• …

• And, don’t forget about trade-offs
• Desires vs Performance

Trade-offs Desires

Portable

Extensible

Maintainable

Simple

Performance?

7

Need Help from Programming Systems
• The hurdle for widespread adoption is programming difficulty

• Prioritize ease of use – want expressive, transparent programming models
• Maintain a single code base – write once and run everywhere
• Adapt performance to different architectures – optimize intelligently

• Task-based programming fits best the need of HC systems
• Enable top-down optimization that scales to many processing units
• Standards are evolving towards task parallelism

• Plenty of challenges remain unsolved …
• New applications are driving new tasking models
• We must value performance portability
• Sustainability over hardware generations

8

#include <taskflow/taskflow.hpp> // Taskflow is header-only, no wrangle with installation
int main(){

tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C); // D runs after B and C
executor.run(taskflow).wait();
return 0;

}
9

Our DARPA ERI Project1,2: Taskflow

2: “A General-purpose Parallel and Heterogeneous Task Graph
Computing System for VLSI CAD,” $403K, 10/2021—10/2024,
NSF CISE, CCF-2126672

1: “OpenTimer and DtCraft,” $427K, 06/2018-07/2019, DARPA
Intelligent Design of Electronic Assets (IDEA) Program, FA
8650-18-2-7843

Control Taskflow Graph (CTFG) Programming

10

auto cond_1 = taskflow.emplace([](){ return decision1(); });
auto cond_2 = taskflow.emplace([](){ return decision2(); });
auto cond_3 = taskflow.emplace([](){ return decision3(); });
// embed in-graph control flow through task dependencies
cond_1.precede(B, E); // return 0 to B or 1 to E
cond_2.precede(G, H); // return 0 to G or 1 to H
cond_3.precede(cond_3, L); // return 0 to cond_3 or 1 to L

Generalizable to
non-deterministic

control flow

11

Single-Source Heterogeneous Tasking
taskflow.emplace_on([&](tf::syclFlow& sf) {

auto h2d_x = cf.copy(dx, hx.data(), N);
auto h2d_y = cf.copy(dy, hy.data(), N);
auto d2h_x = cf.copy(hx.data(), dx, N);
auto d2h_y = cf.copy(hy.data(), dy, N);
auto kernel = cf.parallel_for(

sycl::range<1>(N), [=](sycl::id<1> id){
dx[id] = 2.0f * dx[id] + dy[id];

}
);
kernel.succeed(h2d_x, h2d_y)

.precede(d2h_x, d2h_y);
}, queue);

Single-source program to offload to any SYCL device
(e.g., CPU, GPU, FPGA) through an SYCL queue

Why SYCL in Taskflow?
• Software programming cannot be too heterogeneous!

• Cost(Software) >>> Cost(Hardware)
• Single-source heterogeneous programming is the way forward

• SYCL enables full heterogeneous computing using completely standard C++
• SYCL-aware compilers create executables for arbitrary architectures
• New optimization opportunities for performance portability

• Ex: machine learning to learn complex parameters

• Open, Multivendor, Multiarchitecture
• Standardize “SYCL Graph”

• Inspired by CUDA Graph
• Serve on SYCL Advisory Panel

• Chaired by Michael Wong

12

zzzz Compiler
(single build)

CUP

GPU

xPU

…

syclFlow
(in Taskflow)

Our NSF OAC Project1: Taskflow Compiler

Task graph programming model
(TGPM) X-specific source

TGPM X AST

Taskflow AST (IR)

TGPM Y sourceLLVM toolchains

Y-specific compiler

translationcodegen

To TG
PM

 Y

To
 T

as
kf

lo
w

Executable

Executable

Taskflow runtime
(perf portable with
machine learning)

0
20
40
60
80
100

49
15
20

98
30
40

19
66
08
0

39
32
16
0

78
64
32
0

15
72
86
40

31
45
72
80

62
91
45
60

12
58
29
12
0

In
fe

re
nc

e
tim

e
(s

)

Number of Parameters in a DNN

Taskflow + CUDA Graph oneTBB + CUDA Graph oneTBB + CUDA

Y-specific runtime

How can we streamline heterogeneous
program transformation for performance
tuning and optimization?

• Single source streamlines performance optimization

13

1: “Transpass: Transpiling Parallel Task Graph Programming
Models for Scientific Software,” $488K, 07/2022—07/2025, NSF
CISE Core, OAC-2209957

Everything is Composable in Taskflow

SYCL/CUDA task
(Euro-Par’21, HPEC’20)

Composition
(HPDC’22, ICPP’22, HPEC’19)

Dynamic task
(IPDPS’19, MM’19)

Control flow
(TPDS’22)

14

• End-to-end parallelism in one graph
• Task, dependency, control flow all together
• Scheduling with whole-graph optimization
• Efficient overlap among heterogeneous tasks

• Largely improved productivity!

