From RTL to CUDA: A GPU
Acceleration Flow for RTL Simulation

with Batch Stimulus

Dr. Tsung-Wei (TW) Huang, Assistant Professor
Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT

Takeaway

* Understand importance of faster RTL simulation with GPU

* Discuss limitations of existing RTL simulators

* ldentify challenges of GPU-accelerated RTL simulation

* Introduce RTLflow “source-to-source RTL to CUDA transpiler”
* Present experimental results

Register-Transfer Level (RTL) Simulation

 RTL simulation is a critical step in the circuit design flow
« Verify functionality of processor and system-on-chips (SoCs) designs

 However, RTL simulation is a time-consuming process
« Run many thousands of nightly tests on a Design-Under-Test (DUT)

Testbench written in Verilog RTL Simulation WavefOrmS
(Input stimulus) (design correct?)

...

i Response analysis / display |

—]\ T ----- T T | Verilog Py — -

c .5 Circuit Under Test in o
§§ ; Verilog Simulator B
e s L Hardware

: | Descrip_gip_n_ __________

feeenennensd ' Many thousands Of S|mUIat|0n runs (hours)

CPU-parallel RTL Simulation

* Leverage many-core CPU parallelism to reduce the runtime

30
25
20
15

hours

10

RTL Simulation Runtime on a Million-gate Design

26
20
I 12
1 2 4

With 16—40 CPU cores, runtime is
reduced yet plateaued at 17.4 X!

45 3.7 3.1 2.45 2.41
B B N e I
8 16 24 32 40

m # of CPU cores

Data-parallelism in RTL Simulation

* Input many different stimulus batches on the same design
« Many thousands of stimulus batches

« Many thousands of simulation cycles :I - ctrl
|=I s3
| — Xi "
] — > f/f ¢ > 0 mux3
: mux
1 .
Z ZI
- sub -
yi S2. g
- 0
mux 5
Input stimulus 1 IMEX
batches

Graphics Processing Unit (GPU) can Help

 GPU has advanced our computing applications to new levels

Peak Double Precision FLOPS
V100

600 10-100x speed-up over manycore CPUs 8000 -

500

4000 - GPU

400
3000 -
30 2000 - <
. 1002:M1060 M ¥ vel Skylake
fenorem 52207
10 2008 2010 2012 2014 2016 2018
) o Year

1CPU 8CPUs 16CPUs 24CPUs 32CPUs 40CPUs 1GPU Over 60x speedup in neural
Time (minutes) to solve a machine learning workload network training since 2013

GFLOPS

o

o

o

Limitations of Existing RTL Simulators

« Existing RTL simulators focus on “structure-level” parallelism
© Partition the design into several RTL processes
© Explore parallelism across independent partitions
© Counts on compiler to perform data/memory layout optimization
® Speed-up is limited by the circuit structure itself

* Event-driven simulators
© Skip evaluation of zero-activity blocks

[

® Count on sophisticated control flow 1?

@ Hard to scale to many threads g

©

Verilator: https://www.veripool.org/verilato (%

CXXRTL: https://github.com/YosysHQ/yosys
ESSENT: https://github.com/ucsc-vama/essent

parallelism

Stimuli-level parallelism
(data parallelism)

https://www.veripool.org/verilato
https://github.com/YosysHQ/yosys
https://github.com/ucsc-vama/essent

Heterogeneous RTL Simulation Challenges

» Lack of an open infrastructure to break language barrier
« We cannot rewrite RTL simulation code to GPU (e.g., Nvidia CUDA)
* We need a source-to-source transpiler to automatically go from RTL to CUDA

* Lack of a GPU-aware partitioning algorithm
* We cannot reuse CPU-based partitioner to GPU due to distinct perf models
* We cannot use static partitioners that count on hard-coded CPU instructions
* We need a new partitioning algorithm that understands how GPU runs

 Lack of an efficient CPU-GPU task scheduling algorithm
 We cannot stand too much data movement cost between CPU and GPU

* We need an efficient scheduler to overlap CPU and GPU tasks or, in other
words, hide data movement and synchronization overheads

GPU-accelerated RTL Simulator: RTLflow

RTL sources (.v)

l Transpile l
Design dut; Kernel code transpilation Task graph code transpilation
Simulator sim(dut); p N - ———
size t ¢ = 0; RTL abstract syntax GPU-aware partitioning
while (! sim.stop and ¢ <= NUM_CYCLES) { . tree annotation) | (MCMC sampling)
dut.set_inputs(c); CPU-intensive ¥ ¥
dut.set _clock (0); () ()
sim. evaluate (); GPU-intensive Incremen‘ﬁﬂ GPU CUDA graph
dut.set_clock (1); __memory allocation N J
sim. evaluate (); g v : N P v N
) c-er b GPU memory index Pipeline scheduling
X mapping) L)
A typical transpiled C++ code | Compile (nvee)
example for a targeted RTL v

simulation workload [GPU-accelerated multi-stimulus RTL simulator J

Kernel Code Transpilation

1. Annotate an RTL abstract syntax tree (AST) with textual info
 Flatten the hierarchies (i.e., module) to have a single view point of the design
« Understand the data layout, numbers of variables, simulation instructions

