
1

A General-purpose Parallel and
Heterogeneous Task Programming
System at Scale

Dr. Tsung-Wei Huang
Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT

2

How can we make it easier for scientific software
developers to program large parallel and

heterogeneous resources with high performance
scalability and simultaneous high productivity?

3

Parallelizing VLSI CAD Software

[0]collect_independent_sets_end

[0]construct_cost_matrices_begin [1]random_shuffle_begin

[0]construct_cost_matrices_kernel_S [1]maximum_independent_set_parallel_kernel1_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]construct_cost_matrices_kernel_T

[0]solve_assignment_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]solve_assignment_kernel_T

[0]solve_assignment_end

[0]apply_solution_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]apply_solution_kernel_T

[0]apply_solution_end

[0]compute_hpwl_kernel [1]collect_independent_sets_begin

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel1_T

[1]maximum_independent_set_parallel_kernel2_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel2_T

[1]maximum_independent_set_parallel_update

[1]maximum_independent_set_parallel_cond

0

[1]maximum_independent_set_parallel_end

1

Partial Tasks of Iteration 0
Partial Tasks of Iteration 1

Circuit design

Partition

Floorplan

Placement

CTS

Routing

Function, logic

Physical design

Signoff

Module(a, b)
Input a;
Output b;

Manufacturing

System Spec.

Architecture

Timing

Final chip

Testing

DRC, LVS

Graph

Graph

Analytical

Tree

Graph

Computational problems of
10B+ transistors

1

2

4 5

3

1

2

3

1’

2’

3’

4 4’

5 5’

inp1 u1:A

u1:Y

clock f1:CLK

f1:D

out

u4:A

u4:B u4:Y

inp2 u1:B

u2:A u2:Yf1:Q u3:A u3:Y

Optimization

NP-hard problems

Machine learning in the loop

Modeling and simulation

Dynamic
controls

Irregular graphs

Data science &
regression

q This is a seriously complicated process …
q Billions of tasks with dynamic control flows, cycles,

irregularity, diverse computational patterns

4

IC Industry Seeks to Reduce Time and Effort

q DARPA IDEA/POSH program (under ERI) 2018-2022
q No human in the loop 24-hour layout generator

q Central theme: ML + Parallel Computing
1. ML must pervade CAD tools, both inside and outside

• Remove expensive human decision making wherever possible

2. CAD tools must evolve to new parallel targets
• Free up time for design space exploration and ML optimization

Expensive humans Machine Learning (ML) + Parallelism No-touch foundry

5

This is Extremely Challenging for R&D

[0]collect_independent_sets_end

[0]construct_cost_matrices_begin [1]random_shuffle_begin

[0]construct_cost_matrices_kernel_S [1]maximum_independent_set_parallel_kernel1_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]construct_cost_matrices_kernel_T

[0]solve_assignment_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]solve_assignment_kernel_T

[0]solve_assignment_end

[0]apply_solution_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]apply_solution_kernel_T

[0]apply_solution_end

[0]compute_hpwl_kernel [1]collect_independent_sets_begin

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel1_T

[1]maximum_independent_set_parallel_kernel2_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel2_T

[1]maximum_independent_set_parallel_update

[1]maximum_independent_set_parallel_cond

0

[1]maximum_independent_set_parallel_end

1

Partial Tasks of Iteration 0
Partial Tasks of Iteration 1

Circuit design

Partition

Floorplan

Placement

CTS

Routing

Function, logic

Physical design

Signoff

Module(a, b)
Input a;
Output b;

Manufacturing

System Spec.

Architecture

Timing

Final chip

Testing

DRC, LVS

Graph

Graph

Analytical

Tree

Graph

Computational problems of
10B+ transistors

1

2

4 5

3

1

2

3

1’

2’

3’

4 4’

5 5’

inp1 u1:A

u1:Y

clock f1:CLK

f1:D

out

u4:A

u4:B u4:Y

inp2 u1:B

u2:A u2:Yf1:Q u3:A u3:Y

Optimization

NP-hard problems

Machine learning in the loop

Modeling and simulation

Dynamic
controls

Irregular graphs

Data science &
regression

q How can we program a task graph like this?

