
Essential Building Blocks for Creating
an Open-source EDA Project

1

2019 IEEE/ACM Design Automation Conference (DAC)
June 4th | Las Vegas, NV

Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong
University of Illinois at Urbana-Champaign (UIUC), IL

2

The EDA/CAD Research Landscape

q My first DAC paper …
q New algorithm
q New better results
q Benchmarks & testcases
q Internal prototype code

2011 IEEE/ACM DAC, San Diego, CA

New problem formulation in …

New algorithm and
implementation to outperform

existing solutions by …

Experimental results showed …

3

A Critical Question

q How does the community benefit from reading this?
J Presented a new problem formulation
J Presented a new algorithm and implementation
J Presented large improvement over existing solutions
L Performance evaluation is “selective”
L Difficult to “reproduce” the result
L Wasted time on “re-implementing” the code

We want new algorithms & results:
- Open and accessible
- Fully reproducible
- Easy to integrate to my packages
- Ready to use/alter by other scientists

4

Why Are We Sluggishly Changing this?

q From the academic perspective …
q effort (prototype code) << effort (production code)
q Does not reward software/system development
q Promotion is largely based on scientific papers
q Slow acceptance of the scientific software engineer

q From the industrial perspective … *
q cost (software error) << cost (hardware error)
q Wants to keep algorithms/IPs confidential
q Tools are highly customer-driven, lacking API standards
q The monopoly locks people to proprietary tools

* Conversation with our industrial partners in EDA/CAD companies

Extremely inefficient and unsatisfying!

5

The Most Essential Building Block: Mindset

q Let’s work together to change the system
q Open source to enable quick sharing of new ideas

q Publication systems should credit software dev
q Innovation should include system implementation

• API, software architecture, documentation, design strategies

q Artifact reproducibility evaluation using ACM badges

ACM artifact review and badging
https://www.acm.org/publications/polic

ies/artifact-review-badging

Let’s go even further
- 57th DAC will include 30% tool papers
- Code review as a main judge
- TPC will include code reviewers
- Software patches are contributions
- 1st ACM/IEEE SysCAD conference

https://www.acm.org/publications/policies/artifact-review-badging

6

Open-Source EDA Projects Activities

1 1 1 2 2 3 4 4 4 4 5 6 7
10 11 13

16
20

25

52

66

0

10

20

30

40

50

60

70
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19

New release Total

IDEA/POSH
program launched

1st release in 2015

AlexNet

7

What do these Projects Do?

Digital
53%

Analog
19%

FPGA
6%

Infrastructure
14%

IP/Benchmarks
8%

Digital Analog FPGA Infrastructure IP/Benchmarks

Most projects are from academia …

8

A Healthy Open-source Development Cycle

Source repo (Master)

Code branch

Merge to master

Code review

Continuous Integration (CI)

Provide feedback
(community & domain-specific performers)

Developers

Push to dev

Users

clone

q Understand your users and what you are doing
q Things to know in creating a repository
q Prepare an informative README and documentation
q Set up a contribution guideline
q Iterate the feedback loop

9

Understand What Your Users Need

q Roughly speaking
q Developers take your project to do “derived” work

• For example, a parallel programming library

q End-users take your project to do “standalone” work
• For example, a C++ debugger or a performance profiler

Open-source owners can be both developers and end-users, but
it’s important to understand the target users of your projects

Talk technically;
Care API and reference;

Write code and software;

Talk generally;
Care doc and usability;
Use software and tools;

Developers are normally
respectful

End-users are often
friendly …

10

Code of Conduct

q It is a free world, especially in open source
q You cannot force others to use your tools
q No ones owe you to use your tools

q Put respect to the highest standards
q Nobody is ever going to be the top coder in the world
q Open source means open collaboration

• Minimize risk, shared effort, quick prototyping

q Respect users’ need and their intent
q Respect opportunities and opponents

Never ignore the importance of respect even
though the project is free

”Don’t be evil”

11

Things to Know in Creating a Repository

q A repository helps store and manage code with
q Git version control (branch capabilities)
q Cloud-based service (GitHub, Bitbucket, GitLab)
q Issue tracker, open forum, contribution environment

q Name your project wisely
q Precise, specific, no jargon
q Keep the name to be 7-10 words

q Tag your project to the right search categories
q Language, functionality, algorithm, library

q Attach a proper license to your project

12

Example: Cpp-Taskflow’s Front Page

Project name
(6 specific words)

Manage the topic tags

Default branch (master)

Project activities
(keep your project active by at

least one commit in 3 days)

License

Similar ideas apply to other platforms
(GitLab, Bitbucket) as well.

