
1

Taskflow: A General-purpose Parallel
and Heterogeneous Task Programming
System using Modern C++

Dr. Tsung-Wei (TW) Huang
Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT
https://taskflow.github.io/

https://taskflow.github.io/

2

Why Parallel Computing?

q It’s critical to advance your application performance

0 100 200 300 400 500 600

1 GPU

40 CPUs

1 CPU

Time to Solve a Machine Learning Workload

Machine Learning Workload

10x faster

100x faster

3

Yet, Parallel Programming is Not Easy

q You need to deal with many difficult technical details
q Standard concurrency control
q Task dependencies
q Scheduling
q Race
q … (more)

Concurrency
control

Dependency
constraints

Task and
data race

Scheduling
efficiencies

Many developers

have hard time in

getting them right!
Debug

4

How can we make it easier for C++ developers to
quickly write parallel and heterogeneous programs
with high performance scalability and simultaneous

high productivity?

Taskflow offers a solution

#include <taskflow/taskflow.hpp> // Taskflow is header-only
int main(){

tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C); // D runs after B and C
executor.run(taskflow).wait(); // submit the taskflow to the executor
return 0;

}

5

“Hello World” in Taskflow

Only 15 lines of code to get a
parallel task execution!

6

Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism

7

Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism

8

Motivation: Parallelizing VLSI CAD Tools

[0]collect_independent_sets_end

[0]construct_cost_matrices_begin [1]random_shuffle_begin

[0]construct_cost_matrices_kernel_S [1]maximum_independent_set_parallel_kernel1_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]construct_cost_matrices_kernel_T

[0]solve_assignment_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]solve_assignment_kernel_T

[0]solve_assignment_end

[0]apply_solution_kernel_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[0]apply_solution_kernel_T

[0]apply_solution_end

[0]compute_hpwl_kernel [1]collect_independent_sets_begin

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel1_T

[1]maximum_independent_set_parallel_kernel2_S

loop[0][0] loop[0][1] loop[0][2] loop[0][3]

[1]maximum_independent_set_parallel_kernel2_T

[1]maximum_independent_set_parallel_update

[1]maximum_independent_set_parallel_cond

0

[1]maximum_independent_set_parallel_end

1

Partial Tasks of Iteration 0
Partial Tasks of Iteration 1

Circuit design

Partition

Floorplan

Placement

CTS

Routing

Function, logic

Physical design

Signoff

Module(a, b)
Input a;
Output b;

Manufacturing

System Spec.

Architecture

Timing

Final chip

Testing

DRC, LVS

Graph

Graph

Analytical

Tree

Graph

Computational problems of
10B+ transistors

1

2

4 5

3

1

2

3

1’

2’

3’

4 4’

5 5’

inp1 u1:A

u1:Y

clock f1:CLK

f1:D

out

u4:A

u4:B u4:Y

inp2 u1:B

u2:A u2:Yf1:Q u3:A u3:Y

Optimization

NP-hard problems

Machine learning in the loop

Modeling and simulation

Dynamic
controls

Irregular graphs

Data science &
regression

q Billions of tasks with diverse computational patterns

How can we write efficient C++ parallel programs for this monster computational task
graph with millions of CPU-GPU dependent tasks along with algorithmic control flow”

9

We Invested a lot in Existing Tools …

10

Two Big Problems of Existing Tools

q Our problems define complex task dependencies
q Example: analysis algorithms compute the circuit

network of million of node and dependencies
q Problem: existing tools are often good at loop

parallelism but weak in expressing heterogeneous task
graphs at this large scale

q Our problems define complex control flow
q Example: optimization algorithms make essential use of

dynamic control flow to implement various patterns
• Combinatorial optimization, analytical methods

q Problem: existing tools are directed acyclic graph (DAG)-
based and do not anticipate cycles or conditional
dependencies, lacking end-to-end parallelism

11

Example: An Iterative Optimizer

q 4 computational tasks with dynamic control flow
#1: starts with init task
#2: enters the optimizer task (e.g., GPU math solver)
#3: checks if the optimization converged

• No: loops back to optimizer
• Yes: proceeds to stop

#4: outputs the result

init optimizer outputconverged?

N

Y

How can we easily describe this
workload with dynamic control flow
using existing tools (e.g., OpenMP,

TBB, StarPU, SYCL, Kokkos) ?

Millions of such tasks? End-to-end parallelism?