2. Transpile the annotated RTL AST into C++ and CUDA

« Optimize data layout and memory coalescing for efficient GPU computing

-[vi[v2[2]]]
o>) ()

offset 3 RTLflow

[VARREF] [CONST] - [(Var8 + N * 3 + tid)[var8[N * 72 + tid + 2]]]
v2 2

offset 72

Kernel Code Transpilation (cont’d)

3. Incremental GPU memory allocation

« Separate data types of different widths into different areas
 Allow thread to access data in a coalesced fashion

4. GPU memory index mapping

* Traverse the AST with computed memory offsets to emit efficient kernel code

Each variable duplicates N times for N stimulus offset N stimulus offset N stimulus
[1 [|
Thread 1 Thread 2 - - - T —m | [
[A 1 [| m= 6-b1t Varlable # variables 1 [cl.in][cl.in] """" [cl.in]
sum = 14-bit variable whose width | m 17[cl.sum][cl.sum][cl.sum |
- [in][in] S 2 Lezin) e
wintg ¢t | — JU_— J - # 3 var§ 1§ c2.sum f. varl6
(uint8) .
arra - S
Y [suml] [sum?2] [sum1] [sum?2] (uintl6_t)
(J [# variables D
Y SV T B N IR s
Thréad 1 Thread 2 whose width
= 17~32 bits T2
(uint32,)

11

Kernel Code Transpilation Example

void ml::cl1_func () {

cl.in = 10hl + c1.sum;

}

void r.nl ::_CZ—funC O A . Transpiled CUDA kernel code with optimized data
c2.in = 10hl + c¢2.sum;

) layout for coalesced memory access

// RTL simulation code with N stimulus

__device__ void ml::cl1_func() {
tid=blockDim.x*blockIdx .x+threadldx .x;
var8 [N+1+ tid |= // offset of cl.in is 1
10h1+var16 [N«17+tid]; // offset of c¢1.sum is 17
}
__device__ void ml::c2_func() {
tid=blockDim.x*blockIdx .x+threadldx .x;
var8 [N+2+ tid |= // offset of c2.in is 2

10hl1+var16 [N+18+tid]; // offset of c2.sum is 18

Task Graph Code Transpilation

* Generate fast task-level execution code with three strategies

1.

CUDA Graph execution
to reduce kernel call
overheads

GPU-aware partitioning
to find a GPU-efficient
task graph

Pipeline scheduling to
enable efficient CPU-
GPU task overlap

[] CUDA call overhead |l Kernel execution (O Event S1,S, Stream

Cyf:le 1 Cyf:le 2

[[

el W 0 0 m I

'
I
I

_sEEE O ENEE O

5 |
(a) Stream-based execution : :
Cycle 1 Cycle 2 | |
. A
{ | \
CPU reduced
D D stream overhead

CUDA graph

_, N O R O

(b) CUDA Graph-based execution

B
o
C

Task Graph Optimization

* Markov Chain Monte Carlo (MCMC)-based graph optimization

* Propose a graph partition based on Verilator’s partitioning algorithm*

« Estimate the partition quality (runtime)
» Accept the proposal with a probability
« Advantages of MCMC

° Run On a rea/ Condition ./ ... \\
« Learn env parameters |{ Estimator Estimated cost Optimizer |
« CUDA runtime | ‘ |

- Machine properties : Compile & Run MCMC & Transpile :

* Scheduling behaviors . |

. ! Transpiled codeﬁ |

o \\ ... — /.

*Vivek Sarkar, “Partitioning and Scheduling Parallel ‘

Programs for Multiprocessor,” MIT Press, 1989 Best weights

14

Task Graph Generation (cont’d)

Algorithm 1: GPU-aware partitioning algorithm

10
11

12

13

14

Input: dut: a design under test

Input: MAX_ITER: maximum #iterations

Input: MAX_UNIMPROVED: maximum #unimproved
iterations

CUr_cost ¢« oo

iter,cnt «— 0

Optimizer opt(dut)

Estimator est(dut)

opt.initialize_weights()

while cnt < MAX_UNIMPROVED and iter++ < MAX ITER

I opt.random_increase() i

s | oelse .
16 i| rand < uniform_distribution(0, 1) i
17 i if accept_rate(cost, cur_cost) > rand then i
18 i opt.update_weights() i
19 i cur_cost « cost i
20 '| end i
| emter |
22 end

23 end

i graph < opt. propose() !

i if cur cost > cost then

cnt <0

cur_cost <« cost '

teT

Pipeline-based Task Scheduling

* Enable efficient computation overlaps between CPU and GPU

 Large simulation workload running in sequential results in long GPU idle time

Design dut; 200
Simulator sim(dut);

size t ¢ = 0;

while (! sim.stop and ¢ <= NUM_CYCLES) { 150

dut.

dut

dut.

sim

.set_clock (0);
sim .