Broad mix of algorithms
(graph, analytics, simulation)

Domain-specific heuristics
(branch bound, approximation)

Enormous parameter tuning
(million lines of scripts)

Vast task/data dependencies
(terabytes of design files)

Machine learning in the loop
(numerous flow trajectories)

6

Today’s CAD Software Landscape

q Companies hire “heroic programmers”
q Handcraft everything to decide performance in detail

• Solutions are heavily hard-coded
• Augment existing codebase for incremental parallelism
• Pthread, OpenMP, Intel TBB, Socket, Boost.Asio, MPI, CUDA

q Explicitly manage scheduling and task distributions
• Batch flow script to decide process mapping & partition

q Why not use existing programming frameworks?
q DOE has enabled vast success of HPC software

• Kokkos, SHAD, RAJA, exascale computing projects

q Universities have released many open-source tools
• Charm++, Legion, Spark, HPX, StarPU, PaRSEC

7

Three Big Limitations of Existing Tools

q Lack of end-to-end parallelism
q Cause: ML enables complex workflows
q Result: Composability is barely addressed in libraries
q Evidence: Simple ML-CAD pipeline ran 5—6x faster

q Lack of dynamic control flows and irregularity
q Cause: Task parallelism relies on DAG (acyclic graph)
q Result: Non-deterministic workaround
q Evidence: Condition tasks saved 10 GB in VLSI placement

q Lack of automatic transition
q Cause: Programmers need significant rewrite of code
q Result: Slow adoption by scientific software developers

*IPDPS19: T.-W. Huang, et al, “Cpp-Taskflow: Fast Task-Based Programming using Modern C++”
*TCAD20: T.-W. Huang. et al, “DtCraft: High-performance Distributed Execution Engine at Scale”

8

We Need a New Programming System

q Our project mantra:

q We are not to replace existing tools but
1. Address their limitations on the task parallelism front
2. Develop compatible interface to reuse their facilities

Performance

Productivity Portability

We maximize the performance
compared to handcrafted solution

We maximize the portability to
cover multiple hardware platforms

We maximize
productivity compared

to handcrafted time

Together, we can deliver complementary advantages to lay a foundation on
which to innovate new scientific software and methodologies!

9

A General-purpose Task Programming System

q Streamline parallel and heterogeneous programming
q Scalable to large parallel systems (CPUs, GPUs, FPGAs)

q This has been an on-going project since my PhD
q Also a proposal to the DOE Early CAREER program

Work 7: Unified C++ task graph APIs (distributed)

Work 8: Python
binding

Work 9: Transition
Tools (linter)

Work 10: Applications and
Community Engagement

Work 6: Runtime (optimization, task scheduling, learning-based distribution)

…

Work 3:
Fiberflow

(multitasking)

Work 1:
Cpp-Taskflow
(manycore)

Work 2:
Heteroflow
(CPU-GPU)

Work 4:
DtCraft

(distributed)

Work 5:
Accelerator

bridge

High-level
source code

(Python, C++17)

Python3, GCC,
Clang, MSVC

Standalone
executables

Deployment

St
an

da
lo

ne
 c

om
pi

la
tio

n
flo

w

Au
to

m
at

ic
 tr

an
sit

io
n

an
d

an
al

ys
is Existing

C/C++ code

ParaTask linter

Call graph + dataflow

Transition guidelines

Code generation and
verification

Complex Heterogeneous Workflow
(billion-scale tasking)

Integration with Existing DoE Toolchains

Kokkos

Dynamic Control Flows
(condition, cycles)
Irregular Patterns

End-to-end Parallelism
(composition)

Community

Data science + machine learning in the loop

10

Selected Modules for the Rest of Talk

q Vertical scalability
q Cpp-Taskflow: Parallel Task Programming in Modern C++
q Result on ML-centric VLSI placement (>8M tasks)
q Result on VLSI timing analysis (>1B tasks)

q Horizontal scalability
q DtCraft: Distributed Programming and Execution Engine
q Result on complex heterogeneous ML workflows

q Technical details
q HeteroSteal: A Generalized Work-stealing Scheduler
q Learning-based distributed scheduling
q Result on improved system performance

11

12

“Hello World” in Cpp-Taskflow [IPDPS19]

Only 17 lines of code to get a
parallel task execution!

