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Why Parallel Computing?
• It’s critical to advance your application performance
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Your Computer is Already Parallel
• Intel i7-377K CPU (four cores to run your jobs in parallel)
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Parallel programming is crucial 
but very challenging …

Concurrency 
control

Dependency 
constraints

Task and data race

Scheduling 
efficiencies

Debug
Dynamic load 

balancing



How can we make it easier for C++ 
developers to quickly write parallel and 

heterogeneous programs with high 
performance scalability and simultaneous 

high productivity?

Taskflow offers a solution
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#include <taskflow/taskflow.hpp>  // Taskflow is header-only
int main(){

tf::Taskflow taskflow; 
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C);  // D runs after    B and C
executor.run(taskflow).wait(); // submit the taskflow to the executor
return 0;

}
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“Hello World” in Taskflow
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Drop-in Integration
• Taskflow is header-only – no wrangle with installation
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Built-in Profiler/Visualizer
• Taskflow is header-only – no wrangle with installation
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Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications
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Motivation: Parallelizing VLSI CAD Tools

[0]collect_independent_sets_end

[0]construct_cost_matrices_begin [1]random_shuffle_begin

[0]construct_cost_matrices_kernel_S [1]maximum_independent_set_parallel_kernel1_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]construct_cost_matrices_kernel_T

[0]solve_assignment_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]solve_assignment_kernel_T

[0]solve_assignment_end

[0]apply_solution_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]apply_solution_kernel_T

[0]apply_solution_end

[0]compute_hpwl_kernel [1]collect_independent_sets_begin

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel1_T

[1]maximum_independent_set_parallel_kernel2_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel2_T

[1]maximum_independent_set_parallel_update

[1]maximum_independent_set_parallel_cond

0

[1]maximum_independent_set_parallel_end

1

Partial Tasks of Iteration 0
Partial Tasks of Iteration 1

Circuit design

Partition

Floorplan

Placement

CTS

Routing

Function, logic

Physical design

Signoff

Module(a, b)
Input a;
Output b;

Manufacturing

System Spec.

Architecture

Timing

Final chip

Testing

DRC, LVS

Graph

Graph

Analytical

Tree 

Graph

Computational problems of 
10B+ transistors

1

2

4 5

3

1

2

3

1’

2’

3’

4 4’

5 5’

inp1 u1:A

u1:Y

clock f1:CLK

f1:D

out

u4:A

u4:B u4:Y

inp2 u1:B

u2:A u2:Yf1:Q u3:A u3:Y

Optimization

NP-hard problems

Machine learning in the loop

Modeling and simulation 

Dynamic 
controls
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• Billions of tasks with diverse computational patterns

How can we write efficient 
C++ parallel programs for 

this monster computational 
task graph with millions of 
CPU-GPU dependent tasks 

along with algorithmic 
control flow”
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We Invested a lot in Existing Tools …
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Two Big Problems of Existing Tools
• Our problems define complex task dependencies

• Example: analysis algorithms compute the circuit network of million of
node and dependencies

• Problem: existing tools are often good at loop parallelism but weak in
expressing heterogeneous task graphs at this large scale

• Our problems define complex control flow
• Example: optimization algorithms make essential use of dynamic
control flow to implement various patterns

• Combinatorial optimization, analytical methods
• Problem: existing tools are directed acyclic graph (DAG)-based and do

not anticipate cycles or conditional dependencies, lacking end-to-end
parallelism
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Example: An Iterative Placement Optimizer

init optimizer
(AX = B)

output cell 
locationsconverged?

N

Y

How can we easily describe this workload 
of dynamic control flow using existing 

tools to achieve end-to-end parallelism?

Millions of such tasks? End-to-end parallelism?

• 4 computational tasks with dynamic control flow
#1: starts with init task
#2: enters the optimizer task (e.g., GPU solving linear system)
#3: checks if the optimization converged

• No: loops back to optimizer
• Yes: proceeds to stop

#4: outputs the result
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Need a New C++ Parallel Programming System

While designing parallel algorithms is non-trivial …

what makes parallel programming an enormous challenge is the infrastructure work of 
“how to efficiently express dependent tasks along with an algorithmic control flow and 

schedule them across heterogeneous computing resources” 
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Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications





#include <taskflow/taskflow.hpp>  // Taskflow is header-only
int main(){

tf::Taskflow taskflow; 
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C);  // D runs after    B and C
executor.run(taskflow).wait();
return 0;

}
18

#1: Static Task (“Hello World” Revisited)

This talk focuses on three task types:
1. static task
2. cudaFlow task
3. condition task
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“Hello World” in OpenMP
#include <omp.h>  // OpenMP is a lang ext to describe parallelism using compiler directives
int main(){ 

