
Taskflow: A General-purpose Parallel and
Heterogeneous Task Programming

System in Modern C++
Dr. Tsung-Wei (TW) Huang

Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT

2

Why Parallel Computing?
• It’s critical to advance your application performance

0 100 200 300 400 500 600

1 GPU

40 CPUs

1 CPU

Time to Solve a Machine Learning Workload

Machine Learning Workload

10x faster

100x faster

3

Parallel programming is crucial
but very challenging …

Concurrency
control

Dependency
constraints

Task and data race

Scheduling
efficiencies

Debug
Dynamic load

balancing

How can we make it easier for C++
developers to quickly write parallel and

heterogeneous programs with high
performance scalability and simultaneous

high productivity?

Taskflow offers a solution

4

#include <taskflow/taskflow.hpp> // Taskflow is header-only
int main(){

tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C); // D runs after B and C
executor.run(taskflow).wait(); // submit the taskflow to the executor
return 0;

}
5

“Hello World” in Taskflow

6

Drop-in Integration
• Taskflow is header-only – no wrangle with installation

7

Built-in Profiler/Visualizer
• Taskflow is header-only – no wrangle with installation

8

Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Boost performance in real applications

9

Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Boost performance in real applications

10

Motivation: Parallelizing VLSI CAD Tools

[0]collect_independent_sets_end

[0]construct_cost_matrices_begin [1]random_shuffle_begin

[0]construct_cost_matrices_kernel_S [1]maximum_independent_set_parallel_kernel1_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]construct_cost_matrices_kernel_T

[0]solve_assignment_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]solve_assignment_kernel_T

[0]solve_assignment_end

[0]apply_solution_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]apply_solution_kernel_T

[0]apply_solution_end

[0]compute_hpwl_kernel [1]collect_independent_sets_begin

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel1_T

[1]maximum_independent_set_parallel_kernel2_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel2_T

[1]maximum_independent_set_parallel_update

[1]maximum_independent_set_parallel_cond

0

[1]maximum_independent_set_parallel_end

1

Partial Tasks of Iteration 0
Partial Tasks of Iteration 1

Circuit design

Partition

Floorplan

Placement

CTS

Routing

Function, logic

Physical design

Signoff

Module(a, b)
Input a;
Output b;

Manufacturing

System Spec.

Architecture

Timing

Final chip

Testing

DRC, LVS

Graph

Graph

Analytical

Tree

Graph

Computational problems of
10B+ transistors

1

2

4 5

3

1

2

3

1’

2’

3’

4 4’

5 5’

inp1 u1:A

u1:Y

clock f1:CLK

f1:D

out

u4:A

u4:B u4:Y

inp2 u1:B

u2:A u2:Yf1:Q u3:A u3:Y

Optimization

NP-hard problems

Machine learning in the loop

Modeling and simulation

Dynamic
controls

Irregular graphs

Data science &
regression

• Billions of tasks with diverse computational patterns

How can we write efficient
C++ parallel programs for

this monster computational
task graph with millions of
CPU-GPU dependent tasks

along with algorithmic
control flow”

11

We Invested a lot in Existing Tools …

12

Two Big Problems of Existing Tools
• Our problems define complex task dependencies

• Example: analysis algorithms compute the circuit network of million of
node and dependencies

• Problem: existing tools are often good at loop parallelism but weak in
expressing heterogeneous task graphs at this large scale

• Our problems define complex control flow
• Example: optimization algorithms make essential use of dynamic
control flow to implement various patterns

• Combinatorial optimization, analytical methods
• Problem: existing tools are directed acyclic graph (DAG)-based and do

not anticipate cycles or conditional dependencies, lacking end-to-end
parallelism

13

Example: An Iterative Optimizer

init optimizer outputconverged?

N

Y

How can we easily describe this workload
of dynamic control flow using existing

tools to achieve end-to-end parallelism?

Millions of such tasks? End-to-end parallelism?