#include <taskflow/taskflow.hpp> // Cpp-Taskflow is header-only
int main(){

tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B); // A runs before B
A.precede(C); // A runs before C
B.precede(D); // B runs before D
C.precede(D); // C runs before D
executor.run(taskflow); // create an executor to run the taskflow
return 0;

}

13

“Hello World” in OpenMP
#include <omp.h> // OpenMP is a lang ext to describe parallelism using compiler directives
int main(){

#omp parallel num_threads(std::thread::hardware_concurrency())
{

int A_B, A_C, B_D, C_D;
#pragma omp task depend(out: A_B, A_C)
{

s t d : : c o u t << ”TaskA\n” ;
}
#pragma omp task depend(in: A_B; out: B_D)
{

s t d : : c o u t << ” TaskB\n” ;
}
#pragma omp task depend(in: A_C; out: C_D)
{

s t d : : c o u t << ” TaskC\n” ;
}
#pragma omp task depend(in: B_D, C_D)
{

s t d : : c o u t << ”TaskD\n” ;
}

}
return 0;

}

Task dependency clauses

Task dependency clauses

Task dependency clauses

Task dependency clauses

OpenMP task clauses are static and explicit;
Programmers are responsible for a proper order of
writing tasks consistent with sequential execution

14

“Hello World” in Intel’s TBB Library
#include <tbb.h> // Intel’s TBB is a general-purpose parallel programming library in C++
int main(){

using namespace tbb;
using namespace tbb:flow;
int n = task_scheduler init::default_num_threads () ;
task scheduler_init init(n);
graph g;
continue_node<continue_msg> A(g, [] (const continue msg &) {

s t d : : c o u t << “TaskA” ;
}) ;
continue_node<continue_msg> B(g, [] (const continue msg &) {

s t d : : c o u t << “TaskB” ;
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) {

s t d : : c o u t << “TaskC” ;
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) {

s t d : : c o u t << “TaskD” ;
}) ;
make_edge(A, B);
make_edge(A, C);
make_edge(B, D);
make_edge(C, D);
A.try_put(continue_msg());
g.wait_for_all();

}

TBB has excellent performance in generic parallel
computing. Its drawback is mostly in the ease-of-use

standpoint (simplicity, expressivity, and programmability).

Use TBB’s FlowGraph
for task parallelism

Declare a task as a
continue_node

15

“Hello World” in Kokkos
struct A {

template <class TeamMember> KOKKOS_INLINE_FUNCTION
void operator()(TeamMember& member) {std::cout << "TaskA\n"; }

};
struct B {

template <class TeamMember> KOKKOS_INLINE_FUNCTION
void operator()(TeamMember& member) {std::cout << "TaskB\n"; }

};
struct C {

template <class TeamMember> KOKKOS_INLINE_FUNCTION
void operator()(TeamMember& member) {std::cout << "TaskC\n"; }

};
struct D {

template <class TeamMember> KOKKOS_INLINE_FUNCTION
void operator()(TeamMember& member) {std::cout << "TaskD\n"; }

};
auto scheduler = scheduler_type(/* ... */);
auto futA = Kokkos::host_spawn(Kokkos::TaskSingle(scheduler), A());
auto futB = Kokkos::host_spawn(Kokkos::TaskSingle(scheduler, futA), B());
auto futC = Kokkos::host_spawn(Kokkos::TaskSingle(scheduler, futA), C());
auto futD = Kokkos::host_spawn(

Kokkos::TaskSingle(scheduler, when_all(futB, futC)), D()
);

Kokkos task parallelism: https://github.com/kokkos/kokkos/wiki/Task-Parallelism

Fixed-layout task functor
(no lambda interface …?)

Define team handle

Kokkos is powerful in detailed data controls,
but suffers from too many distinct notations

with overly complex interface

Task dependency is
represented by instances of
Kokkos::BasicFuture

Aggregated dependencies

More scheduling code to follow …

https://github.com/kokkos/kokkos/wiki/Task-Parallelism

16

Non-biased Opinion

74

15
6 4

1

Vote for Simplicity
(100 graduate-level programmers)

Cpp-Taskflow OpenMP TBB Kokkos std::thread

How would you program this slightly more
complicated task graph using Cpp-Taskflow,

OpenMP, TBB, Kokkos and std::thread?