#omp parallel num_threads(std::thread::hardware_concurrency())
{    

int A_B, A_C, B_D, C_D;
#pragma omp task depend(out: A_B, A_C) 
{  

s t d : : c o u t << ”TaskA\n” ;
}
#pragma omp task depend(in: A_B; out: B_D)  
{

s t d : : c o u t << ” TaskB\n” ;
} 
#pragma omp task depend(in: A_C; out: C_D)  
{

s t d : : c o u t << ” TaskC\n” ;
} 
#pragma omp task depend(in: B_D, C_D) 
{  

s t d : : c o u t << ”TaskD\n” ;
}

}
return 0;

}

Task dependency clauses

Task dependency clauses

Task dependency clauses

Task dependency clauses

OpenMP task clauses are static and explicit; 
Programmers are responsible for a proper order of 
writing tasks consistent with sequential execution
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“Hello World” in TBB
#include <tbb.h>  // Intel’s TBB is a general-purpose parallel programming library in C++
int main(){ 

using namespace tbb;
using namespace tbb:flow;
int n = task_scheduler init::default_num_threads () ; 
task scheduler_init init(n); 
graph g;
continue_node<continue_msg> A(g, [] (const continue msg &) { 

s t d : : c o u t << “TaskA” ; 
}) ;
continue_node<continue_msg> B(g, [] (const continue msg &) { 

s t d : : c o u t << “TaskB” ; 
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) { 

s t d : : c o u t << “TaskC” ; 
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) { 

s t d : : c o u t << “TaskD” ; 
}) ;
make_edge(A, B);
make_edge(A, C);
make_edge(B, D);
make_edge(C, D);
A.try_put(continue_msg());
g.wait_for_all();

}

TBB has excellent performance in generic parallel 
computing. Its drawback is mostly in the ease-of-use 

standpoint (simplicity, expressivity, and programmability).

Use TBB’s FlowGraph
for task parallelism 

Declare a task as a 
continue_node

TBB FlowGraph: https://software.intel.com/content/www/us/en/develop/home.html

https://software.intel.com/content/www/us/en/develop/home.html
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#2: cudaFlow Task

cudaFlow: saxpyallocate_x h2d_x

allocate_y h2d_y
saxpy kernel

d2h_x

d2h_y

• Single Precision AX + Y (“SAXPY”)
• Get x and y vectors on CPU (allocate_x, allocate_y)
• Copy x and y to GPU (h2d_x, h2d_y)
• Run saxpy kernel on x and y (saxpy kernel)
• Copy x and y back to CPU (d2h_x, d2h_y)
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#2: cudaFlow Task (cont’d)
const unsigned N = 1<<20; 
std::vector<float> hx(N, 1.0f), hy(N, 2.0f); 
float *dx{nullptr}, *dy{nullptr}; 
auto allocate_x = taskflow.emplace([&](){ cudaMalloc(&dx, 4*N);}); 
auto allocate_y = taskflow.emplace([&](){ cudaMalloc(&dy, 4*N);});

auto cudaflow = taskflow.emplace([&](tf::cudaFlow& cf) { 
auto h2d_x = cf.copy(dx, hx.data(), N);  // CPU-GPU data transfer
auto h2d_y = cf.copy(dy, hy.data(), N);  
auto d2h_x = cf.copy(hx.data(), dx, N);  // GPU-CPU data transfer
auto d2h_y = cf.copy(hy.data(), dy, N); 
auto kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);     
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y); 

}); 

cudaflow.succeed(allocate_x, allocate_y); 
executor.run(taskflow).wait();

To Nvidia 
cudaGraph
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Three Key Motivations of cudaFlow
• Our closure enables stateful interface

• Users capture data in reference to marshal data exchange between
CPU and GPU tasks

• Our closure hides implementation details judiciously
• We use cudaGraph (since cuda 10) due to its excellent performance, 

much faster than streams in large graphs
• Our closure extend to new accelerator types

• syclFlow, openclFlow, coralFlow, tpuFlow, fpgaFlow, etc.