12

Need a New C++ Parallel Programming System

While designing parallel algorithms is non-trivial …

what makes parallel programming an enormous challenge is the
infrastructure work of “how to efficiently express dependent

tasks along with an algorithmic control flow and schedule them
across heterogeneous computing resources”

13

Taskflow Project Mantra

q We are not to replace existing tools but
1. Address their limitations on task graph parallelism
2. Develop compatible interface to reuse their facilities

Performance

Productivity Portability

We maximize the performance
compared to handcrafted solution

We maximize the portability using
the power of modern C++

We maximize
productivity compared

to handcrafted time

Together, we can deliver complementary advantages to
advance C++ parallelism

14

Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism

15

Many arguments are based on my personal opinions
– no offense, no criticism, just plain C++ from an

end user’s perspective

#include <taskflow/taskflow.hpp> // Taskflow is header-only
int main(){

tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C); // D runs after B and C
executor.run(taskflow).wait(); // submit the taskflow to the executor
return 0;

}

16

“Hello World” in Taskflow (Revisited)

Taskflow defines five tasks:
1. static task
2. dynamic task
3. cudaFlow task
4. condition task
5. module task

17

“Hello World” in OpenMP
#include <omp.h> // OpenMP is a lang ext to describe parallelism using compiler directives
int main(){

#omp parallel num_threads(std::thread::hardware_concurrency())
{

int A_B, A_C, B_D, C_D;
#pragma omp task depend(out: A_B, A_C)
{

s t d : : c o u t << ”TaskA\n” ;
}
#pragma omp task depend(in: A_B; out: B_D)
{

s t d : : c o u t << ” TaskB\n” ;
}
#pragma omp task depend(in: A_C; out: C_D)
{

s t d : : c o u t << ” TaskC\n” ;
}
#pragma omp task depend(in: B_D, C_D)
{

s t d : : c o u t << ”TaskD\n” ;
}

}
return 0;

}

Task dependency clauses

Task dependency clauses

Task dependency clauses

Task dependency clauses

OpenMP task clauses are static and explicit;
Programmers are responsible for a proper order of
writing tasks consistent with sequential execution

18

“Hello World” in TBB
#include <tbb.h> // Intel’s TBB is a general-purpose parallel programming library in C++
int main(){

using namespace tbb;
using namespace tbb:flow;
int n = task_scheduler init::default_num_threads () ;
task scheduler_init init(n);
graph g;
continue_node<continue_msg> A(g, [] (const continue msg &) {

s t d : : c o u t << “TaskA” ;
}) ;
continue_node<continue_msg> B(g, [] (const continue msg &) {

s t d : : c o u t << “TaskB” ;
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) {

s t d : : c o u t << “TaskC” ;
}) ;
continue_node<continue_msg> C(g, [] (const continue msg &) {

s t d : : c o u t << “TaskD” ;
}) ;
make_edge(A, B);
make_edge(A, C);
make_edge(B, D);
make_edge(C, D);
A.try_put(continue_msg());
g.wait_for_all();

}

TBB has excellent performance in generic parallel
computing. Its drawback is mostly in the ease-of-use

standpoint (simplicity, expressivity, and programmability).

Use TBB’s FlowGraph
for task parallelism

Declare a task as a
continue_node

TBB FlowGraph: https://software.intel.com/content/www/us/en/develop/home.html

https://software.intel.com/content/www/us/en/develop/home.html

19

“Hello World” in Kokkos
struct A {

template <class TeamMember> KOKKOS_INLINE_FUNCTION
void operator()(TeamMember& member) {std::cout << "TaskA\n"; }

};
struct B {

template <class TeamMember> KOKKOS_INLINE_FUNCTION
void operator()(TeamMember& member) {std::cout << "TaskB\n"; }

};
struct C {

template <class TeamMember> KOKKOS_INLINE_FUNCTION
void operator()(TeamMember& member) {std::cout << "TaskC\n"; }

};
struct D {

template <class TeamMember> KOKKOS_INLINE_FUNCTION
void operator()(TeamMember& member) {std::cout << "TaskD\n"; }

};
auto scheduler = scheduler_type(/* ... */);
auto futA = Kokkos::host_spawn(Kokkos::TaskSingle(scheduler), A());
auto futB = Kokkos::host_spawn(Kokkos::TaskSingle(scheduler, futA), B());
auto futC = Kokkos::host_spawn(Kokkos::TaskSingle(scheduler, futA), C());
auto futD = Kokkos::host_spawn(

Kokkos::TaskSingle(scheduler, when_all(futB, futC)), D()
);

Kokkos task parallelism: https://github.com/kokkos/kokkos/wiki/Task-Parallelism

Fixed-layout task functor
(no lambda interface …?)

Define team handle

Kokkos is powerful in describing
asynchronous tasks but not efficient in large

task graph parallelism

Task dependency is
represented by instances of
Kokkos::BasicFuture

Aggregated dependencies

More scheduling code to follow …

https://github.com/kokkos/kokkos/wiki/Task-Parallelism

20

“Hello World” Summary (Less Biased)

74

15
6 4

1

Vote for Simplicity
(100 C++ programmers of 2-5 years of C++11

experience)

Taskflow OpenMP TBB Kokkos std::thread

#1 concern: “My application is already very complex; it’s
important the parallel programming library doesn’t become
another burden.”

