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Why Parallel Computing?

q It’s critical to advance your application performance
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Yet, Parallel Programming is Not Easy

q You need to deal with many difficult technical details
q Standard concurrency control
q Task dependencies
q Scheduling
q Race
q … (more)

Concurrency 
control

Dependency 
constraints

Task and 
data race

Scheduling 
efficiencies

Many developers 

have hard time in 

getting them right!
Debug
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How can we make it easier for C++ developers to 
quickly write parallel and heterogeneous programs 
with high performance scalability and simultaneous 

high productivity?

Taskflow offers a solution



#include <taskflow/taskflow.hpp>  // Taskflow is header-only
int main(){

tf::Taskflow taskflow; 
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C);  // D runs after    B and C
executor.run(taskflow).wait(); // submit the taskflow to the executor
return 0;

}
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“Hello World” in Taskflow

Only 15 lines of code to get a 
parallel task execution!
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Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism
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Motivation: Parallelizing VLSI CAD Tools
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q Billions of tasks with diverse computational patterns

How can we write efficient C++ parallel programs for this monster computational task 
graph with millions of CPU-GPU dependent tasks along with algorithmic control flow”
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We Invested a lot in Existing Tools …
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Two Big Problems of Existing Tools

q Our problems define complex task dependencies
q Example: analysis algorithms compute the circuit

network of million of node and dependencies
q Problem: existing tools are often good at loop

parallelism but weak in expressing heterogeneous task
graphs at this large scale

q Our problems define complex control flow
q Example: optimization algorithms make essential use of

dynamic control flow to implement various patterns
• Combinatorial optimization, analytical methods

q Problem: existing tools are directed acyclic graph (DAG)-
based and do not anticipate cycles or conditional
dependencies, lacking end-to-end parallelism
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Example: An Iterative Optimizer

q 4 computational tasks with dynamic control flow
#1: starts with init task
#2: enters the optimizer task (e.g., GPU math solver)
#3: checks if the optimization converged

• No: loops back to optimizer
• Yes: proceeds to stop

#4: outputs the result

init optimizer outputconverged?

N

Y

How can we easily describe this 
workload with dynamic control flow 
using existing tools (e.g., OpenMP, 

TBB, StarPU, SYCL, Kokkos) ?

Millions of such tasks? End-to-end parallelism?
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Need a New C++ Parallel Programming System

While designing parallel algorithms is non-trivial …

what makes parallel programming an enormous challenge is the 
infrastructure work of “how to efficiently express dependent 

tasks along with an algorithmic control flow and schedule them 
across heterogeneous computing resources” 
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Taskflow Project Mantra

q We are not to replace existing tools but
1. Address their limitations on task graph parallelism
2. Develop compatible interface to reuse their facilities

Performance

Productivity Portability

We maximize the performance 
compared to handcrafted solution 

We maximize the portability using 
the power of modern C++

We maximize 
productivity compared 

to handcrafted time

Together, we can deliver complementary advantages to 
advance C++ parallelism
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Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism
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Many arguments are based on my personal opinions 
– no offense, no criticism, just plain C++ from an 

end user’s perspective



#include <taskflow/taskflow.hpp>  // Taskflow is header-only
int main(){

tf::Taskflow taskflow; 
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C);  // D runs after    B and C
executor.run(taskflow).wait(); // submit the taskflow to the executor
return 0;

}
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“Hello World” in Taskflow (Revisited)

Taskflow defines five tasks:
1. static task
2. dynamic task
3. cudaFlow task
4. condition task
5. module task
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“Hello World” in OpenMP
#include <omp.h>  // OpenMP is a lang ext to describe parallelism using compiler directives
int main(){ 

#omp parallel num_threads(std::thread::hardware_concurrency())
{    

int A_B, A_C, B_D, C_D;
#pragma omp task depend(out: A_B, A_C) 
{  

s t d : : c o u t << ”TaskA\n” ;
}
#pragma omp task depend(in: A_B; out: B_D)  
{

s t d : : c o u t << ” TaskB\n” ;
} 
#pragma omp task depend(in: A_C; out: C_D)  
{

s t d : : c o u t << ” TaskC\n” ;
} 
#pragma omp task depend(in: B_D, C_D) 
{  

s t d : : c o u t << ”TaskD\n” ;
}

}
return 0;