We do not simplify kernel programming but
focus on CPU-GPU tasking that affects the
performance to a large extent! (same for
data abstraction)
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#3: Condition Task (if-else)
auto init = taskflow.emplace([&](){ initialize_data_structure(); } )

.name(”init");
auto optimizer = taskflow.emplace([&](){ matrix_solver(); } )

.name(”optimizer");
auto converged = taskflow.emplace([&](){ return converged() ? 1 : 0 } )

.name(”converged");
auto output = taskflow.emplace([&](){ std::cout << ”done!\n"; } );

.name(”output");
init.precede(optimizer); 
optimizer.precede(converged);
converged.precede(optimizer, output);  // return 0 to the optimizer again

init optimizer outputconverged?
0

Condition task integrates control flow into a task graph to form end-to-end parallelism

1



#3: Condition Task (While/For Loop)
tf::Taskflow taskflow; 
int i; 
auto [init, cond, body, back, done] = taskflow.emplace( 
[&](){ std::cout << “i=0”; i=0; }, 
[&](){ std::cout << "while i<5\n"; return i < 5 ? 0 : 1; }, 
[&](){ std::cout << "i++=" << i++ << '\n'; }, 
[&](){ std::cout << "back\n"; return 0; }, 
[&](){ std::cout << "done\n"; } 

); 
init.precede(cond); 
cond.precede(body, done); 
body.precede(back); 
back.precede(cond);
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#3: Condition Task (Non-deterministic Loops)
auto A = taskflow.emplace([&](){ } );
auto B = taskflow.emplace([&](){ return rand()%2; } );
auto C = taskflow.emplace([&](){ return rand()%2; } );
auto D = taskflow.emplace([&](){ return rand()%2; } );
auto E = taskflow.emplace([&](){ return rand()%2; } );
auto F = taskflow.emplace([&](){ return rand()%2; } );
auto G = taskflow.emplace([&](){});
A.precede(B).name("init");
B.precede(C, B).name("flip-coin-1");
C.precede(D, B).name("flip-coin-2");
D.precede(E, B).name("flip-coin-3");
E.precede(F, B).name("flip-coin-4");
F.precede(G, B).name("flip-coin-5");
G.name(“end”);

Each task flips a 
binary coin to decide 

the next path 

You can describe non-deterministic, nested control flow!



#3: Condition Task (Switch)
auto [source, swcond, case1, case2, case3, target] = taskflow.emplace( 
[](){ std::cout << "source\n"; }, 
[](){ std::cout << "switch\n"; return rand()%3; }, 
[](){ std::cout << "case 1\n"; return 0; }, 
[](){ std::cout << "case 2\n"; return 0; }, 
[](){ std::cout << "case 3\n"; return 0; }, 
[](){ std::cout << "target\n"; } 

); 
source.precede(swcond); 
swcond.precede(case1, case2, case3); 
target.succeed(case1, case2, case3);
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Existing Frameworks on Control Flow?
• Expand a task graph across fixed-length iterations

• Graph size is linearly proportional to decision points
• Unknown iterations? Non-deterministic conditions?

• Complex dynamic tasks executing “if” on the fly
• Dynamic control-flow tasks?
• … (resort to client-side decision)

Existing frameworks on expressing conditional 
tasking or dynamic control flow suffer from 

exponential growth of code complexity
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Everything is Unified in Taskflow

cudaFlow

Composition

Dynamic task

Control 
flow

• Use “emplace” to create a task
• Use “precede” to add a task dependency
• No need to learn different sets of API
• You can create a really complex graph 

• Subflow(ConditionTask(cudaFlow))
• ConditionTask(StaticTask(cudaFlow))
• Composition(Subflow(ConditionTask))
• Subflow(ConditionTask(cudaFlow))
• …

• Scheduler performs end-to-end optimization
• Runtime, energy efficiency, and throughput  



30

Example: k-means Clustering 

One cudaFlow for host-to-
device data transfers

One cudaFlow for finding the 
k centroids

One condition task to 
model iterations

One cudaFlow for 
device-to-host data 

transfers

k=3
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Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications
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Submit Taskflow to Executor

{
tf::Taskflow taskflow1, taskflow2, taskflow3; 
tf::Executor executor;
// create tasks and dependencies 
// …
auto  future1 = executor.run(taskflow1);
auto  future2 = executor.run_n(taskflow2, 1000);
auto  future3 = executor.run_until(taskflow3, [i=0](){ return i++>5 });
executor.async([](){ std::cout << “async task\n"; });
executor.wait_for_all(); // wait for all the above tasks to finish

}

• Executor manages a set of threads to run taskflows
• All execution methods are non-blocking
• All execution methods are thread-safe
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Executor Scheduling Algorithm
• Task-level scheduling

• Decides how tasks are enqueued under control flow
• Goal #1: ensures a feasible path to carry out control flow
• Goal #2: avoids task race under cyclic and conditional execution
• Goal #3: maximizes the capability of conditional tasking

• Worker-level scheduling
• Decides how tasks are executed by which workers

• Goal #1: adopts work stealing to dynamically balance load
• Goal #2: adapts workers to available task parallelism
• Goal #3: maximizes performance, energy, and throughput
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Task-level Scheduling

Dequeue a task t
invoke(t)

Decrement strong 
dependency of t ‘s 
successors by one

Enqueue successors 
of zero strong 
dependencies

r = invoke(t)

enqueue rth successor

Condition task?