17

Dynamic Tasking (Subflow) in Cpp-Taskflow

// create three regular tasks
tf::Task A = tf.emplace([](){}).name("A");
tf::Task C = tf.emplace([](){}).name("C");
tf::Task D = tf.emplace([](){}).name("D");

// create a subflow graph (dynamic tasking)
tf::Task B = tf.emplace([] (tf::Subflow& subflow) {

tf::Task B1 = subflow.emplace([](){}).name("B1");
tf::Task B2 = subflow.emplace([](){}).name("B2");
tf::Task B3 = subflow.emplace([](){}).name("B3");
B1.precede(B3);
B2.precede(B3);

}).name("B");

A.precede(B); // B runs after A
A.precede(C); // C runs after A
B.precede(D); // D runs after B
C.precede(D); // D runs after C

Cpp-Taskflow enables unified API for both
static tasking and dynamic tasking using
functional programming-styled semantic

18

Subflow can be Nested

q Task graph for parallel merge sort algorithm

100 items, 7 subflow hierarchies

19

Conditional Tasking
auto A = taskflow.emplace([&](){ });
auto B = taskflow.emplace([&](){ return rand()%2; });
auto C = taskflow.emplace([&](){ return rand()%2; });
auto D = taskflow.emplace([&](){ return rand()%2; });
auto E = taskflow.emplace([&](){ return rand()%2; });
auto F = taskflow.emplace([&](){ return rand()%2; });
auto G = taskflow.emplace([&](){});

A.precede(B).name("init");
B.precede(C, B).name("flip-coin-1");
C.precede(D, B).name("flip-coin-2");
D.precede(E, B).name("flip-coin-3");
E.precede(F, B).name("flip-coin-4");
F.precede(G, B).name("flip-coin-5");
G.name(“end”);

Cpp-Taskflow defines condition tasks for users to
express dynamic control flows and cyclic flows

Each task flips a
binary coin to decide

the next path

20

Existing Frameworks on Conditions?

q Expand simple static loop across iterations
q Code size is linearly proportional to decision points

q Nested loops?
q Non-deterministic conditions?
q Dynamic control flows and dynamic tasks?
q …

In fact, existing frameworks on conditional
tasking or dynamic control flows suffer from

exponential growth of code complexity

21

Composable Tasking
tf::Taskflow f1, f2;

auto [f1A, f1B] = f1.emplace(
[]() { std::cout << "Task f1A\n"; },
[]() { std::cout << "Task f1B\n"; }

);
auto [f2A, f2B, f2C] = f2.emplace(
[]() { std::cout << "Task f2A\n"; },
[]() { std::cout << "Task f2B\n"; },
[]() { std::cout << "Task f2C\n"; }

);

auto f1_module_task = f2.composed_of(f1);

f1_module_task.succeed(f2A, f2B)
.precede(f2C);

Runtime sees the entire
graph and performs

whole-graph optimization
for end-to-end parallelism

22

Concurrent CPU-GPU Tasking
const unsigned N = 1<<20;
std::vector<float> hx(N, 1.0f), hy(N, 2.0f);
float *dx{nullptr}, *dy{nullptr};
auto allocate_x = taskflow.emplace([&](){ cudaMalloc(&dx, 4*N);});
auto allocate_y = taskflow.emplace([&](){ cudaMalloc(&dy, 4*N);});

auto cudaflow = taskflow.emplace([&](tf::cudaFlow& cf) {
auto h2d_x = cf.copy(dx, hx.data(), N); // CPU-GPU data transfer
auto h2d_y = cf.copy(dy, hy.data(), N);
auto d2h_x = cf.copy(hx.data(), dx, N); // GPU-CPU data transfer
auto d2h_y = cf.copy(hy.data(), dy, N);
auto kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);

});

cudaflow.succeed(allocate_x, allocate_y);
executor.run(taskflow).wait();

To
 N

vi
di

a
cu

da
Gr

ap
h

Users define GPU work in a graph rather than aggregated
operations à single kernel launch to reduce overheads