• 4 computational tasks with dynamic control flow
#1: starts with init task
#2: enters the optimizer task (e.g., GPU math solver)
#3: checks if the optimization converged

• No: loops back to optimizer
• Yes: proceeds to stop

#4: outputs the result

14

Need a New C++ Parallel Programming System

While designing parallel algorithms is non-trivial …

what makes parallel programming an enormous challenge is the infrastructure work of
“how to efficiently express dependent tasks along with an algorithmic control flow and

schedule them across heterogeneous computing resources”

15

Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Boost performance in real applications

#include <taskflow/taskflow.hpp> // Taskflow is header-only
int main(){

tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C); // D runs after B and C
executor.run(taskflow).wait();
return 0;

}
17

“Hello World” in Taskflow (Revisited)

Taskflow defines five tasks:
1. static task
2. dynamic task
3. cudaFlow/syclFlow task
4. condition task
5. module task

18

Heterogeneous Tasking (cudaFlow)

cudaFlow: saxpyallocate_x h2d_x

allocate_y h2d_y
saxpy kernel

d2h_x

d2h_y

• Single Precision AX + Y (“SAXPY”)
• Get x and y vectors on CPU (allocate_x, allocate_y)
• Copy x and y to GPU (h2d_x, h2d_y)
• Run saxpy kernel on x and y (saxpy kernel)
• Copy x and y back to CPU (d2h_x, d2h_y)

19

Heterogeneous Tasking (cont’d)
const unsigned N = 1<<20;
std::vector<float> hx(N, 1.0f), hy(N, 2.0f);
float *dx{nullptr}, *dy{nullptr};
auto allocate_x = taskflow.emplace([&](){ cudaMalloc(&dx, 4*N);});
auto allocate_y = taskflow.emplace([&](){ cudaMalloc(&dy, 4*N);});

auto cudaflow = taskflow.emplace([&](tf::cudaFlow& cf) {
auto h2d_x = cf.copy(dx, hx.data(), N); // CPU-GPU data transfer
auto h2d_y = cf.copy(dy, hy.data(), N);
auto d2h_x = cf.copy(hx.data(), dx, N); // GPU-CPU data transfer
auto d2h_y = cf.copy(hy.data(), dy, N);
auto kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);

});

cudaflow.succeed(allocate_x, allocate_y);
executor.run(taskflow).wait();

To Nvidia
cudaGraph

20

Three Key Motivations
• Our closure enables stateful interface

• Users capture data in reference to marshal data exchange between
CPU and GPU tasks

• Our closure hides implementation details judiciously
• We use cudaGraph (since cuda 10) due to its excellent performance,

much faster than streams in large graphs
• Our closure extend to new accelerator types (e.g., SYCL)

We do not simplify kernel programming but
focus on CPU-GPU tasking that affects the
performance to a large extent! (same for
data abstraction)

21

Heterogeneous Tasking (syclFlow)

auto syclflow = taskflow.emplace_on([&](tf::syclFlow& sf) {
auto h2d_x = cf.copy(dx, hx.data(), N); // CPU-GPU data transfer
auto h2d_y = cf.copy(dy, hy.data(), N);
auto d2h_x = cf.copy(hx.data(), dx, N); // GPU-CPU data transfer
auto d2h_y = cf.copy(hy.data(), dy, N);
auto kernel = cf.parallel_for(sycl::range<1>(N), [=](sycl::id<1> id){

dx[id] = 2.0f * dx[id] + dy[id];
});
kernel.succeed(h2d_x, h2d_y)

.precede(d2h_x, d2h_y);
}, queue); Create a syclFlow from a SYCL queue on a SYCL device

22

Conditional Tasking (Simple if-else)
auto init = taskflow.emplace([&](){ initialize_data_structure(); })

.name(”init");
auto optimizer = taskflow.emplace([&](){ matrix_solver(); })

.name(”optimizer");
auto converged = taskflow.emplace([&](){ return converged() ? 1 : 0 })

.name(”converged");
auto output = taskflow.emplace([&](){ std::cout << ”done!\n"; });