Queue empty?

N

Y

N
Wait for tasks

Y
init

optimizer

output

converged?

1

0

• “Strong dependency” versus “Weak dependency”
• Weak dependency: dependencies out of condition tasks
• Strong dependency: others else

weak dependency

strong dependency
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Task-level Scheduling (cont’d)

It is users’ 
responsibility to 

ensure a taskflow 
is properly 

conditioned, i.e., 
no task race under 

our task-level 
scheduling policy 

• Condition task is powerful but prone to mistakes …
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Worker-level Scheduling
• Taskflow adopts work stealing to gain dynamic load balancing
• What is work stealing? Why?

• I finish my jobs first, and then steal jobs from you 
• So, we can improve performance and balance our loads

Shared CPU 
task queue
(external threads)

GPUcore core core core GPUcore

push pop push pop push push

push push push

steal steal CPU tasks

CPU worker threads GPU worker threads

steal GPU 
tasks

push pop

CPU task 
queue

GPU task 
queue

H2D

D2H

push push Shared GPU task 
queue
(external threads)

graph
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Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications
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Application 1: VLSI Placement
• Optimize cell locations on a chip

A partial TDG of 4 cudaFlows, 1 conditioned cycle, and 12 static tasks 

VLSI optimization 
makes essential use of 
dynamic control flow
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Application 1: VLSI Placement (cont’d)
• Runtime, memory, power, and throughput 

Performance improvement comes 
from the end-to-end expression of 
CPU-GPU dependent tasks using 

condition tasks
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Application 2: Machine Learning
• IEEE HPEC/MIT/Amazon Sparse DNN Challenge

• Compute a 1920-layer DNN each of 65536 neurons

A partial taskflow 
graph of 4 

cudaFlows, 6 
static tasks, and 8 
conditioned cycles 
for this workload

Each cudaFlow
contains >1000 of 

GPU tasks

Champions of HPEC 2020 Graph Challenge: https://graphchallenge.mit.edu/champions

https://graphchallenge.mit.edu/champions


• Comparison with TBB and StarPU

• Taskflow’s runtime is up to 2x faster
• Adaptive work stealing balances the worker count with task parallelism

• Taskflow’s memory is up to 1.6x less
• Conditional tasking allows efficient reuse of tasks
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Application 2: Machine Learning (cont’d)



Summary of Experiments
• Parallel computing infrastructure matters

Different models give different implementations. The parallel 
code/algorithm may run fast, yet the parallel computing 

infrastructure to support that algorithm may dominate the entire 
performance.

Taskflow enables end-to-end expression of CPU-GPU 
dependent tasks along with algorithmic control flow
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Agenda
• Express your parallelism in the right way
• Parallelize your applications using Taskflow
• Understand our scheduling algorithm
• Boost performance in real applications
• Collaborate on using Taskflow in your applications
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Paralle
lis

m is 

neve
r s

tandalone



GAMER + Taskflow
• GAMER accelerates maze routing using GPU

• Primary innovation is GPU kernel – iterative parallel sweeping
• Potential collaboration topics for TCAD extension

• Leverage Taskflow to achieve end-to-end heterogeneous parallelism
• Condition tasks allow you to integrate control-flow decisions into dependencies

• Leverage cudaFlow to reduce the kernel call overheads
• Leverage multiple GPUs to handle a batch of nets

Init batch 
net

cudaFlow
(sweeping)

output 
results

Select 
batch nets

Y
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Prior Collaborative Results with Taskflow
• We collaborate with Peking U to accelerate STA with Taskflow

• GPU-accelerated GBA [ICCAD’20]
• GPU-accelerated PBA [DAC’21, ICCAD’21]
• GPU-accelerated CPPR [ICCAD’21]
• Taskflow system [TCAD’21, TPDS’21]
• …
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STA Taskflow graphs

CPU-based STA 
stagnates at 10 cores
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Conclusion
• Taskflow is a lightweight parallel task programming system

• Simple, efficient, and transparent tasking models
• Efficient heterogeneous work-stealing executor
• Promising performance in large-scale ML and VLSI CAD

• Taskflow is not to replace anyone but to
• Complement the current state-of-the-art
• Leverage modern C++ to express task graph parallelism

• Taskflow is very open to collaboration
• We want to provide more higher-level algorithms
• We want to broaden real use cases
• We want to enhance the core functionalities (e.g., pipeline)
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Thank You All Using Taskflow!



Use the right tool for the right job
Taskflow: https://taskflow.github.io

Dr. Tsung-Wei Huang
tsung-wei.huang@utah.edu

https://taskflow.github.io/
mailto:tsung-wei.huang@utah.edu

