
Taskflow: A General-purpose Parallel and
Heterogeneous Task Computing System

Dr. Tsung-Wei (TW) Huang
Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT

2

Why Parallel Computing?
• It’s critical to advance your application performance

0 100 200 300 400 500 600 700

1 GPU

40 CPUs

1 CPU

Time to Solve Large-scale Scientific Applications

Circuit Timing Analysis Machine Learning Workload

10x faster

100x faster

Your Computer is Already Parallel
• Intel i7-377K CPU (four cores to run your jobs in parallel)

3

4

Parallel programming is crucial
but very challenging …

Concurrency
control

Dependency
constraints

Task and data race

Scheduling
efficiencies

Debug
Dynamic load

balancing

How can we make it easier for C++
developers to quickly write parallel and

heterogeneous programs with high
performance scalability and simultaneous

high productivity?

Taskflow offers a solution

5

#include <taskflow/taskflow.hpp> // Taskflow is header-only
int main(){

tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C); // D runs after B and C
executor.run(taskflow).wait(); // submit the taskflow to the executor
return 0;

}
6

“Hello World” in Taskflow

7

Drop-in Integration
• Taskflow is header-only – no wrangle with installation

8

Built-in Profiler/Visualizer
• Taskflow is header-only – no wrangle with installation

9

Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications

10

Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications

11

Motivation: Parallelizing VLSI CAD Tools

[0]collect_independent_sets_end

[0]construct_cost_matrices_begin [1]random_shuffle_begin

[0]construct_cost_matrices_kernel_S [1]maximum_independent_set_parallel_kernel1_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]construct_cost_matrices_kernel_T

[0]solve_assignment_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]solve_assignment_kernel_T

[0]solve_assignment_end

[0]apply_solution_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]apply_solution_kernel_T

[0]apply_solution_end

[0]compute_hpwl_kernel [1]collect_independent_sets_begin

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel1_T

[1]maximum_independent_set_parallel_kernel2_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel2_T

[1]maximum_independent_set_parallel_update

[1]maximum_independent_set_parallel_cond

0

[1]maximum_independent_set_parallel_end

1

Partial Tasks of Iteration 0
Partial Tasks of Iteration 1

Circuit design

Partition

Floorplan

Placement

CTS

Routing

Function, logic

Physical design

Signoff

Module(a, b)
Input a;
Output b;

Manufacturing

System Spec.

Architecture

Timing

Final chip

Testing

DRC, LVS

Graph

Graph

Analytical

Tree

Graph

Computational problems of
10B+ transistors

1

2

4 5

3

1

2

3

1’

2’

3’

4 4’

5 5’

inp1 u1:A

u1:Y

clock f1:CLK

f1:D

out

u4:A

u4:B u4:Y

inp2 u1:B

u2:A u2:Yf1:Q u3:A u3:Y

Optimization

NP-hard problems

Machine learning in the loop

Modeling and simulation

Dynamic
controls

Irregular graphs

Data science &
regression

• Billions of tasks with diverse computational patterns

How can we write efficient
C++ parallel programs for

this monster computational
task graph with millions of
CPU-GPU dependent tasks

along with algorithmic
control flow”

12

We Invested a lot in Existing Tools …

13

Two Big Problems of Existing Tools
• Our problems define complex task dependencies

• Example: analysis algorithms compute the circuit network of million of
node and dependencies

• Problem: existing tools are often good at loop parallelism but weak in
expressing heterogeneous task graphs at this large scale

• Our problems define complex control flow
• Example: optimization algorithms make essential use of dynamic
control flow to implement various patterns

• Combinatorial optimization, analytical methods
• Problem: existing tools are directed acyclic graph (DAG)-based and do

not anticipate cycles or conditional dependencies, lacking end-to-end
parallelism

14

Example: An Iterative Placement Optimizer

init optimizer
(AX = B)

output cell
locationsconverged?

N

Y

How can we easily describe this workload
of dynamic control flow using existing

tools to achieve end-to-end parallelism?

Millions of such tasks? End-to-end parallelism?

• 4 computational tasks with dynamic control flow
#1: starts with init task
#2: enters the optimizer task (e.g., GPU solving linear system)
#3: checks if the optimization converged

• No: loops back to optimizer
• Yes: proceeds to stop

#4: outputs the result

15

Need a New C++ Parallel Programming System

While designing parallel algorithms is non-trivial …

what makes parallel programming an enormous challenge is the infrastructure work of
“how to efficiently express dependent tasks along with an algorithmic control flow and

schedule them across heterogeneous computing resources”

16

Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications

#include <taskflow/taskflow.hpp> // Taskflow is header-only
int main(){

tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C); // D runs after B and C
executor.run(taskflow).wait();
return 0;

}
18

#1: Static Task (“Hello World” Revisited)

