
From RTL to CUDA: A GPU
Acceleration Flow for RTL Simulation

with Batch Stimulus
Dr. Tsung-Wei (TW) Huang, Assistant Professor

Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT

Takeaway
• Understand importance of faster RTL simulation with GPU
• Discuss limitations of existing RTL simulators
• Identify challenges of GPU-accelerated RTL simulation
• Introduce RTLflow “source-to-source RTL to CUDA transpiler”
• Present experimental results

3

Register-Transfer Level (RTL) Simulation
• RTL simulation is a critical step in the circuit design flow

• Verify functionality of processor and system-on-chips (SoCs) designs
• However, RTL simulation is a time-consuming process

• Run many thousands of nightly tests on a Design-Under-Test (DUT)

Waveforms
(design correct?)

RTL Simulation
(Input stimulus)

Many thousands of simulation runs (hours)

4

CPU-parallel RTL Simulation
• Leverage many-core CPU parallelism to reduce the runtime

26

20

12

4.5 3.7 3.1 2.45 2.41

0

5

10

15

20

25

30

1 2 4 8 16 24 32 40

RTL Simulation Runtime on a Million-gate Design

of CPU cores

ho
ur

s With 16—40 CPU cores, runtime is
reduced yet plateaued at 17.4×!

Data-parallelism in RTL Simulation
• Input many different stimulus batches on the same design

• Many thousands of stimulus batches
• Many thousands of simulation cycles

5

Input stimulus
batches

6

Graphics Processing Unit (GPU) can Help
• GPU has advanced our computing applications to new levels

0

100

200

300

400

500

600

1 CPU 8 CPUs 16 CPUs 24 CPUs 32 CPUs 40 CPUs 1 GPU

Time (minutes) to solve a machine learning workload

CPU

GPU

Over 60x speedup in neural
network training since 2013

NVLink Performance

Tensor core

10-100x speed-up over manycore CPUs

Limitations of Existing RTL Simulators
• Existing RTL simulators focus on “structure-level” parallelism

J Partition the design into several RTL processes
J Explore parallelism across independent partitions
J Counts on compiler to perform data/memory layout optimization
L Speed-up is limited by the circuit structure itself

• Event-driven simulators
J Skip evaluation of zero-activity blocks
L Count on sophisticated control flow
L Hard to scale to many threads

7

Ours

Stimuli-level parallelism
(data parallelism)

St
ru

ct
ur

e-
le

ve
l

pa
ra

lle
lis

m

Verilator

ESSENT
CXXRTL

Verilator: https://www.veripool.org/verilato
CXXRTL: https://github.com/YosysHQ/yosys
ESSENT: https://github.com/ucsc-vama/essent

https://www.veripool.org/verilato
https://github.com/YosysHQ/yosys
https://github.com/ucsc-vama/essent

Heterogeneous RTL Simulation Challenges

• Lack of an open infrastructure to break language barrier
• We cannot rewrite RTL simulation code to GPU (e.g., Nvidia CUDA)
• We need a source-to-source transpiler to automatically go from RTL to CUDA

• Lack of a GPU-aware partitioning algorithm
• We cannot reuse CPU-based partitioner to GPU due to distinct perf models
• We cannot use static partitioners that count on hard-coded CPU instructions
• We need a new partitioning algorithm that understands how GPU runs

• Lack of an efficient CPU-GPU task scheduling algorithm
• We cannot stand too much data movement cost between CPU and GPU
• We need an efficient scheduler to overlap CPU and GPU tasks or, in other

words, hide data movement and synchronization overheads

GPU-intensive

CPU-intensive

GPU-accelerated RTL Simulator: RTLflow

9

RTL abstract syntax
tree annotation

CUDA graph

Kernel code transpilation Task graph code transpilation

Transpile

GPU memory index
mapping Pipeline scheduling

GPU-accelerated multi-stimulus RTL simulator

Incremental GPU
memory allocation

Compile (nvcc)

RTL sources (.v)

GPU-aware partitioning
(MCMC sampling)

A typical transpiled C++ code
example for a targeted RTL

simulation workload

Kernel Code Transpilation
1. Annotate an RTL abstract syntax tree (AST) with textual info

• Flatten the hierarchies (i.e., module) to have a single view point of the design
• Understand the data layout, numbers of variables, simulation instructions

2. Transpile the annotated RTL AST into C++ and CUDA
• Optimize data layout and memory coalescing for efficient GPU computing

Assign in = 10’h1 + sum;

VARREF

VAR sum

ADD

VARREF CONST
10’h1

VAR in

ASSIGN

CFUNC funcCELL c1

CELL c2

MODULE m2MODULE m1

v1[v2[2]]
VARREF

v1 ARRSEL

CONST
2

ARRSEL

VARREF
v2

(var8 + N ∗ 3 + tid)[var8[N ∗ 72 + tid + 2]]

offset 3

offset 72

Verilator

RTLflow

10

Kernel Code Transpilation (cont’d)
3. Incremental GPU memory allocation

• Separate data types of different widths into different areas
• Allow thread to access data in a coalesced fashion

4. GPU memory index mapping
• Traverse the AST with computed memory offsets to emit efficient kernel code

11

uint8_t
array

in

sum1 ……

Each variable duplicates N times for N stimulus

sum2

in

sum1 sum2

……

Thread 1 Thread 2

Thread 1 Thread 2

in = 6-bit variable
sum = 14-bit variable

var8
(uint8_t)

N stimulus

variables
whose width
≦ 8 bits

c1.in c1.in
c1.sum

var16
(uint16_t)

var64
(uint64_t)

var32
(uint32_t)

……

variables
whose width
= 17~32 bits

N stimulus

c2.in

c1.in

……
c1.sum

c2.sum ……

c1.sum …
……1

2

offset

3

……

offset

17

18

… ……… ……

Kernel Code Transpilation Example

12

Transpiled CUDA kernel code with optimized data
layout for coalesced memory access

Task Graph Code Transpilation

13

• Generate fast task-level execution code with three strategies

A B

C

D A B

C

D

CPU

GPU

Cycle 1 Cycle 2

(a) Stream-based execution

(b) CUDA Graph-based execution

A B

C

D A B

C

D

CPU

GPU
!!
!"