Cpp-Taskflow: https://github.com/cpp-taskflow/cpp-taskflow

https://choosealicense.com/licenses/

13

Comparison of Popular Licenses
Apache License 2 MIT License

Permissions

GNU GPLv3

Conditions

Limitations

Commercial use
Distribution
Modification
Patent use
Private use

Liability
Trademark use
Warranty

Disclose source
License & copyright
Same license
State changes

Terms and Use

In a nutshell, the main difference between Licenses is on the
restriction of “derived” work and its “redistribution”.

Open-source License: https://choosealicense.com/licenses/

https://choosealicense.com/licenses/

14

Prepare for an Effective README

q The most important component in your project

Points to take care:
- What/Why/Where
- Code example
- Installation guide
- System environment
- Doc & API reference
- Reward contributors

Keep in mind thousands of projects are
being created everyday; the majority of
people glance and leave.

OpenTimer: https://github.com/OpenTimer/OpenTimer 15

https://choosealicense.com/licenses/

16

Document your Project

q As important as other development facets
q Reminds you of what you code
q Reduce users’ time spent on understanding your code

q But, what is the problem?
q The main reason code goes undocumented is time
q Code abstraction happens before documentation

q A suggested solution
q Craft code and documentation together (e.g., Doxygen)

“If you spent 6 hours on writing code, spend at least another 6
hours on documenting your code,” C++ Conference Keynote

“An incredible 93% of people reported being frustrated with
incomplete or confusing documentation,” Robert Ramey

17

Resources to Document Your Code

q Good code does need good documentation
q Never forego the need of doc

q Some popular examples
q MDN
q Dijango
q Stripe
q Doxygen

q My personal taste
q C++ reference
q Boost documentation

“If you write good documentation, most likely you will write a
good scientific paper,” my manager at Citadel

18

Grow your Project Community

q Attract people to contribute
q Turn end-users to developers
q Getting pull requests is not easy
q Proof of your project creditability

q A good contribution environment
q Template, code review, refactor
q Continuous integration

• Ensure each change doesn’t break Continuous integration tools

19

target (g++, clang, etc.)

20

Iterate the Feedback Loop

q Use feedback to improve the project
q Communicate with users through an open forum
q Manage your forum effectively

Give each question
a meaningful tag

Define an issue template to follow

21

q f

Ginkgo: https://github.com/ginkgo-project/ginkgo
Pull request #159 to add new features

A good software patch has
- Motivation
- Technical explanation
- Performance evaluation
- Rigorous code review
- Code refactoring
- Multiple feedback loops

Similar to the scientific
journal contributions

https://github.com/ginkgo-project/ginkgo

22

Interlude …

Google review

TripAdvisor

q I was finding a place to eat …
Yelp rating

“Too many places… Where do we go?”
“Let’s go to the one with the highest star in the rating app!”

23

Advertise Your Project

q Many users use your project because of stars
q Stars are the popularity and credibility of your project
q Stars are an indicator of the number of potential users

q If you have a tasty cake, make it look tasty
q Add logo and badges to your README

q Advertise the project multiple times for each release

linux.org.ur: https://www.linux.org.ru/news/development/15005663

No one knows you until
you let others know …

https://www.linux.org.ru/news/development/15005663

24

Cpp-Taskflow’s Star History

Cpp-Taskflow: https://github.com/cpp-taskflow/cpp-taskflow

Presented at CppCon

Presented at DARPA
Integration exercise

Tutorial at Cpp
Learning

Presented at IEEE IPDPS

First release

Advertising your project is important, but keep in mind it is your
project content that makes people use it and like it

Other social media

Showcase

https://choosealicense.com/licenses/

25

Conclusion: The Final Iron Circle

Attract users

Get users to trust itIncrease credibility

change your mindset
understand your users

documentation
contribution environment
iterate the feedback loop

advertise your project

We should work together to change the current crediting system
to reward software engineering & scientific software engineers

26

Thank You (and all our Users) J

T.-W. Huang C.-X. Lin G. Guo M. Wong

GitHub: https://github.com/tsung-wei-huang

Website: https://tsung-wei-huang.github.io/

Twitter: https://twitter.com/twh760812

A special thank goes to the
DARPA IDEA program and

their team for the support!

https://github.com/tsung-wei-huang
https://tsung-wei-huang.github.io/
https://twitter.com/twh760812

27

Some Interesting Examples

“If your job is to crash my tool, congratulations.“ developer A

“There are many other people using my project. It makes no
difference to me to not include you.” developer B

q End-users can be tricky …

q Developers might be trickier …

“I can’t understand why it is so difficult to compiler and install
your tool on my platform. If you can’t make it easy, how dare
you open your project to waste people’s time?” user A

“I am going to use tool xyz because yours really sucks.” user B

Never forget to give your
contributors credits!

28

