
OpenTimer: A high-performance timing 
analysis tool

Tsung-Wei Huang, Chun-Xun Lin, and Martin D. F. Wong
Department of Electrical and Computer Engineering (ECE)
University of Illinois at Urbana-Champaign (UIUC), IL, USA

LibreCores Student Design Contest



Motivation of OpenTimer Project – TAU Contests

§ An open-source STA engine with incremental timing and CPPR
– Important for timing-driven applications
– Fast full timing and incremental timing analysis
– Capability of path-based CPPR analysis
– Parallel programming and multi-threading 

CPPR impact 
(reduction of unwanted pessimism)

*CPPR stands for Common Path Pessimism Removal

Prestigious 2014-2016 
TAU timing contests



OpenTimer Architecture

§ An open-source high-performance timing analysis tool
– TAU14 (1st place), TAU15 (2nd place), TAU16 (1st place)
– Selected as the golden timer in ICCAD15, TAU16, and TAU17 contests

§ Feature highlights
– C++11
– Industry format
– STA engine
– Block-based
– Path-based
– Incremental
– Lazy evaluation
– CPPR
– Multi-threaded

http://web.engr.illinois.edu/~thuang19/software/timer/OpenTimer.html

http://web.engr.illinois.edu/~thuang19/software/timer/OpenTimer.html


Experimental Results – Overall Performance Comparison 

*iTimerC 2.0: IEEE/ACM ICCAD15 (binary from authors) 
*iitRACE: IEEE/ACM ICCAD15 (binary from authors)

Golden reference by 
IBM Einstimer



Experimental Results – Scalability of Incremental Timing

x115 speedup by 
OpenTimer

(at 1459th stage)

X2.7 speedup by 
OpenTimer

(at 1th stage, i.e. 
full timing)

Parallel IO by 
OpenTimer

Parallel timing by 
OpenTimer



Conclusion

§ Developed a high-performance timing analysis tool
– Free software and open-source under GPL v3.0
– Industry format (.v, .spef, .lib, .lef, .def, etc.)
– Fast, accurate, robust, and CPPR by default

§ Recognitions and contributions to community
– 1st prize in TAU14 contest (full timing with CPPR)
– 2nd prize in TAU15 contest (incremental timing with CPPR)
– 1st prize in TAU16 contest (timing macro-modeling)
– Golden timer in ICCAD15 CAD contest
– Golden timer in TAU16 contest
– Golden timer in TAU17 contest

§ Acknowledgment
– Jin, Billy, M.-C., team iTimerC, team iitRACE, and the UIUC CAD group!



Backup slides



Initialize the Timer – Parallel IO

§ A set of design files that follow the industry standard format
– Verilog netlist, two libraries (early and late), parasitic spef, etc.

– Time-consuming IO (e.g., file IO, complex parsing)

Input files (industry standard)

Verilog (.v) Liberty (.lib)

Design 
Parasitics

Assertions Operations

SPEF (.spef)

(.ops)(.timing)

Based on TAU 2013, ISPD 2013, 
ICCAD 2014, Cadence Benchmarks

Early and Late 
Libraries

Design 
Connectivity

Task graph

Library 
(Early)

Verilog

Library 
(Late)

Build 
internal 

data 
structure

Parasitic LEF DEF Assertion

Parallel dependency generation using portable OpenMP
#pragma parallel …
#pragma task ... x2 speedup by parallel read/parse!



Timing Graph Reduction 

§ Reduce the search space
– Identify tree-structured subgraphs in the original timing graph
– Merge every leaf-root path (transition-definite)

R F F R R Every leaf-root path can be uniquely defined
(given a transition at an endpoint)

~30% reduction 
on the graph 

size

Apply to 
combinational 

circuits only



Key Components of Incremental Timing

§ Full timing is just a special case of incremental timing
§ Design modifiers

– Pin-level operations, net-level operations, and gate-level operations

§ Timing queries
– Slack
– Arrival time
– Required time
– TNS and WNS
– Critical path report
– CPPR

§ Source of propagation
§ Lazy evaluation
§ Explore parallel incremental timing



Common path pessimism removal (CPPR)

§ Constant-space and -time representation for CPPR

Pessimism-free graph

6 9

5

3

0

4

8

6

7

Suffix tree

6 9

5

3

0

4

8

6

7

Suffix tree

ϕ

Prefix tree

e2

e1

e3 e4

e5

e6
e7

e8 e9
e10

e11 e12
e13

e14 e15

e1e2 e11 e4

6 9

5

3

0

4

8

6

7
e7

ϕ

e1e2 e11 e4

(a) Build the suffix graph: shortest distance to target (b) Spur along the 1st critical path (post-CPPR = -12) (c) Spur along the 2nd critical path (post-CPPR = -11)

Suffix tree Prefix tree

e2

e1

e4

e11

-19

0

-18 -13

1

2
4 1 6 5

3 2
1

6 3

+19+1 +4 +8

+0

+19 +4 +8

+2

6 9

5

2

0

4

8

6

7
e7

ϕ

e1e2 e11 e4

(d) Spur along the 3rd critical path (post-CPPR = -10)

Suffix tree Prefix tree

+19 +4 +8

+6 e11

6 9

5

2

0

4

8

6

7
e7

ϕ

e1e2 e11 e4

(e) Spur along the 4th critical path (post-CPPR = -8)

Suffix tree Prefix tree

+19 +4 +8

+6 e11

6 9

5

2

0

4

8

6

7
e7

ϕ

e1e2 e11 e4

(f) Spur along the 6th critical path (post-CPPR = -4)

Suffix tree Prefix tree

+19 +4

+10
+6 e11

e9

kth critical path (pessimism-free) Spurred node/deviation Frontier +v: Cumulative deviation costArtificial edge from the source

4 paths spurred
Post-CPPR slack = {-11, 7, -8, -4}

1 path spurred
Post-CPPR slack = -6

0 path spurred

7 path 
candidates

1 path spurred
Post-CPPR = -2

5 path 
candidates

4 path 
candidates

1 path spurred
Post-CPPR slack = -10

6 path 
candidates

6 path 
candidates

e7

e11

e9



Pipeline-based Parallel Timing Propagation

§ Timing propagation has several linearly dependent tasks
– RC update à Slew & Delay à Arrival time à Jump point à CPPR
– Pipeline scheduling with multiple threads

We use the following paper for dealing with CPPR
*UI-Timer: An ultra-fast clock network pessimism removal algorithm, 
T.-W. Huang, P.-C. Wu, and Martin D. F. Wong, ICCAD14