}

Task dependency clauses

Task dependency clauses

Task dependency clauses

Task dependency clauses

OpenMP task clauses are static and explicit; 
Programmers are responsible for a proper order of 
writing tasks consistent with sequential execution
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“Hello World” in TBB
#include <tbb.h>  // Intel’s TBB is a general-purpose parallel programming library in C++
int main(){ 

using namespace tbb;
using namespace tbb:flow;
int n = task_scheduler init::default_num_threads () ; 
task scheduler_init init(n); 
graph g;
continue_node<continue_msg> A(g, [] (const continue msg &) { 

s t d : : c o u t << “TaskA” ; 
}) ;
continue_node<continue_msg> B(g, [] (const continue msg &) { 

s t d : : c o u t << “TaskB” ; 
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) { 

s t d : : c o u t << “TaskC” ; 
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) { 

s t d : : c o u t << “TaskD” ; 
}) ;
make_edge(A, B);
make_edge(A, C);
make_edge(B, D);
make_edge(C, D);
A.try_put(continue_msg());
g.wait_for_all();

}

TBB has excellent performance in generic parallel 
computing. Its drawback is mostly in the ease-of-use 

standpoint (simplicity, expressivity, and programmability).

Use TBB’s FlowGraph
for task parallelism 

Declare a task as a 
continue_node

TBB FlowGraph: https://software.intel.com/content/www/us/en/develop/home.html

https://software.intel.com/content/www/us/en/develop/home.html
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“Hello World” in Kokkos
struct A { 

template <class TeamMember> KOKKOS_INLINE_FUNCTION 
void operator()(TeamMember& member) {std::cout << "TaskA\n"; } 

};
struct B { 

template <class TeamMember> KOKKOS_INLINE_FUNCTION 
void operator()(TeamMember& member) {std::cout << "TaskB\n"; } 

};
struct C { 

template <class TeamMember> KOKKOS_INLINE_FUNCTION 
void operator()(TeamMember& member) {std::cout << "TaskC\n"; } 

};
struct D { 

template <class TeamMember> KOKKOS_INLINE_FUNCTION 
void operator()(TeamMember& member) {std::cout << "TaskD\n"; } 

};
auto scheduler = scheduler_type(/* ... */); 
auto futA = Kokkos::host_spawn( Kokkos::TaskSingle(scheduler), A() ); 
auto futB = Kokkos::host_spawn( Kokkos::TaskSingle(scheduler, futA), B() );
auto futC = Kokkos::host_spawn( Kokkos::TaskSingle(scheduler, futA), C() ); 
auto futD = Kokkos::host_spawn( 

Kokkos::TaskSingle(scheduler, when_all(futB, futC)), D()
);  

Kokkos task parallelism: https://github.com/kokkos/kokkos/wiki/Task-Parallelism

Fixed-layout task functor
(no lambda interface …?)

Define team handle

Kokkos is powerful in describing 
asynchronous tasks but not efficient in large 

task graph parallelism

Task dependency is 
represented by instances of 
Kokkos::BasicFuture

Aggregated dependencies

More scheduling code to follow …

https://github.com/kokkos/kokkos/wiki/Task-Parallelism
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“Hello World” Summary (Less Biased) 

74

15
6 4

1

Vote for Simplicity 
(100 C++ programmers of 2-5 years of C++11 

experience)

Taskflow OpenMP TBB Kokkos std::thread

#1 concern: “My application is already very complex; it’s
important the parallel programming library doesn’t become
another burden.”
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Dynamic Tasking (Subflow)
// create three regular tasks
tf::Task A = tf.emplace([](){}).name("A");
tf::Task C = tf.emplace([](){}).name("C");
tf::Task D = tf.emplace([](){}).name("D");

// create a subflow graph (dynamic tasking)
tf::Task B = tf.emplace([] (tf::Subflow& subflow) {

tf::Task B1 = subflow.emplace([](){}).name("B1");
tf::Task B2 = subflow.emplace([](){}).name("B2");
tf::Task B3 = subflow.emplace([](){}).name("B3");
B1.precede(B3);
B2.precede(B3);