Cycle 1 Cycle 2
Kernel executionCUDA call overhead Event !!	, !" Stream

A
B

C
D

CUDA graph

reduced
stream overhead

1. CUDA Graph execution
to reduce kernel call
overheads

2. GPU-aware partitioning
to find a GPU-efficient
task graph

3. Pipeline scheduling to
enable efficient CPU-
GPU task overlap

Task Graph Optimization

14

• Markov Chain Monte Carlo (MCMC)-based graph optimization
• Propose a graph partition based on Verilator’s partitioning algorithm*
• Estimate the partition quality (runtime)
• Accept the proposal with a probability

• Advantages of MCMC
• Run on a real condition
• Learn env parameters

• CUDA runtime
• Machine properties
• Scheduling behaviors
• …

Optimizer

Transpiled code

Estimated costEstimator

Compile & Run

Best weights

Design & Initial weights

MCMC & Transpile

*Vivek Sarkar, “Partitioning and Scheduling Parallel
Programs for Multiprocessor,” MIT Press, 1989

Task Graph Generation (cont’d)

15

Pipeline-based Task Scheduling

16

GPU-intensive
CPU-intensive

• Enable efficient computation overlaps between CPU and GPU
• Large simulation workload running in sequential results in long GPU idle time

75%

53%

32%

0%

20%

40%

60%

80%

0

50

100

150

200

1024 4096 16384

R
un

tim
e

(s
)

stimulus
set inputs (CPU) evaluate design (GPU)

Low GPU utilization due to
long sequential while-loop

Transpiled C++ code for
a targeted RTL simulation

workload

Pipeline-based Task Scheduling (cont’d)

17

• Partition stimulus batches into groups and pipeline them

each stage simulates one cycle

evaluate
design

evaluate
design

set inputs
set clock

set
clock

batch stimulus

CPU

GPU

𝐺!, 𝐶!stage 1

stage 2

stage 3

inter-stimulus parallelism

𝐺", 𝐶! 𝐺!, 𝐶"

𝐺#, 𝐶! 𝐺", 𝐶" 𝐺!, 𝐶#

Experimental Results

18

• Implemented RTLflow with C++17 and CUDA 11.6
• Compiled using GCC-8 with optimization –O2
• Leveraged Taskflow (https://taskflow.github.io/) for pipeline programming

• Evaluate RTLflow’s performance on three industrial designs
• NVDLA (Nvidia’s open-source accelerator design: http://nvdla.org/)
• Spinal (riscv CPU project: https://spinalhdl.github.io/)
• riscv-mini (riscv CPU project: https://github.com/ucb-bar/riscv-mini)

• Compared with two baselines, Verilator and ESSENT, on
• An Ubuntu server with 40 Intel Xeon Gold 6138 CPU cores
• A CentOS desktop with 8 Intel i7-11700 CPU cores and an RTX A6000 GPU

https://taskflow.github.io/
http://nvdla.org/
https://spinalhdl.github.io/
https://github.com/ucb-bar/riscv-mini

Transpilation Results

19

• LOC: lines of transpiled code
• #Tokens: total number of tokens
• Ttran: transpilation time
• CCavg: average cyclomatic complexity per function

Significantly improved
designers’ productivity!

Overall Performance Comparison

20

0 20000 40000 60000 80000 100000

1 A6000
1 RTX 2080 ti

80 CPU
40 CPU
16 CPU
4 CPU
 1 CPU

1h22m47s 17.4× speed-up
2h45m 8.7× speed-up

~ 5h "× speed-up
~0.5day 2× speed-up

~1day

Runtime (s)

1 CPU
4 CPU

16 CPU
40 CPU
80 CPU

1 A6000 GPU 2m45s 523× speed-up (RTLflow)

Overall Performance Comparison (cont’d)
• Simulation time for NVDLA with 16384 batches and 10K cycles

Absolute Efficiency

22

• Beyond 1024 stimulus batches RTL is always faster

GPU throughput performance
advantage begins in 1024 batches

Performance of GPU Task Graphs

23

Performance of Pipeline Scheduling

24

Pipeline enable nearly full GPU
utilization all the time

Conclusion
• Understood importance of faster RTL simulation with GPU
• Discussed limitations of existing RTL simulators
• Identified challenges of GPU-accelerated RTL simulation
• Introduced RTLflow “source-to-source RTL to CUDA transpiler”

• Transpiled kernel code with optimized memory/data layout on GPU
• Transpiled task graph code with optimized execution efficiency

• Presented experimental results
• Showed significantly improved programming productivity
• Showed significantly improved runtime performance via data parallelism
• Showed the efficiency and effectiveness of the proposed algorithms

• Future work plans to apply RTLflow to accelerate fuzzing

Acknowledgement

Dr. Mark Ren Dr. B Khailany Dr. Y ZhangD-L Lin

Use the right tool for the right job
RTLflow: https://github.com/dian-lun-lin/RTLflow

Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, and Tsung-Wei Huang,
“From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with
Batch Stimulus,” ACM International Conference on Parallel Processing
(ICPP), Bordeaux, France, 2022

https://github.com/dian-lun-lin/RTLflow