This talk focuses on three task types:
1. static task
2. cudaFlow task
3. condition task

19

“Hello World” in OpenMP
#include <omp.h> // OpenMP is a lang ext to describe parallelism using compiler directives
int main(){

#omp parallel num_threads(std::thread::hardware_concurrency())
{

int A_B, A_C, B_D, C_D;
#pragma omp task depend(out: A_B, A_C)
{

s t d : : c o u t << ”TaskA\n” ;
}
#pragma omp task depend(in: A_B; out: B_D)
{

s t d : : c o u t << ” TaskB\n” ;
}
#pragma omp task depend(in: A_C; out: C_D)
{

s t d : : c o u t << ” TaskC\n” ;
}
#pragma omp task depend(in: B_D, C_D)
{

s t d : : c o u t << ”TaskD\n” ;
}

}
return 0;

}

Task dependency clauses

Task dependency clauses

Task dependency clauses

Task dependency clauses

OpenMP task clauses are static and explicit;
Programmers are responsible for a proper order of
writing tasks consistent with sequential execution

20

“Hello World” in TBB
#include <tbb.h> // Intel’s TBB is a general-purpose parallel programming library in C++
int main(){

using namespace tbb;
using namespace tbb:flow;
int n = task_scheduler init::default_num_threads () ;
task scheduler_init init(n);
graph g;
continue_node<continue_msg> A(g, [] (const continue msg &) {

s t d : : c o u t << “TaskA” ;
}) ;
continue_node<continue_msg> B(g, [] (const continue msg &) {

s t d : : c o u t << “TaskB” ;
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) {

s t d : : c o u t << “TaskC” ;
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) {

s t d : : c o u t << “TaskD” ;
}) ;
make_edge(A, B);
make_edge(A, C);
make_edge(B, D);
make_edge(C, D);
A.try_put(continue_msg());
g.wait_for_all();

}

TBB has excellent performance in generic parallel
computing. Its drawback is mostly in the ease-of-use

standpoint (simplicity, expressivity, and programmability).

Use TBB’s FlowGraph
for task parallelism

Declare a task as a
continue_node

TBB FlowGraph: https://software.intel.com/content/www/us/en/develop/home.html

https://software.intel.com/content/www/us/en/develop/home.html

21

#2: cudaFlow Task

cudaFlow: saxpyallocate_x h2d_x

allocate_y h2d_y
saxpy kernel

d2h_x

d2h_y

• Single Precision AX + Y (“SAXPY”)
• Get x and y vectors on CPU (allocate_x, allocate_y)
• Copy x and y to GPU (h2d_x, h2d_y)
• Run saxpy kernel on x and y (saxpy kernel)
• Copy x and y back to CPU (d2h_x, d2h_y)

22

#2: cudaFlow Task (cont’d)
const unsigned N = 1<<20;
std::vector<float> hx(N, 1.0f), hy(N, 2.0f);
float *dx{nullptr}, *dy{nullptr};
auto allocate_x = taskflow.emplace([&](){ cudaMalloc(&dx, 4*N);});
auto allocate_y = taskflow.emplace([&](){ cudaMalloc(&dy, 4*N);});

auto cudaflow = taskflow.emplace([&](tf::cudaFlow& cf) {
auto h2d_x = cf.copy(dx, hx.data(), N); // CPU-GPU data transfer
auto h2d_y = cf.copy(dy, hy.data(), N);
auto d2h_x = cf.copy(hx.data(), dx, N); // GPU-CPU data transfer
auto d2h_y = cf.copy(hy.data(), dy, N);
auto kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);

});

cudaflow.succeed(allocate_x, allocate_y);
executor.run(taskflow).wait();

To Nvidia
cudaGraph

23

Three Key Motivations of cudaFlow
• Our closure enables stateful interface

• Users capture data in reference to marshal data exchange between
CPU and GPU tasks

• Our closure hides implementation details judiciously
• We use cudaGraph (since cuda 10) due to its excellent performance,

much faster than streams in large graphs
• Our closure extend to new accelerator types

• syclFlow, openclFlow, coralFlow, tpuFlow, fpgaFlow, etc.

