
1

GPU-Accelerated Static Timing
Analysis and Beyond

Dr. Tsung-Wei Huang
Department of ECE
University of Utah, UT

Dr. Yibo Lin
Department of CS
Peking University, Beijing, China

2

Static Timing Analysis

q Static timing analysis (STA)
q Key step in the VLSI design
q Verify the circuit timing

q Analyze worst-case timing
q Minimum timing values
q Maximum timing values

q Challenges
q Compute giant graphs
q Analyze millions of paths
q Balance the loads
q … What paths violate the timing

constraint?

3

Timing Checks (Required Arrival Time)

q Modern circuits are sequential
q Drive data signal via clocks
q Capture data via flip-flops (FF)s

q Timing constraints
q Min required arrival time

• After clock: hold

q Max required arrival time
• Before clock: setup

Required arrival time interval

OK – no violation

Hold
violation

Setup
violation

4

The “Traffic Light” Analogy

Can I pass the block before the next
red light with 40 mph?

5

Building a Good Traffic System is Hard

q Trillions of sections and traffic lights to analyze …

6

Same, STA is Computationally Challenging

q STA graphs is extremely large and irregular
q Millions to billions of nodes and edges
q Propagate timing information along giant graphs

ISPD circuit design (10M gates)

STA graphs are extremely large and irregular

STA graphs A datapath

Complete analysis can take 8 hours and 800 GB RAM

7

Our STA Solution: OpenTimer

q CPU-parallel timing analysis engine
q Two major versions: v1 (2015) and v2 (2020)
q https://github.com/OpenTimer/OpenTimer

OpenTimer Infrastructure (pluggable modules)

Builder
(lineage)

Action
(update timing)

Accessor
(inspection)

Incremental
timing

OpenTimer C++ API

OpenTimer Shell CI, Regression,
Testing frameworks

Application-dependent binary
(TAU, ICCAD CAD contests)

Parser-SPEF Parser-Verilog Cpp-Taskflow Prompt …
T.-W. Huang et al., “OpenTimer: A High-performance Timing Analysis Tool,” IEEE/ACM ICCAD15
T.-W. Huang et al., “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD21

https://github.com/OpenTimer/OpenTimer

8

Key Idea: Parallel Timing Analysis

q Leverage many-core CPUs to speed up the runtime
q Dramatic speed-up using 8 cores
q Yet, scalability saturates at about 10—16 cores

0 500 1000 1500 2000 2500

80 CPUs
40 CPUs
16 CPUs

8 CPUs
1 CPUs

Runtime vs CPUs

Full Timing Analysis

4-8x faster

saturated

9

Observed Scalability Bottleneck

q CPU-only parallelism stagnates at about 10 cores
q “Amdahl’s Law” limits the strong scalability
q Circuit graph structures limits the maximum parallelism

• If the graph has only 10 parallel nodes at a level, we won’t
achieve 40x speed-up

q Irregular computations limits the memory bandwidth
• STA is graph-oriented, not cache-friendly

q Need to incorporate new parallel paradigms
q GPU opens opportunities for new scalability milestones

• e.g., 100x speed-up reported in logic simulation
• e.g., 20—80x speed-up reported in placement

10

CPU vs GPU

q CPU is built for compute-driven applications
q A few powerful threads to compute critical blocks fast

q GPU is built for throughput-driven applications
q Many lightweight threads to compute data at one time

11

CPU vs GPU (cont’d)

q CPU: graph algorithms, irregular data structures, etc.
q GPU: matrix operations, gaming, video, etc.