.evaluate ();
c =c+ 1;

set_inputs(c); CPU-intensive

evaluate (); GPU-intensive
set_clock (1);

Runtime (s)
o
o

Transpiled C++ code for
a targeted RTL simulation

workload

Low GPU utilization due to

1024

75% long sequential while-loop
53%
4096 16384
stimulus

set inputs (CPU)

mm evaluate design (GPU)

80%
60%
40%
20%
0%

16

Pipeline-based Task Scheduling (cont’d)

 Partition stimulus batches into groups and pipeline them

CPU set inputs evaluate set evaluate
| GPU | set clock design clock design

.o each stage simulates one cycle_ _ - -

~ -

— H » stage 2

batch stimulus

A
v

inter-stimulus parallelism

17

Experimental Results

* Implemented RTLflow with C++17 and CUDA 11.6
e Compiled using GCC-8 with optimization —O2
» Leveraged Taskflow (hitps://taskflow.github.io/) for pipeline programming
« Evaluate RTLflow’s performance on three industrial designs
 NVDLA (Nvidia’s open-source accelerator design: hitp://nvdla.org/)
« Spinal (riscv CPU project: htips://spinalhdl.github.io/)
* riscv-mini (riscv CPU project: https://github.com/ucb-bar/riscv-mini)

 Compared with two baselines, Verilator and ESSENT, on

* An Ubuntu server with 40 Intel Xeon Gold 6138 CPU cores
* A CentOS desktop with 8 Intel i7-11700 CPU cores and an RTX A6000 GPU

https://taskflow.github.io/
http://nvdla.org/
https://spinalhdl.github.io/
https://github.com/ucb-bar/riscv-mini

Transpilation Results

Table 1: Statistics of the benchmarks and results of transpiled code for Verilator and RTLflow. The results present lines of code
(LOC), average cyclomatic complexity per function (CCgyy), total number of tokens (#Tokens), and transpilation time (T, qns).

Verilator RTLflow
Design Verilog LOC #ASTnodes | LOC CCgqyg #Tokens Tirans LOC CCgqyg #Tokens Tirans
riscv-mini 3306 25224 10640 21.7 66343 < 1s 10935 15.7 171454 < 1s
Spinal 6858 22888 8429 17.7 52646 < 1s 9654 21.7 152459 < 1s
-
NVDLA 511955 1476991 397536 16.4 3190699 30s i560412 4.8 10424172 33s i

LOC: lines of transpiled code

Tiran: transpilation time

#Tokens: total number of tokens

CC,,4: average cyclomatic complexity per function

Significantly improved
designers’ productivity!

19

Overall Performance Comparison

#cycles
10K | 100K | 500K
Design #stimulus Verilator RTLflow Speed-up Verilator = RTLflow Speed-up Verilator = RTLflow Speed-up

256 1s 1s 1X 14s 10s 1.4X 1m3s 48s 1.3X

1024 6s 1s 6X 52s 10s 5.2X 4m?2s 50s 4.8X

Spinal 4096 23s 2s 11.5X 3m25s 14s 14.6X 15m50s 1m12s 13.2X
16384 1m30s 4s 22.5X 13m39s 21s 39.0x 1h3m50s 1m37s 39.5%
65536 4m32s 16s 17.0X 52m18s 1m12s 43.6X 4h10m40s 5m22s 46.7X

256 1m2s 1m10s 0.89% 3m438s 8m46s 0.43X 15m16s 41m37s 0.37X

1024 3m>58s 1m29s 2.7X 14m39s 10m56s 1.3X 1h31m31s 53mls 1.7X

NVDLA 4096 21m50s 1m46s 12.4X 57mb52s 13m11s 4.4X 4h1m17s 1h2m13s 3.9%
16384 1h22m47s 2m44s 30.3x 6h37m50s 18m18s 21.7X 22h16m38s 1h24m5s 15.9X
65536 5h31m14s 8m3s 40.7X 26h31m52s 49m18s 32.3X 89h16m22s 3h45m10s 23.8X

Table 2: Comparison of elapsed simulation times between Verilator (with 80 CPU threads) and RTLflow (with one A6000 GPU)
on Spinal and NVDLA for completing 256, 1024, 4096, 16384, and 65536 stimulus at 10K, 100K, and 500K clock cycles. All signal
outputs match the golden reference generated by Verilator.