We do not simplify kernel programming but
focus on CPU-GPU tasking that affects the
performance to a large extent! (same for
data abstraction)

24

#3: Condition Task (if-else)
auto init = taskflow.emplace([&](){ initialize_data_structure(); })

.name(”init");
auto optimizer = taskflow.emplace([&](){ matrix_solver(); })

.name(”optimizer");
auto converged = taskflow.emplace([&](){ return converged() ? 1 : 0 })

.name(”converged");
auto output = taskflow.emplace([&](){ std::cout << ”done!\n"; });

.name(”output");
init.precede(optimizer);
optimizer.precede(converged);
converged.precede(optimizer, output); // return 0 to the optimizer again

init optimizer outputconverged?
0

Condition task integrates control flow into a task graph to form end-to-end parallelism

1

#3: Condition Task (While/For Loop)
tf::Taskflow taskflow;
int i;
auto [init, cond, body, back, done] = taskflow.emplace(
[&](){ std::cout << “i=0”; i=0; },
[&](){ std::cout << "while i<5\n"; return i < 5 ? 0 : 1; },
[&](){ std::cout << "i++=" << i++ << '\n'; },
[&](){ std::cout << "back\n"; return 0; },
[&](){ std::cout << "done\n"; }

);
init.precede(cond);
cond.precede(body, done);
body.precede(back);
back.precede(cond);

26

#3: Condition Task (Non-deterministic Loops)
auto A = taskflow.emplace([&](){ });
auto B = taskflow.emplace([&](){ return rand()%2; });
auto C = taskflow.emplace([&](){ return rand()%2; });
auto D = taskflow.emplace([&](){ return rand()%2; });
auto E = taskflow.emplace([&](){ return rand()%2; });
auto F = taskflow.emplace([&](){ return rand()%2; });
auto G = taskflow.emplace([&](){});
A.precede(B).name("init");
B.precede(C, B).name("flip-coin-1");
C.precede(D, B).name("flip-coin-2");
D.precede(E, B).name("flip-coin-3");
E.precede(F, B).name("flip-coin-4");
F.precede(G, B).name("flip-coin-5");
G.name(“end”);

Each task flips a
binary coin to decide

the next path

You can describe non-deterministic, nested control flow!

#3: Condition Task (Switch)
auto [source, swcond, case1, case2, case3, target] = taskflow.emplace(
[](){ std::cout << "source\n"; },
[](){ std::cout << "switch\n"; return rand()%3; },
[](){ std::cout << "case 1\n"; return 0; },
[](){ std::cout << "case 2\n"; return 0; },
[](){ std::cout << "case 3\n"; return 0; },
[](){ std::cout << "target\n"; }

);
source.precede(swcond);
swcond.precede(case1, case2, case3);
target.succeed(case1, case2, case3);

28

Existing Frameworks on Control Flow?
• Expand a task graph across fixed-length iterations

• Graph size is linearly proportional to decision points
• Unknown iterations? Non-deterministic conditions?

• Complex dynamic tasks executing “if” on the fly
• Dynamic control-flow tasks?
• … (resort to client-side decision)

Existing frameworks on expressing conditional
tasking or dynamic control flow suffer from

exponential growth of code complexity

29

Everything is Unified in Taskflow

cudaFlow

Composition

Dynamic task

Control
flow

• Use “emplace” to create a task
• Use “precede” to add a task dependency
• No need to learn different sets of API
• You can create a really complex graph

• Subflow(ConditionTask(cudaFlow))
• ConditionTask(StaticTask(cudaFlow))
• Composition(Subflow(ConditionTask))
• Subflow(ConditionTask(cudaFlow))
• …

• Scheduler performs end-to-end optimization
• Runtime, energy efficiency, and throughput

30

Example: k-means Clustering

One cudaFlow for host-to-
device data transfers

One cudaFlow for finding the
k centroids

One condition task to
model iterations

One cudaFlow for
device-to-host data

transfers

k=3

31

Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications

32

Submit Taskflow to Executor

{
tf::Taskflow taskflow1, taskflow2, taskflow3;
tf::Executor executor;
// create tasks and dependencies
// …
auto future1 = executor.run(taskflow1);
auto future2 = executor.run_n(taskflow2, 1000);
auto future3 = executor.run_until(taskflow3, [i=0](){ return i++>5 });
executor.async([](){ std::cout << “async task\n"; });
executor.wait_for_all(); // wait for all the above tasks to finish

}

• Executor manages a set of threads to run taskflows
• All execution methods are non-blocking
• All execution methods are thread-safe

33

Executor Scheduling Algorithm
• Task-level scheduling

• Decides how tasks are enqueued under control flow
• Goal #1: ensures a feasible path to carry out control flow
• Goal #2: avoids task race under cyclic and conditional execution
• Goal #3: maximizes the capability of conditional tasking

• Worker-level scheduling
• Decides how tasks are executed by which workers

• Goal #1: adopts work stealing to dynamically balance load
• Goal #2: adapts workers to available task parallelism
• Goal #3: maximizes performance, energy, and throughput

34

Task-level Scheduling

Dequeue a task t
invoke(t)

Decrement strong
dependency of t ‘s
successors by one

Enqueue successors
of zero strong
dependencies

r = invoke(t)

enqueue rth successor

Condition task?

Queue empty?

N

Y

N
Wait for tasks

Y
init

optimizer

output

converged?