23

Concurrent CPU-FPGA Tasking

q Integrate with Princeton’s OpenPiton FPGA emulator
q Prototype a “PitonFlow” of sequential operations

auto pitonflow = taskflow.emplace([&](tf::PitonFlow& pf) {
auto launch = pf.bitstream(“mybitstream”, “localhost:200”);
auto writer = pf.write_led(“OpenPiton”);
auto multiplier = pf.command(“multiply”);
launch.precede(writer);
writer.precede(multiplier);

}); CPU-FPGA tasking

Our functional programming-styled
interface is extensible to various devices,

provided a custom execution policy

24

Everything is Unified in Cpp-Taskflow

q Use the “emplace” method to create a task
q Use the “precede” method to add a task dependency
q No need to learn different sets of API
q You can create a really complex graph

q Subflow(ConditionTask(cudaFlow))
q ConditionTask(StaticTask(cudaFlow))
q Composition(Subflow(ConditionTask))
q Subflow(ConditionTask(FPGAFlow))
q …

q Scheduler performs end-to-end optimization
q Runtime, energy efficiency, and throughput

cudaFlow

FPGAFlow

Composition

Dynamic
controls

25

Reflect on the Monster Task Graph

q Now, it’s no-brainer J [0]collect_independent_sets_end

[0]construct_cost_matrices_begin [1]random_shuffle_begin

[0]construct_cost_matrices_kernel_S [1]maximum_independent_set_parallel_kernel1_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]construct_cost_matrices_kernel_T

[0]solve_assignment_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]solve_assignment_kernel_T

[0]solve_assignment_end

[0]apply_solution_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]apply_solution_kernel_T

[0]apply_solution_end

[0]compute_hpwl_kernel [1]collect_independent_sets_begin

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel1_T

[1]maximum_independent_set_parallel_kernel2_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel2_T

[1]maximum_independent_set_parallel_update

[1]maximum_independent_set_parallel_cond

0

[1]maximum_independent_set_parallel_end

1

Partial Tasks of Iteration 0
Partial Tasks of Iteration 1

On a VLSI placement application:
47.81% faster than Intel TBB

4.24x fewer memory than Intel TBB

*TCAD20 (submitted): T.-W. Huang, et al, “Cpp-Taskflow: A General-purpose Parallel Task Programming System”

26

Another Result: VLSI Timing Anslysis

q OpenTimer v1: A VLSI Static Timing Analysis Tool
q v1 first released in 2015 (open-source under GPL)
q Loop-based parallelisms using OpenMP 4.0

q OpenTimer v2: A New Parallel Incremental Timer
q v2 first released in 2018 (open-source under MIT)
q Task-based parallel decomposition using Cpp-Taskflow

OpenTimer v2 Infrastructure (pluggable modules)

Builder
(lineage)

Action
(update timing)

Accessor
(inspection)

Incremental
timing

OpenTimer v2 C++ API

OpenTimer v2
Shell

CI, Regression,
Testing frameworks

Application-dependent binary
(TAU, ICCAD CAD contests)

Delay
calculator

Netlist
generator

Cpp-Taskflow
tasking Prompt …

OpenTimer: https://github.com/OpenTimer/OpenTimer

V2 is completely rewritten
using Cpp-Taskflow

(real use case benchmark)

https://github.com/OpenTimer/OpenTimer

27

Software Cost between v1 and v2

With Cpp-Taskflow, we saved 4K lines of parallel code, most from the sections
to maintain dynamic data structures in support for OpenMP’s loop-based task
decomposition strategies. Reported by SLOCCount, the cost to develop is $275K
with OpenMP and $130K with Cpp-Taskflow.

SLOCCount: https://dwheeler.com/sloccount/

https://dwheeler.com/sloccount/

28

Runtime Performance between v1 and v2

The new runtime is 1.4-3.8x faster. Task-based strategies enable more efficient
parallel timing propagation; computations flow naturally with the structure of
the timing graph, in no need of synchronization level-by-level.

29

Different models give different implementations. The
parallel code sections may run fast, yet the data
structures to support a parallel decomposition

strategy may overwhelm all its runtime benefits.

Programming models matter

In OpenTimer v1, loop-based OpenMP code is very fast. But it’s too costly to
maintain the levellist data structure over iterations.