.name(”output");
init.precede(optimizer);
optimizer.precede(converged);
converged.precede(optimizer, output); // return 0 to the optimizer again

init optimizer outputconverged?
0

Condition task integrates control flow into a task graph to form end-to-end parallelism

1

Conditional Tasking (While/For Loop)
tf::Taskflow taskflow;
int i;
auto [init, cond, body, back, done] = taskflow.emplace(
[&](){ std::cout << “i=0”; i=0; },
[&](){ std::cout << "while i<5\n"; return i < 5 ? 0 : 1; },
[&](){ std::cout << "i++=" << i++ << '\n'; },
[&](){ std::cout << "back\n"; return 0; },
[&](){ std::cout << "done\n"; }

);
init.precede(cond);
cond.precede(body, done);
body.precede(back);
back.precede(cond);

24

Existing Frameworks on Control Flow?
• Expand a task graph across fixed-length iterations

• Graph size is linearly proportional to decision points
• Unknown iterations? Non-deterministic conditions?

• Complex dynamic tasks executing “if” on the fly
• Dynamic control-flow tasks?
• … (resort to client-side decision)

Existing frameworks on expressing conditional
tasking or dynamic control flow suffer from

exponential growth of code complexity

25

Everything is Unified in Taskflow

cudaFlow

Composition

Dynamic task

Control
flow

• Use “emplace” to create a task
• Use “precede” to add a task dependency
• No need to learn different sets of API
• You can create a really complex graph

• Subflow(ConditionTask(cudaFlow))
• ConditionTask(StaticTask(cudaFlow))
• Composition(Subflow(ConditionTask))
• Subflow(ConditionTask(cudaFlow))
• …

• Scheduler performs end-to-end optimization
• Runtime, energy efficiency, and throughput

26

Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Boost performance in real applications

27

Application 1: VLSI Placement
• Optimize cell locations on a chip

A partial TDG of 4 cudaFlows, 1 conditioned cycle, and 12 static tasks

VLSI optimization
makes essential use of
dynamic control flow

28

Application 1: VLSI Placement (cont’d)
• Runtime, memory, power, and throughput

Performance improvement comes
from the end-to-end expression of
CPU-GPU dependent tasks using

condition tasks

29

Application 2: Machine Learning
• IEEE HPEC/MIT/Amazon Sparse DNN Challenge

• Compute a 1920-layer DNN each of 65536 neurons

A partial taskflow
graph of 4

cudaFlows, 6
static tasks, and 8
conditioned cycles
for this workload

Each cudaFlow
contains >1000 of

GPU tasks

Champions of HPEC 2020 Graph Challenge: https://graphchallenge.mit.edu/champions

https://graphchallenge.mit.edu/champions

• Comparison with TBB and StarPU

• Taskflow’s runtime is up to 2x faster
• Adaptive work stealing balances the worker count with task parallelism

• Taskflow’s memory is up to 1.6x less
• Conditional tasking allows efficient reuse of tasks

30

Application 2: Machine Learning (cont’d)

31

Different models give different implementations. The parallel
code/algorithm may run fast, yet the parallel computing

infrastructure to support that algorithm may dominate the entire
performance.

Parallel programming
infrastructure matters

Taskflow enables end-to-end expression of CPU-GPU
dependent tasks along with algorithmic control flow

Conclusion
• Taskflow is a lightweight parallel task programming system

• Simple, efficient, and transparent tasking models
• Efficient heterogeneous work-stealing executor
• Promising performance in large-scale ML and VLSI CAD

• Taskflow is not to replace anyone but to
• Complement the current state-of-the-art
• Leverage modern C++ to express task graph parallelism

• Taskflow is very open to collaboration
• We want to provide more higher-level algorithms
• We want to broaden real use cases
• We want to enhance the core functionalities (e.g., pipeline)

33

Thank You All Using Taskflow!

Use the right tool for the right job
Taskflow: https://taskflow.github.io

Dr. Tsung-Wei Huang
tsung-wei.huang@utah.edu

https://taskflow.github.io/
mailto:tsung-wei.huang@utah.edu