12

Leverage GPU to Accelerat STA

q We target two important STA steps:
q Graph-based analysis (GBA)
q Path-based analysis (PBA)

q We design CPU-GPU collaborative STA algorithms
q CPU-GPU task decomposition
q GPU kernels for timing update PBA analyzes critical paths one

by one on a updated graph

GBA computes the delay, slew, arrival
time at each node and edge

13

Z Guo, T-W Huang, and Y Lin, “GPU-Accelerated Static
Timing Analysis,” IEEE/ACM ICCAD, 2020

14

Runtime Breakdown of GBA

q GBA has three time-consuming steps
1. Prepare tasks through levelization à 42% runtime
2. Compute RC delay à 48% runtime
3. Propagate timing à 10% runtime

15

GPU-Accelerated GBA Algorithm Flow

16

Step #1: Levelization

q Levelize the circuit graph to a 2D levellist
q Nodes at the same level can run in parallel (red circle)
q Nodes at the same level can be modeled as a batch

q GPU-accelerated levelization using parallel frontiers

17

Step #1: Levelization (cont’d)

q Levelize the graph backward rather than forward

Benchmark #nodes Max In-degree Max Out-degree

netcard 3999174 8 260
vga_lcd 397809 12 329
wb_dma 13125 12 95

18

Step #2: RC Update

q The Elmore delay model
q Phase 1: 𝑙𝑜𝑎𝑑! = ∑" #$ %&#'()* ! 𝑐𝑎𝑝"

q For example, 𝑙𝑜𝑎𝑑! = 𝑐𝑎𝑝! + 𝑐𝑎𝑝" + 𝑐𝑎𝑝# + 𝑐𝑎𝑝$ = 𝑐𝑎𝑝! +
𝑙𝑜𝑎𝑑" + 𝑙𝑜𝑎𝑑$

q Phase 2: 𝑑𝑒𝑙𝑎𝑦! = ∑" #$ +,- ,)(. 𝑐𝑎𝑝"×𝑅/→123 !,"
q For example, 𝑑𝑒𝑙𝑎𝑦" = 𝑐𝑎𝑝!𝑅%→! + 𝑐𝑎𝑝$𝑅%→! + 𝑐𝑎𝑝"𝑅%→" +

𝑐𝑎𝑝#𝑅%→" = 𝑑𝑒𝑙𝑎𝑦! + 𝑅!→"𝑙𝑜𝑎𝑑"

Two-phase tree
traversal to

compute delay

19

Step #2: RC Update Upward Phase

q Store the parent index of each node on GPU
q Perform dynamic programming on trees

DFS_load(u):
 load[u] = cap[u]
 For child v of u:
 DFS_load(v)
 load[u] += load[v]

GPU_load:
 For u in [C, D, B, E, A]:

load[u] += cap[u]
 load[u.parent] += load[u]

20

Step #2: RC Update Downward Phase

q Store the parent index of each node on GPU
q Perform dynamic programming on trees

DFS_delay(u):
 For child v of u:
 temp := R[u,v]*load[v]
 delay[v] = delay[u] + temp
 DFS_delay(v)

GPU_delay:
 For u in [A, E, B, D, C]:
 temp := R[u.parent,u]*load[u]
 delay[u]=delay[u.parent] + temp

21

Step #2: RC Update Memory Coalesce

q Consecutive threads access consecutive memory
q RC update has four cases: {Rise, Fall} x {Early, Late}

22

Step #3: Cell Delay Update

q Perform linear inter- and extra-polation in batches
q x-axis and then y-axis

23

Experiment Setting

q Machine configuration
q Nvidia CUDA, RTX 2080
q 40 Intel Xeon Gold 6138 CPU cores

q Execution parameters for GPU kernels
q RC Tree Flattening

• 64 threads per block with one block for each net
q Levelization

• 128 threads per block
q RC delay computation

• 4 threads for each net (one for each Early/Late and Rise/Fall
condition) with a block of 64 nets

q Cell delay computation
• 4 threads for each arc, with a block of 32 arcs

24

Overall Performance

q Comparison with OpenTimer of 40 CPUs
q Run on large TAU15 Benchmarks (>20K gates)

25

Runtime Breakdown

q Circuit leon2 (21 M nodes)