30

Selected Modules for the Rest of Talk

q Vertical scalability
q Cpp-Taskflow: Parallel Task Programming in Modern C++
q Result on ML-centric VLSI placement (>8M tasks)
q Result on VLSI timing analysis (>1B tasks)

q Horizontal scalability
q DtCraft: Distributed Programming and Execution Engine
q Result on complex heterogeneous ML workflows

q Technical details
q HeteroSteal: A Generalized Work-stealing Scheduler
q Learning-based distributed scheduling
q Result on improved system performance

31

DtCraft Programming System [TCAD19]

q A new stream graph programming models
q Vertex program & data-parallel streams (computations)
q No difficult distributed computing details

q Everything is by default distributed

DtCraft: https://github.com/tsung-wei.huang/DtCraft

https://dwheeler.com/sloccount/

32

A Hello-World Example

q An iterative and incremental flow
q Two vertices + two streams

A B

“hello from A”

“hello from B”

Stop when no
active streams

Step 1: stream graph

Step 2:
string msg;

Step 2:
string msg;

[=] (auto& B, auto& is) {
Extract string from is;
print string;

}

istream B

Step 3: AèB callback

[=] (auto& A, auto& is) {
Extract string from is;
print string

}

istreamA

Step 3: AçB callback

Step 4: A’s resource
1 CPU / 1 GB RAM

Step 4: B’s resource
1 CPU / 1 GB RAM

Step 5: ./submit –master=127.0.0.1 hello-world

dtc::Graph G;
auto A = G.vertex(); // create a vertex A
auto B = G.vertex(); // create a vertex B
auto AB = G.stream(A, B); // create a data stream A->B
auto BA = G.stream(B, A); // create a data stream B->A
G.container().add(A).cpu(1).memory(1_GB);
G.container().add(B).cpu(1).memory(1_GB);
A.on([&AB] (dtc::Vertex& v) {

(*v.ostream(AB))("hello world from A"s);
dtc::cout("Sent 'hello world from A' to stream ", AB, "\n"); }

);
B.on([&BA] (dtc::Vertex& v) {

(*v.ostream(BA))("hello world from B"s);
dtc::cout("Sent 'hello world from B' to stream ", BA, "\n"); }

);
AB.on([] (dtc::Vertex& B, dtc::InputStream& is) {

if(std::string b; is(b) != -1) {
dtc::cout("Received: ", b, '\n’);
return dtc::Event::REMOVE;

}
return dtc::Event::DEFAULT;

});
BA.on([] (dtc::Vertex& A, dtc::InputStream& is) {

if(std::string a; is(a) != -1) {
dtc::cout("Received: ", a, "\n");
return dtc::Event::REMOVE;

}
return dtc::Event::DEFAULT; }

);
dtc::Executor(G).run();

DtCraft Code of Hello World

33

Create two vertices A and B

Create two data parallel
streams AB and BA

Assign vertex program
(constructor)

Define computation callback
on data streams

Create an executor to
execute the stream graph

Only a couple lines of code à fully capable
of distributed computing

34

Without DtCraft …

Branch your code to server and client
for distributed computation!
simple.cpp à server.cpp + client.cpp

server.cpp

client.cpp
A lot of boilerplate code
plus hundred lines of
scripts to enable
distributed flow…

35

Heterogeneous ML Workflows

q Prototype a fully automated layout generator
q Ran on a 40-node Amazon cluster (4CPU/1GPU each)

Partition Floorplan Placement Routing Timing

Users (service)Interactive query Multiple scenarios
(100 vertices)

DNN trainers (TensorFlow process)
decision making

Distributed heterogeneous workflow for ML-centric CAD toolchains
(1.6B tasks and 2.9B dependencies) Kokkos

3
13

0

20
Development Time

DtCraft Ad hoc

w
ee

ks

1.8
14.8

0

20
Runtime (40 nodes)

DtCraft Ad hoc

ho
ur

s

New programming models enable simultaneous performance and productivity gain

+

36

Handcrafting a complex heterogeneous workflow
using ad hoc scripts can result in result in suboptimal
performance due to the lack of runtime optimization

on the whole flow with available resources.

End-to-end parallelism matters

In our distributed workflow prototype, we found even simple pipeline
optimization can boost >2x performance compared to the batch flow.

37

What about technical details?