1

0

• “Strong dependency” versus “Weak dependency”
• Weak dependency: dependencies out of condition tasks
• Strong dependency: others else

weak dependency

strong dependency

35

Task-level Scheduling (cont’d)

It is users’
responsibility to

ensure a taskflow
is properly

conditioned, i.e.,
no task race under

our task-level
scheduling policy

• Condition task is powerful but prone to mistakes …

36

Worker-level Scheduling
• Taskflow adopts work stealing to gain dynamic load balancing
• What is work stealing? Why?

• I finish my jobs first, and then steal jobs from you
• So, we can improve performance and balance our loads

Shared CPU
task queue
(external threads)

GPUcore core core core GPUcore

push pop push pop push push

push push push

steal steal CPU tasks

CPU worker threads GPU worker threads

steal GPU
tasks

push pop

CPU task
queue

GPU task
queue

H2D

D2H

push push Shared GPU task
queue
(external threads)

graph

37

Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications

38

Application 1: VLSI Placement
• Optimize cell locations on a chip

A partial TDG of 4 cudaFlows, 1 conditioned cycle, and 12 static tasks

VLSI optimization
makes essential use of
dynamic control flow

39

Application 1: VLSI Placement (cont’d)
• Runtime, memory, power, and throughput

Performance improvement comes
from the end-to-end expression of
CPU-GPU dependent tasks using

condition tasks

40

Application 2: Machine Learning
• IEEE HPEC/MIT/Amazon Sparse DNN Challenge

• Compute a 1920-layer DNN each of 65536 neurons

A partial taskflow
graph of 4

cudaFlows, 6
static tasks, and 8
conditioned cycles
for this workload

Each cudaFlow
contains >1000 of

GPU tasks

Champions of HPEC 2020 Graph Challenge: https://graphchallenge.mit.edu/champions

https://graphchallenge.mit.edu/champions

• Comparison with TBB and StarPU

• Taskflow’s runtime is up to 2x faster
• Adaptive work stealing balances the worker count with task parallelism

• Taskflow’s memory is up to 1.6x less
• Conditional tasking allows efficient reuse of tasks

41

Application 2: Machine Learning (cont’d)

Summary of Experiments
• Parallel computing infrastructure matters

Different models give different implementations. The parallel
code/algorithm may run fast, yet the parallel computing

infrastructure to support that algorithm may dominate the entire
performance.

Taskflow enables end-to-end expression of CPU-GPU
dependent tasks along with algorithmic control flow

43

Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications

44

Paralle
lis

m is

neve
r s

tandalone

GAMER + Taskflow
• GAMER accelerates maze routing using GPU

• Primary innovation is GPU kernel – iterative parallel sweeping
• Potential collaboration topics for TCAD extension

• Leverage Taskflow to achieve end-to-end heterogeneous parallelism
• Condition tasks allow you to integrate control-flow decisions into dependencies

• Leverage cudaFlow to reduce the kernel call overheads
• Leverage multiple GPUs to handle a batch of nets

Init batch
net

cudaFlow
(sweeping)

output
results

Select
batch nets

Y

45

Prior Collaborative Results with Taskflow
• We collaborate with Peking U to accelerate STA with Taskflow

• GPU-accelerated GBA [ICCAD’20]
• GPU-accelerated PBA [DAC’21, ICCAD’21]
• GPU-accelerated CPPR [ICCAD’21]
• Taskflow system [TCAD’21, TPDS’21]
• …

46

STA Taskflow graphs

CPU-based STA
stagnates at 10 cores

R
un

tim
e

(s
)

1 2 4 8 16 32 40 1 2 3 4

5000

1000

10

1

CPUs # GPUs

GPU-based STA
achieves 500×

speed-up

Sp
ee

d-
up

500

400

100

Number of CPU cores in baseline

300

200

1 8 16 24 32 40

leon2 (1.6M gates)
543.00x

181.00x

69.70x
56.39x 50.65x 44.88x

Conclusion
• Taskflow is a lightweight parallel task programming system

• Simple, efficient, and transparent tasking models
• Efficient heterogeneous work-stealing executor
• Promising performance in large-scale ML and VLSI CAD

• Taskflow is not to replace anyone but to
• Complement the current state-of-the-art
• Leverage modern C++ to express task graph parallelism

• Taskflow is very open to collaboration
• We want to provide more higher-level algorithms
• We want to broaden real use cases
• We want to enhance the core functionalities (e.g., pipeline)

47

48

Thank You All Using Taskflow!

Use the right tool for the right job
Taskflow: https://taskflow.github.io

Dr. Tsung-Wei Huang
tsung-wei.huang@utah.edu

https://taskflow.github.io/
mailto:tsung-wei.huang@utah.edu