}).name("B");

A.precede(B); // B runs after A 
A.precede(C); // C runs after A 
B.precede(D); // D runs after B 
C.precede(D); // D runs after C



22

Subflow can be Nested

q Find the 7th Fibonacci number using subflow
q Fib(n) = Fib(n-1) + Fib(n-2)
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Heterogeneous Tasking (cudaFlow)
const unsigned N = 1<<20; 
std::vector<float> hx(N, 1.0f), hy(N, 2.0f); 
float *dx{nullptr}, *dy{nullptr}; 
auto allocate_x = taskflow.emplace([&](){ cudaMalloc(&dx, 4*N);}); 
auto allocate_y = taskflow.emplace([&](){ cudaMalloc(&dy, 4*N);});

auto cudaflow = taskflow.emplace([&](tf::cudaFlow& cf) { 
auto h2d_x = cf.copy(dx, hx.data(), N);  // CPU-GPU data transfer
auto h2d_y = cf.copy(dy, hy.data(), N);  
auto d2h_x = cf.copy(hx.data(), dx, N);  // GPU-CPU data transfer
auto d2h_y = cf.copy(hy.data(), dy, N); 
auto kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);     
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y); 

}); 

cudaflow.succeed(allocate_x, allocate_y); 
executor.run(taskflow).wait();

To Nvidia 
cudaGraph

Users define GPU work in a graph rather than aggregated 
operations à single kernel launch to reduce overheads
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Three Key Motivations

q Our closure enables stateful interface
q Users capture data in reference to marshal data

exchange between CPU and GPU tasks
q Our closure hides implementation details judiciously

q We use cudaGraph (since cuda 10) due to its excellent 
performance, much faster than streams in large graphs

q Our closure extend to new accelerator types
q syclFlow, openclFlow, coralFlow, tpuFlow, fpgaFlow, etc.

We do not simplify kernel
programming but focus on
CPU-GPU tasking that
affects the performance to a
large extent! (same for data
abstraction)
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Conditional Tasking
auto init = taskflow.emplace([&](){ initialize_data_structure(); } )

.name(”init");
auto optimizer = taskflow.emplace([&](){ matrix_solver(); } )

.name(”optimizer");
auto converged = taskflow.emplace([&](){ return converged() ? 1 : 0 } )

.name(”converged");
auto output = taskflow.emplace([&](){ std::cout << ”done!\n"; } );

.name(”output");
init.precede(optimizer); 
optimizer.precede(converged);
converged.precede(optimizer, output);  // return 0 to the optimizer again

init optimizer outputconverged?
0

Condition task integrates control flow into a task graph to form end-to-end 
parallelism; in this example, there are ultimately four tasks ever created

1
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Conditional Tasking (cont’d)
auto A = taskflow.emplace([&](){ } );
auto B = taskflow.emplace([&](){ return rand()%2; } );
auto C = taskflow.emplace([&](){ return rand()%2; } );
auto D = taskflow.emplace([&](){ return rand()%2; } );
auto E = taskflow.emplace([&](){ return rand()%2; } );
auto F = taskflow.emplace([&](){ return rand()%2; } );
auto G = taskflow.emplace([&](){});

A.precede(B).name("init");
B.precede(C, B).name("flip-coin-1");
C.precede(D, B).name("flip-coin-2");
D.precede(E, B).name("flip-coin-3");
E.precede(F, B).name("flip-coin-4");
F.precede(G, B).name("flip-coin-5");
G.name(“end”);

Each task flips a 
binary coin to decide 

the next path 

You can describe non-deterministic, nested control flow!
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Existing Frameworks on Control Flow?

q Expand a task graph across fixed-length iterations
q Graph size is linearly proportional to decision points

q Unknown iterations? Non-deterministic conditions?
q Complex dynamic tasks executing “if” on the fly

q Dynamic control flows and dynamic tasks?
q … (resort to client-side decision)

Existing frameworks on expressing conditional 
tasking or dynamic control flow suffer from 

exponential growth of code complexity
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Composable Tasking
tf::Taskflow f1, f2; 

auto [f1A, f1B] = f1.emplace( 
[]() { std::cout << "Task f1A\n"; }, 
[]() { std::cout << "Task f1B\n"; } 

