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Takeaway
• Understand importance of faster RTL simulation with GPU
• Discuss limitations of existing RTL simulators
• Identify challenges of GPU-accelerated RTL simulation
• Introduce RTLflow “source-to-source RTL to CUDA transpiler”
• Present experimental results
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Register-Transfer Level (RTL) Simulation
• RTL simulation is a critical step in the circuit design flow

• Verify functionality of processor and system-on-chips (SoCs) designs
• However, RTL simulation is a time-consuming process

• Run many thousands of nightly tests on a Design-Under-Test (DUT)

Waveforms
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CPU-parallel RTL Simulation
• Leverage many-core CPU parallelism to reduce the runtime
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Data-parallelism in RTL Simulation
• Input many different stimulus batches on the same design

• Many thousands of stimulus batches
• Many thousands of simulation cycles 
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Graphics Processing Unit (GPU) can Help
• GPU has advanced our computing applications to new levels
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Limitations of Existing RTL Simulators
• Existing RTL simulators focus on “structure-level” parallelism

J Partition the design into several RTL processes
J Explore parallelism across independent partitions
J Counts on compiler to perform data/memory layout optimization
L Speed-up is limited by the circuit structure itself

• Event-driven simulators
J Skip evaluation of zero-activity blocks
L Count on sophisticated control flow
L Hard to scale to many threads
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Verilator: https://www.veripool.org/verilato
CXXRTL: https://github.com/YosysHQ/yosys
ESSENT: https://github.com/ucsc-vama/essent
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Heterogeneous RTL Simulation Challenges

• Lack of an open infrastructure to break language barrier
• We cannot rewrite RTL simulation code to GPU (e.g., Nvidia CUDA)
• We need a source-to-source transpiler to automatically go from RTL to CUDA

• Lack of a GPU-aware partitioning algorithm
• We cannot reuse CPU-based partitioner to GPU due to distinct perf models
• We cannot use static partitioners that count on hard-coded CPU instructions
• We need a new partitioning algorithm that understands how GPU runs

• Lack of an efficient CPU-GPU task scheduling algorithm
• We cannot stand too much data movement cost between CPU and GPU
• We need an efficient scheduler to overlap CPU and GPU tasks or, in other 

words, hide data movement and synchronization overheads



GPU-intensive

CPU-intensive

GPU-accelerated RTL Simulator: RTLflow
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RTL abstract syntax 
tree annotation

CUDA graph

Kernel code transpilation Task graph code transpilation

Transpile

GPU memory index
mapping Pipeline scheduling

GPU-accelerated multi-stimulus RTL simulator

Incremental GPU
memory allocation

Compile (nvcc)

RTL sources (.v)

GPU-aware partitioning
(MCMC sampling)

A typical transpiled C++ code 
example for a targeted RTL 

simulation workload



Kernel Code Transpilation
1. Annotate an RTL abstract syntax tree (AST) with textual info

• Flatten the hierarchies (i.e., module) to have a single view point of the design
• Understand the data layout, numbers of variables, simulation instructions

2. Transpile the annotated RTL AST into C++ and CUDA
• Optimize data layout and memory coalescing for efficient GPU computing

Assign in = 10’h1 + sum;

VARREF

VAR sum

ADD

VARREF CONST 
10’h1

VAR in

ASSIGN

CFUNC funcCELL c1

CELL c2

MODULE m2MODULE m1

v1[v2[2]]
VARREF

v1 ARRSEL

CONST 
2

ARRSEL

VARREF
v2

(var8 + N ∗ 3 + tid)[var8[N ∗ 72 + tid + 2]] 

offset 3

offset 72

Verilator

RTLflow
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Kernel Code Transpilation (cont’d)
3. Incremental GPU memory allocation

• Separate data types of different widths into different areas
• Allow thread to access data in a coalesced fashion

4. GPU memory index mapping
• Traverse the AST with computed memory offsets to emit efficient kernel code
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Kernel Code Transpilation Example
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Transpiled CUDA kernel code with optimized data 
layout for coalesced memory access



Task Graph Code Transpilation
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• Generate fast task-level execution code with three strategies
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Task Graph Optimization
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• Markov Chain Monte Carlo (MCMC)-based graph optimization
• Propose a graph partition based on Verilator’s partitioning algorithm*
• Estimate the partition quality (runtime)
• Accept the proposal with a probability

• Advantages of MCMC
• Run on a real condition
• Learn env parameters

• CUDA runtime
• Machine properties
• Scheduling behaviors
• …

Optimizer

Transpiled code

Estimated costEstimator

Compile & Run

Best weights

Design & Initial weights

MCMC & Transpile

*Vivek Sarkar, “Partitioning and Scheduling Parallel 
Programs for Multiprocessor,” MIT Press, 1989



Task Graph Generation (cont’d)
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Pipeline-based Task Scheduling
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GPU-intensive
CPU-intensive

• Enable efficient computation overlaps between CPU and GPU
• Large simulation workload running in sequential results in long GPU idle time
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Pipeline-based Task Scheduling (cont’d)
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• Partition stimulus batches into groups and pipeline them

each stage simulates one cycle

evaluate
design

evaluate
design

set inputs
set clock

set 
clock

batch stimulus

CPU

GPU
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Experimental Results
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• Implemented RTLflow with C++17 and CUDA 11.6
• Compiled using GCC-8 with optimization –O2
• Leveraged Taskflow (https://taskflow.github.io/) for pipeline programming

• Evaluate RTLflow’s performance on three industrial designs
• NVDLA (Nvidia’s open-source accelerator design: http://nvdla.org/)
• Spinal (riscv CPU project: https://spinalhdl.github.io/)
• riscv-mini (riscv CPU project: https://github.com/ucb-bar/riscv-mini)

• Compared with two baselines, Verilator and ESSENT, on
• An Ubuntu server with 40 Intel Xeon Gold 6138 CPU cores
• A CentOS desktop with 8 Intel i7-11700 CPU cores and an RTX A6000 GPU

https://taskflow.github.io/
http://nvdla.org/
https://spinalhdl.github.io/
https://github.com/ucb-bar/riscv-mini


Transpilation Results
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• LOC: lines of transpiled code
• #Tokens: total number of tokens
• Ttran: transpilation time
• CCavg: average cyclomatic complexity per function

Significantly improved 
designers’ productivity!



Overall Performance Comparison
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Overall Performance Comparison (cont’d)
• Simulation time for NVDLA with 16384 batches and 10K cycles



Absolute Efficiency
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• Beyond 1024 stimulus batches RTL is always faster

GPU throughput performance 
advantage begins in 1024 batches



Performance of GPU Task Graphs
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Performance of Pipeline Scheduling
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Pipeline enable nearly full GPU 
utilization all the time



Conclusion
• Understood importance of faster RTL simulation with GPU
• Discussed limitations of existing RTL simulators
• Identified challenges of GPU-accelerated RTL simulation
• Introduced RTLflow “source-to-source RTL to CUDA transpiler”

• Transpiled kernel code with optimized memory/data layout on GPU
• Transpiled task graph code with optimized execution efficiency

• Presented experimental results
• Showed significantly improved programming productivity
• Showed significantly improved runtime performance via data parallelism
• Showed the efficiency and effectiveness of the proposed algorithms

• Future work plans to apply RTLflow to accelerate fuzzing
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Use the right tool for the right job
RTLflow: https://github.com/dian-lun-lin/RTLflow
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