26

Runtime vs CPUs

Our runtime of 1 CPU and 1 GPU is very close to OpenTimer of 40 CPUs

q Significant performance gap between CPU and GPU

Improvement
by GPU

27

Runtime vs Problem Sizes

q Problem size matters for GPU acceleration
q When to enable GPU acceleration?

q Net count > 20K
q Gate count > 50K
q Propagation candidate count > 15K

28

G guo, T-W Huang, Y Lin, and M Wong, “GPU-
Accelerated Path-based Timing Analysis,” IEEE/ACM

DAC, 2021

29

Path-based Analysis (PBA)

q Identify a set of critical paths from a updated graph
q Exponential number of paths in the circuit graph

q Re-analyze each path with path-specific update
q Re-propagate the slew and remove pessimism
q Advanced on-chip variation (AOCV)
q Common path pessimism removal (CPPR)
q … Paths marked failing at GBA may become passing

after PBA!

30

PBA is Extremely Time-Consuming

q Speed vs Accuracy (pessimism removal) tradeoff

Logarithmic Runtime

Pe
ss

im
ism

min max

max

�

Our PBA
1CPU-1GPU

Fundamental computational challenges of Path-
based Analysis must be solved

31

A Key Step: Generate Critical Paths

q OpenTimer adopts implicit path representation
q Each path is represented using O(1) space and time
q Each path is ranked through a prefix tree & a suffix tree

T.-W. Huang et al., “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD21

32

GPU-Accelerated PBA Algorithm Flow

Construct Shortest Path Forest

Look-ahead Level Allocation

Interlevel Expansion

Intralevel Compression

max level

Increment level

Y

N

Path Recovery

CPU Execution

GPU Execution

Level 1

Level 2

33

Step #1: Generate Suffix Tree on GPU

34

Step #2: Expand Prefix Tree on GPU

A D

E

G

H K

B E

G

H K

E

C F I

K

Startpoint EndpointDeviation Edge Suffix Edge

Path AEHK

Path BEHK

Path CFK

Level 0 Level 1

35

Step #2: Expand Prefix Tree on GPU (cont’d)

q Iteratively grow GPU memory at each expansion
q Each iteration uses GPU to decide path candidates
q Each iteration uses CPU to prune path candidates
q Each path candidate takes O(1) space “deviation edge”

100 paths

1000 paths

10000 paths

More levels = More paths
= Higher accuracy

36

Experiment Setting

q Machine configuration
q Nvidia CUDA, RTX 2080
q 40 Intel Xeon Gold 6138 CPU cores

q Measure the accuracy-runtime tradeoff
q “MDL” stands for maximum deviation level

q Execution parameters for GPU kernels
q Suffix tree kernel

• 1024 threads per block

q Prefix tree kernel
• 1024 threads per block

37

Overall Performance

q Compare with OpenTimer’s CPU-based PBA
q Report speed-up at different MDLs

q Achieve significant speed-up at large designs
q 611x speed-up in leon2 (1.3M gates)
q 221x speed-up in leon3mp (1.2M gates)

38

Path Accuracy vs MDL

q Achieve decent accuracy at 10—12 GPU iterations

Construct Shortest Path Forest

Look-ahead Level Allocation

Interlevel Expansion

Intralevel Compression

max level

Increment level

Y

N

Path Recovery

CPU Execution

GPU Execution

39

Path Accuracy vs MDL

q one GPU is even faster than OpenTimer with 40 CPUs
q 44x on leon2
q 25x on leon3mp
q 46x on netcard
q 35x on b19

40

Conclusion

q Introduced the runtime challenges of STA
q Knew graph-based analysis
q Knew path-based analysis

q Accelerated the graph-based analysis using GPU
q Achieved 4x speed-up on large designs

q Accelerated the path-based analysis using GPU
q Achieved 600x speed-up on large designs

q Future work
q Design GPU-accelerated incremental timing
q Design load-balanced PBA algorithms on GPU
q Leverage modern GPU graph parallelism

41

Place Contact and Acknowledge students with picture