Reddit: https://www.reddit.com/r/cpp/ [under taskflow]

Industrial use-case of productivity improvement using Taskflow

https://www.reddit.com/r/cpp/

Performance Portability (HPEC’22)
• Single-source programming enables “code” portability

• Same C++ kernel code runs on different architectures
• But, the performance on different architectures varies a lot …

• Ex: up to 41% runtime difference for the same circuit analysis program

15

Intel CPU + Nvidia GPU (311s) Intel CPU + Intel GPU (397s)AMD CPU + AMD GPU (438s)

Optimal performance

Optimal performance

Optimal performance

Is Performance Portability Impossible?
• No! Achieving performance portability is highly parameterizable

• Massive parameter space (block/thread size, task graph structures, etc.)
• Highlights the need for novel learning-based methods

• Learn to optimize a task graph to boost scheduling performance
• Adapt performance optimization to any computing environment

16

C

G

C

C

G

G

G

C

G

G

C

C

Control
flow task

C

G

C

C

G

G

G

C

G

G

C

C

Contracted
task group

Optimized task graph for a computing archOriginal task graph described by applications

ML model

Our NSF CAREER Project1: RL-based Runtime

• Leverage reinforcement learning for performance optimization
• Environment: Taskflow’s scheduler running on a user computing platform
• Action: Control taskflow graph (CTFG) modifiers to optimize graph structure
• Network: GNN to learn CTFG structure and RNN to learn scheduling impact
• Reward: Minimize the total runtime

17

1: “CAREER: Accelerating Static Timing Analysis with Intelligent
Heterogeneous Parallelism,” $500K, 2022—2027, NSF
CAREER, CCF-2144523

Mini-batch CTFG

LSTM LSTM

LSTM LSTM
…

GNNs RNNs
actions

rewards

Optimized CTFG (w/ kernel parameters)

syclFlow

Control
flow

Scheduling Environment

CTFG and Scheduler Decoder G C
G

G
G C

C

G

(a) Fuse tasks

(b) Add auxiliary dependency

(c) GPU Task Graph Mapping

(d) Toggle GPU task to CPU task

G C
G

G
G C

G

G

Result on Circuit Timing Analysis
• Measured on two GPU architectures: Nvidia RTX vs AMD RX

• Baseline written with SYCL and tested on Nvidia GPU
• The same code/program incurs 7-41% performance variation

• RL-based adaptor infers the best graph parameters for AMD RX
• 7-36% toggled tasks (action #4) – small circuits
• 10-21% reduced CTFG (action #1) – clock trees and linear segments

0

20

40

60

80

vgal_lcd leon3 netcard leon2_mp wb_dma aes_core tv80

Ru
nt

im
e

(s
ec

on
d)

Taskflow+Nvidia Taskflow+AMD Taskflow+AMD (with RL)

18

Model recommends all
tasks run on CPU!

Result on Circuit Timing Analysis (cont’d)

19

8 Intel cores
1 Nvidia GPU

4 AMD cores
1 AMD GPU

56sà39s

56sà48s

Insight from RL-based Optimization
• Performance portability is possible with ML and single source

• Restructure task graphs for the right granularity and data locality
• Infer the right performance parameters

• Outperform general-purpose heuristics!
• However, the cost of ML is non-negligible

• 7-11% performance eaten by ML itself
• Feature vector generation (GNN, RNN)
• Inference

• Plenty of research opportunities
• Discover efficient neural network architectures
• Improve the sample/action space efficiency

20

ML + single-source Taskflow

Performance Portability

FY 2022 ASCR Open Call and CAREER
programs (computer science): Programming
Models, Environments, and Portability

Taskflow Open-Source User Community

21

• https://taskflow.github.io/ (5-8K downloads / week)

https://taskflow.github.io/

Our NSF POSE Project1: Sustainability
• Applications expect programming systems to last for 10 years

22

https://beta.nsf.gov/tip/updates/nsf-invests-nearly-8-
million-inaugural-cohort-open

CAD

ML

Quantum

1: “POSE: Phase I: Toward a Task-Parallel Programming
Ecosystem for Modern Scientific Computing,” $298K,
09/15/2022—08/31/2023, NSF POSE, TI-2229304

…

Taskflow
ecosystem

https://beta.nsf.gov/tip/updates/nsf-invests-nearly-8-million-inaugural-cohort-open

Conclusion
• We have presented our Taskflow programming system

• Simple, expressive, and transparent
• Single-source heterogeneous tasking using SYCL

• We have presented our learning-based runtime
• Adaptive performance optimization
• Performance portability using reinforcement learning

• We are very open to collaboration!

Use the right tool for the right job
Taskflow: https://taskflow.github.io

Dr. Tsung-Wei Huang
tsung-wei.huang@utah.edu

https://taskflow.github.io/
mailto:tsung-wei.huang@utah.edu