); 
auto [f2A, f2B, f2C] = f2.emplace( 
[]() { std::cout << "Task f2A\n"; }, 
[]() { std::cout << "Task f2B\n"; }, 
[]() { std::cout << "Task f2C\n"; } 

); 

auto f1_module_task = f2.composed_of(f1);

f1_module_task.succeed(f2A, f2B) 
.precede(f2C);
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Everything is Unified in Taskflow

q Use “emplace” to create a task
q Use “precede” to add a task dependency
q No need to learn different sets of API
q You can create a really complex graph 

q Subflow(ConditionTask(cudaFlow))
q ConditionTask(StaticTask(cudaFlow))
q Composition(Subflow(ConditionTask))
q Subflow(ConditionTask(cudaFlow))
q …

q Scheduler performs end-to-end optimization
q Runtime, energy efficiency, and throughput  

cudaFlow

Composition

Dynamic task

Control 
flow
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Example: k-means Clustering 

One cudaFlow for host-to-
device data transfers

One cudaFlow for finding the 
k centroids

One condition task to 
check convergence

One cudaFlow for device-
to-host data transfers
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Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism



32

Submit Taskflow to Executor

q Executor manages a set of threads to run taskflows
q All execution methods are non-blocking
q All execution methods are thread-safe

{
tf::Taskflow taskflow1, taskflow2, taskflow3; 
tf::Executor executor;
// create tasks and dependencies 
// …
auto  future1 = executor.run(taskflow1);
auto  future2 = executor.run_n(taskflow2, 1000);
auto  future3 = executor.run_until(taskflow3, [i=0](){ return i++>5 });
executor.async([](){ std::cout << “async task\n"; });
executor.wait_for_all(); // wait for all the above tasks to finish

}
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Executor Scheduling Algorithm

q Task-level scheduling
q Decides how tasks are enqueued under control flow

• Goal #1: ensures a feasible path to carry out control flow
• Goal #2: avoids task race under cyclic and conditional execution
• Goal #3: maximizes the capability of conditional tasking

q Worker-level scheduling
q Decides how tasks are executed by which workers

• Goal #1: adopts work stealing to dynamically balance load
• Goal #2: adapts workers to available task parallelism
• Goal #3: maximizes performance, energy, and throughput
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Task-level Scheduling

q “Strong dependency” versus “Weak dependency”
q Weak dependency: dependencies out of condition tasks
q Strong dependency: others else

Dequeue a task t
invoke(t)

Decrement strong 
dependency of t ‘s 
successors by one

Enqueue successors 
of zero strong 
dependencies

r = invoke(t)

enqueue rth successor

Condition task?

Queue empty?

N

Y

N
Wait for tasks

Yinit

optimizer

output

converged?

Y

N
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Task-level Scheduling (cont’d)

q Condition task is powerful but prone to mistakes …

It is users’ responsibility to ensure a taskflow is properly 
conditioned, i.e., no task race under our task-level scheduling policy 
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Worker-level Scheduling

q Taskflow adopts work stealing to run tasks
q What is work stealing?

q I finish my jobs first, and then steal jobs from you 
q Improve performance through dynamic load balancing 

CppCon 2015: Pablo Halpern “Work Stealing,” 
https://www.youtube.com/watch?v=iLHNF7SgVN4

Work stealing is commonly adopted 
by parallel task programming 
libraries (e.g., TBB, StarPU, TPL)

https://www.youtube.com/watch?v=iLHNF7SgVN4
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Worker-level Scheduling (cont’d)

q Challenge #1: distinct CPU-GPU performance traits
q Challenge #2: available task parallelism varies
q Challenge #3: wasteful steals eat out performance

q We solve the three challenges by the following:
1. Keep a different set of workers per heterogeneous 

domain (e.g., CPU workers, GPU workers)
2. Keep an invariant that balances the active workers with 

available task parallelism
3. Bring workers to sleep when tasks are scarce and wake 

up workers to run tasks following the invariant 
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Worker-level Scheduling (cont’d)

Shared CPU 
task queue
(external threads)

GPUcore core core core GPUcore

push pop push pop push push

push push push

steal steal CPU tasks

CPU worker threads GPU worker threads

steal GPU 
tasks

push pop

CPU task 
queue

GPU task 
queue

H2D

D2H

push push Shared GPU task 
queue
(external threads)

graph

Generalizable to arbitrary heterogeneous domains
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Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism
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Micro-benchmarks

q Randomly generate graphs with CPU-GPU tasks
q CPU task: aX + Y (saxpy) with 1K elements
q GPU task: aX + Y (saxpy) with 1M elements

q Comparison with TBB, StarPU, HPX, and OpenMP
q What is the turnaround time to program?
q What is the overhead of task graph parallelism?