20

Overall Performance Comparison (cont’d)

« Simulation time for NVDLA with 16384 batches and 10K cycles

1cru N - 1day
4crU IS ~0.5day 2x speed-up
16 CPU N - 5h 5X speed-up

40 CPU -2h45m 8.7X speed-up
80 CPU Il 1h22m47s 17.4x speed-up
1 A6000 GPU 2m45s 523x speed-up (RTLflow)

0 20000 40000 60000 80000 100000
Runtime (s)

Absolute Efficiency

* Beyond 1024 stimulus batches RTL is always faster

riscv-mini (10K cycles)
10* |
—e— RTLflow

—m— Verilator
ESSENT

[
O
N

Runtime (s)

GPU throughput performance

T_F./-ﬂr@' advantage begins in 1024 batches

1072 | 1 ‘
21 24 27 210 213 216 219

stimulus

22

Performance of GPU Task Graphs

4096 stimulus 16384 stimulus
#cycles | RTLflow™9 RTLflow RTLflow ™9 RTLflow
10K 1103s 106.8s(13.3%) | 170.1s 163.5s (14%)
50K 428.9s 405.4s(15.8%) | 611.9s 587.3s (14.2%)
100K 813.1s 791.0s (12.8%) | 11452s 1098.2s (14.3%)

Table 3: Runtime comparison in terms of improvement (T)
between RTLflow with and without GPU-aware partition-
ing algorithm (RTLflow™9) for NVDLA with 4096 and 16384
stimulus at 10K, 50K, 100K cycles.

Spinal NVDLA
#cycles | stream CUDA Graph | stream CUDA Graph

10K 11.5s 2.3s (5X) 279.8s 106.5s (2.6X)
100K | 108.0s 14.2s (7.6X) | 2046.9s 791.2s (2.6X)
500K | 532.9s 72.3s(7.4x) | 9718.0s 3733.0s (2.6X)

Table 4: Performance advantage of CUDA Graph execu-
tion in multi-stimulus simulation workloads, measured on

Spinal and NVDLA with 4096 stimulus under different num-
bers of cycles.

(b) GPU-aware task graph partition

Performance of Pipeline Scheduling

Spinal NVDLA
#stimulus | RTLflow? RTLflow RTLflow? RTLflow
4096 14.7s 12.4s (T19%) 801.2s 791.2s (Tl%)
16384 27.4s 21.4s (TZS%) 1399.2s 1098.0s (T27%)
65536 113.8s 72.5s (T57%) 5281.0s 2957.8s (T79%)

Table 5: Runtime comparison in terms of improvement ()
between RTLflow with and without pipeline scheduling
(RTLflow?) for Spinal and NVDLA with 100K cycles at dif-
ferent numbers of stimulus.

Spinal (10K cycles) NVDLA (10K cycles)

wor- o e 100 4 PS —e

75

75

50

GPU utilization rate (%)
GPU utilization rate (%)

—e— RTLflow
—6— RTLflow™?

—e— RTLflow
—o—RTLflow™?

212 213 214 215 216 212 213 214 215 216

#stimulus #stimulus

Ims |
! >
h = 1 " L
cpu * L L L L | i L
L I.J h L] l " "
L I R n] - Il ll

GPUILA A S A D . s . =
(a) without pipeline scheduling

. mm) L & |
L lulﬁ-l. '.I. a4 Jll. u
JiL N | d LA S

GPU S L, A,
(b) with pipeline scheduling

Pipeline enable nearly full GPU
utilization all the time

24

Conclusion

* Understood importance of faster RTL simulation with GPU
* Discussed limitations of existing RTL simulators
* ldentified challenges of GPU-accelerated RTL simulation

* Introduced RTLflow “source-to-source RTL to CUDA transpiler”
« Transpiled kernel code with optimized memory/data layout on GPU
* Transpiled task graph code with optimized execution efficiency

* Presented experimental results

« Showed significantly improved programming productivity
« Showed significantly improved runtime performance via data parallelism
« Showed the efficiency and effectiveness of the proposed algorithms

* Future work plans to apply RTLflow to accelerate fuzzing

Acknowledgement

R &)

D-L Lin Dr. Mark Ren Dr. B Khailany Dr. Y Zhang

™

< NVIDIA

-

Use the right tool for the ring

RTLflow: https://github.com/dian-lun-lin/RTLflow

Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, and Tsung-Wei Huang,
“From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with

Batch Stimulus,” ACM International Conference on Parallel Processing
(ICPP), Bordeaux, France, 2022

https://github.com/dian-lun-lin/RTLflow