21

Dynamic Tasking (Subflow)
// create three regular tasks
tf::Task A = tf.emplace([](){}).name("A");
tf::Task C = tf.emplace([](){}).name("C");
tf::Task D = tf.emplace([](){}).name("D");

// create a subflow graph (dynamic tasking)
tf::Task B = tf.emplace([] (tf::Subflow& subflow) {

tf::Task B1 = subflow.emplace([](){}).name("B1");
tf::Task B2 = subflow.emplace([](){}).name("B2");
tf::Task B3 = subflow.emplace([](){}).name("B3");
B1.precede(B3);
B2.precede(B3);

}).name("B");

A.precede(B); // B runs after A
A.precede(C); // C runs after A
B.precede(D); // D runs after B
C.precede(D); // D runs after C

22

Subflow can be Nested

q Find the 7th Fibonacci number using subflow
q Fib(n) = Fib(n-1) + Fib(n-2)

23

Heterogeneous Tasking (cudaFlow)
const unsigned N = 1<<20;
std::vector<float> hx(N, 1.0f), hy(N, 2.0f);
float *dx{nullptr}, *dy{nullptr};
auto allocate_x = taskflow.emplace([&](){ cudaMalloc(&dx, 4*N);});
auto allocate_y = taskflow.emplace([&](){ cudaMalloc(&dy, 4*N);});

auto cudaflow = taskflow.emplace([&](tf::cudaFlow& cf) {
auto h2d_x = cf.copy(dx, hx.data(), N); // CPU-GPU data transfer
auto h2d_y = cf.copy(dy, hy.data(), N);
auto d2h_x = cf.copy(hx.data(), dx, N); // GPU-CPU data transfer
auto d2h_y = cf.copy(hy.data(), dy, N);
auto kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);

});

cudaflow.succeed(allocate_x, allocate_y);
executor.run(taskflow).wait();

To Nvidia
cudaGraph

Users define GPU work in a graph rather than aggregated
operations à single kernel launch to reduce overheads

24

Three Key Motivations

q Our closure enables stateful interface
q Users capture data in reference to marshal data

exchange between CPU and GPU tasks
q Our closure hides implementation details judiciously

q We use cudaGraph (since cuda 10) due to its excellent
performance, much faster than streams in large graphs

q Our closure extend to new accelerator types
q syclFlow, openclFlow, coralFlow, tpuFlow, fpgaFlow, etc.

We do not simplify kernel
programming but focus on
CPU-GPU tasking that
affects the performance to a
large extent! (same for data
abstraction)

25

Conditional Tasking
auto init = taskflow.emplace([&](){ initialize_data_structure(); })

.name(”init");
auto optimizer = taskflow.emplace([&](){ matrix_solver(); })

.name(”optimizer");
auto converged = taskflow.emplace([&](){ return converged() ? 1 : 0 })

.name(”converged");
auto output = taskflow.emplace([&](){ std::cout << ”done!\n"; });

.name(”output");
init.precede(optimizer);
optimizer.precede(converged);
converged.precede(optimizer, output); // return 0 to the optimizer again

init optimizer outputconverged?
0

Condition task integrates control flow into a task graph to form end-to-end
parallelism; in this example, there are ultimately four tasks ever created

1

26

Conditional Tasking (cont’d)
auto A = taskflow.emplace([&](){ });
auto B = taskflow.emplace([&](){ return rand()%2; });
auto C = taskflow.emplace([&](){ return rand()%2; });
auto D = taskflow.emplace([&](){ return rand()%2; });
auto E = taskflow.emplace([&](){ return rand()%2; });
auto F = taskflow.emplace([&](){ return rand()%2; });
auto G = taskflow.emplace([&](){});

A.precede(B).name("init");
B.precede(C, B).name("flip-coin-1");
C.precede(D, B).name("flip-coin-2");
D.precede(E, B).name("flip-coin-3");
E.precede(F, B).name("flip-coin-4");
F.precede(G, B).name("flip-coin-5");
G.name(“end”);

Each task flips a
binary coin to decide

the next path

You can describe non-deterministic, nested control flow!