Table I: Programming cost Table II: Task graph overhead (amortized)

SLOCCount: https://dwheeler.com/sloccount/

https://dwheeler.com/sloccount/
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Micro-benchmarks (cont’d)

q Performance on 40 Intel CPUs and 4 Nvidia GPUs

q Runtime distribution and corun throughput
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Application 1: Machine Learning

q Compute a 1920-layer DNN each of 65536 neurons
q IEEE HPEC 2020 Neural Network Challenge Compute

A partial taskflow graph of 4 cudaFlows, 6 static tasks, and 8 conditioned cycles for this workload

Each cudaFlow
contains thousands

of GPU tasks
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Application 1: Machine Learning (cont’d)

q Comparison with TBB and StarPU
q Unroll task graphs across iterations found in hindsight
q Implement cudaGraph for all

q Taskflow’s runtime is up to 2x faster
q Taskflow’s memory is up to 1.6x less

Champions of HPEC 2020 Graph Challenge: https://graphchallenge.mit.edu/champions

Due to the 
conditional tasking

https://graphchallenge.mit.edu/champions
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Application 2: VLSI Placement

q Optimize cell locations on a chip

A partial TDG of 4 cudaFlows, 1 conditioned cycle, and 12 static tasks 

VLSI optimization 
makes essential use of 
dynamic control flow
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Application 2: VLSI Placement (cont’d)

q Runtime, memory, power, and throughput 

Performance improvement comes from end-to-end expression of CPU-GPU 
dependent tasks using condition tasks
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Different models give different implementations. The 
parallel code/algorithm may run fast, yet the parallel 
computing infrastructure to support that algorithm 

may dominate the entire performance.

Parallel programming 
infrastructure matters

Taskflow enables end-to-end expression of 
CPU-GPU dependent tasks along with 

algorithmic control flow
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Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism
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Parallel Computing is Never Standalone

Pa
ral
lel
ism

Language
Compiler

Algorithm 

Composition 
Models Programmers Scheduling 

Control flow
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No One Can Express All Parallelisms

q Languages ∪ Compilers ∪ Libraries ∪ Programmers
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IMHO, C++ Parallelism Needs Enhancement

q C++ parallelism is still very primitive
q std::thread is powerful but very low-level
q std::async leaves off handling task dependencies
q No easy ways to describe control flow in parallelism 

• C++17 parallel STL count on bulk synchronous parallelism
q No standard ways to offload tasks to accelerators (GPU)

q Existing 3rd-party tools have enabled vast success but
q Lack an easy and expressive interface for parallelism

• Users are often confused by many distinct notations …
q Lack a mechanism for modeling control flow

• Users resort to client-side decision making or manual partition
q Lack an efficient executor for heterogeneous tasking

• Good at either CPU- or GPU-focused workload, but rarely both 
simultaneously
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Conclusion

q Taskflow is a general-purpose parallel tasking tool
q Simple, efficient, and transparent tasking models
q Efficient heterogeneous work-stealing executor
q Promising performance in large-scale ML and VLSI CAD

q Taskflow is not to replace anyone but to
q Complement the current state-of-the-art
q Leverage modern C++ to express task graph parallelism

q Taskflow is very open to collaboration
q We want to integrate OpenCL, SYCL, Intel DPC++, etc.
q We want to provide higher-level algorithms
q We want to broaden real use cases
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Thank You All Using Taskflow!
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Taskflow: https://taskflow.github.io

Dr. Tsung-Wei Huang
tsung-wei.huang@utah.edu

https://taskflow.github.io/
mailto:tsung-wei.huang@utah.edu