38

Selected Modules for the Rest of Talk

q Vertical scalability
q Cpp-Taskflow: Parallel Task Programming in Modern C++
q Result on ML-centric VLSI placement (>8M tasks)
q Result on VLSI timing analysis (>1B tasks)

q Horizontal scalability
q DtCraft: Distributed Programming and Execution Engine
q Result on complex heterogeneous ML workflows

q Technical details
q HeteroSteal: A Generalized Work-stealing Scheduler
q Learning-based distributed scheduling
q Result on improved system performance

39

HeteroSteal: Generalized Work Stealing

Shared CPU
task queue
(external threads)

GPUcore core core core GPUcore

push pop push pop push push

push push push

steal steal CPU tasks

CPU worker threads GPU worker threads

steal GPU
tasks

push pop

CPU task
queue

GPU task
queue

H2D

D2H

push push Shared GPU task
queue
(external threads)

HTDG

Improved energy efficiency, throughput, and performance

40

Key Property and Components

q O(N) sync cost on N heterogeneous domains
q Cost to decide when to put a worker to sleep or to work

q Scheduler consists of two parts:
1. Task-level scheduling

• Decide which task to enqueue at runtime
• Support our unified tasking interface
• Model flows via strong dependency and weak dependency

2. Worker-level scheduling
• Decide which worker to preempt and which worker to wake up
• Adapt the number of workers to dynamically generated tasks
• Control the wasteful steals within a bounded interval

q Maximize the entire system performance

41

Provably Good Scheduling Strategy

q Balance workers with dynamically generated tasks
q We prove to avoid under-subscription

q Worker threads can’t be lower than available tasks
q Unless all workers are fully loaded

q We prove to avoid over-subscription
q Worker threads can’t exceed too much available tasks
q Wasteful thieves are bounded

We developed a two-phase synchronization to reach this goal

42

HeteroSteal vs ABP on a Mix BS-AES Graph

q Comparison of runtime and power consumption
q 40 CPU cores and 4 Nvidia GeForce RTX 2080 GPUs

N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread Scheduling for Multiprogrammed Multiprocessors,” ACM
SPAA, pp. 119—129, 1998

43

HeteroSteal vs ABP on a Mix BS-AES Graph

q Runtime and energy distribution over multiple runs
q 40 CPU cores and 4 Nvidia GeForce RTX 2080 GPUs

44

HeteroSteal vs ABP on a Mix BS-AES Graph

q Co-run system throughput and power consumption
q 40 CPU cores and 4 Nvidia GeForce RTX 2080 GPUs

45

Learning-based Distributed Scheduling

Scheduler state Partition

A B C D

A B C D

A B

C D

Agent1

Agent2

Graph (4 vertices/4 edges)

Topology1 Topology2

Container 1: A, B
Container 2: C, D

Deploy
(packing)

<Task2: 2 vertices, 2 edges>

<Task1: 2 vertices, 3 edges>

Cut(Agent1) (Agent2)

Control message: ostream from B

Control message: istream to C

Global scheduler (Master) Local scheduler (Agent)

Distributed execution

Improved resource utilization and system adaptiveness

re
w

or
d

q Autonomously learn to optimize service objectives

46

Most existing work focus on “task-level” scheduling
but ignore the impact of ”worker-level” management

on system performance (runtime, power, co-run
throughput).

Who to sleep or work matters

In VLSI timing experiment, our adaptive work-stealing scheduler achieved faster
runtime using less CPU resources than Intel TBB and BWS (EuroSys15). Our
result delivered higher energy efficiency and system throughput.

47

Conclusion

q A general-purpose parallel task programming system
q Simple, efficient, and transparent tasking models
q CPU-, GPU-, and FPGA-collaborative computing
q Real case use in ML, VLSI (billion-scale tasking)

q On-going and future work
q Improving the system in all aspects
q Developing transition tools/linters

q WE ARE OPEN TO COLLABORATION!!!
q https://github.com/cpp-taskflow/cpp-taskflow
q https://github.com/tsung-wei-huang/DtCraft
q https://tsung-wei-huang.github.io/

https://github.com/cpp-taskflow/cpp-taskflow
https://github.com/tsung-wei-huang/DtCraft
https://tsung-wei-huang.github.io/

48

Community Engagement – Thank You All!