27

Existing Frameworks on Control Flow?

q Expand a task graph across fixed-length iterations
q Graph size is linearly proportional to decision points

q Unknown iterations? Non-deterministic conditions?
q Complex dynamic tasks executing “if” on the fly

q Dynamic control flows and dynamic tasks?
q … (resort to client-side decision)

Existing frameworks on expressing conditional
tasking or dynamic control flow suffer from

exponential growth of code complexity

28

Composable Tasking
tf::Taskflow f1, f2;

auto [f1A, f1B] = f1.emplace(
[]() { std::cout << "Task f1A\n"; },
[]() { std::cout << "Task f1B\n"; }

);
auto [f2A, f2B, f2C] = f2.emplace(
[]() { std::cout << "Task f2A\n"; },
[]() { std::cout << "Task f2B\n"; },
[]() { std::cout << "Task f2C\n"; }

);

auto f1_module_task = f2.composed_of(f1);

f1_module_task.succeed(f2A, f2B)
.precede(f2C);

29

Everything is Unified in Taskflow

q Use “emplace” to create a task
q Use “precede” to add a task dependency
q No need to learn different sets of API
q You can create a really complex graph

q Subflow(ConditionTask(cudaFlow))
q ConditionTask(StaticTask(cudaFlow))
q Composition(Subflow(ConditionTask))
q Subflow(ConditionTask(cudaFlow))
q …

q Scheduler performs end-to-end optimization
q Runtime, energy efficiency, and throughput

cudaFlow

Composition

Dynamic task

Control
flow

30

Example: k-means Clustering

One cudaFlow for host-to-
device data transfers

One cudaFlow for finding the
k centroids

One condition task to
check convergence

One cudaFlow for device-
to-host data transfers

31

Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism

32

Submit Taskflow to Executor

q Executor manages a set of threads to run taskflows
q All execution methods are non-blocking
q All execution methods are thread-safe

{
tf::Taskflow taskflow1, taskflow2, taskflow3;
tf::Executor executor;
// create tasks and dependencies
// …
auto future1 = executor.run(taskflow1);
auto future2 = executor.run_n(taskflow2, 1000);
auto future3 = executor.run_until(taskflow3, [i=0](){ return i++>5 });
executor.async([](){ std::cout << “async task\n"; });
executor.wait_for_all(); // wait for all the above tasks to finish

}

33

Executor Scheduling Algorithm

q Task-level scheduling
q Decides how tasks are enqueued under control flow

• Goal #1: ensures a feasible path to carry out control flow
• Goal #2: avoids task race under cyclic and conditional execution
• Goal #3: maximizes the capability of conditional tasking

q Worker-level scheduling
q Decides how tasks are executed by which workers

• Goal #1: adopts work stealing to dynamically balance load
• Goal #2: adapts workers to available task parallelism
• Goal #3: maximizes performance, energy, and throughput

34

Task-level Scheduling

q “Strong dependency” versus “Weak dependency”
q Weak dependency: dependencies out of condition tasks
q Strong dependency: others else

Dequeue a task t
invoke(t)

Decrement strong
dependency of t ‘s
successors by one

Enqueue successors
of zero strong
dependencies

r = invoke(t)

enqueue rth successor

Condition task?

Queue empty?

N

Y

N
Wait for tasks

Yinit

optimizer

output

converged?

Y

N

35

Task-level Scheduling (cont’d)

q Condition task is powerful but prone to mistakes …

It is users’ responsibility to ensure a taskflow is properly
conditioned, i.e., no task race under our task-level scheduling policy

36

Worker-level Scheduling

q Taskflow adopts work stealing to run tasks
q What is work stealing?

q I finish my jobs first, and then steal jobs from you
q Improve performance through dynamic load balancing

CppCon 2015: Pablo Halpern “Work Stealing,”
https://www.youtube.com/watch?v=iLHNF7SgVN4

Work stealing is commonly adopted
by parallel task programming
libraries (e.g., TBB, StarPU, TPL)

https://www.youtube.com/watch?v=iLHNF7SgVN4

37

Worker-level Scheduling (cont’d)

q Challenge #1: distinct CPU-GPU performance traits
q Challenge #2: available task parallelism varies
q Challenge #3: wasteful steals eat out performance

q We solve the three challenges by the following:
1. Keep a different set of workers per heterogeneous

domain (e.g., CPU workers, GPU workers)
2. Keep an invariant that balances the active workers with

available task parallelism
3. Bring workers to sleep when tasks are scarce and wake

up workers to run tasks following the invariant

38

Worker-level Scheduling (cont’d)

Shared CPU
task queue
(external threads)

GPUcore core core core GPUcore

push pop push pop push push

push push push

steal steal CPU tasks

CPU worker threads GPU worker threads

steal GPU
tasks

push pop

CPU task
queue

GPU task
queue

H2D

D2H

push push Shared GPU task
queue
(external threads)

graph

Generalizable to arbitrary heterogeneous domains

39

Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism

40

Micro-benchmarks

q Randomly generate graphs with CPU-GPU tasks
q CPU task: aX + Y (saxpy) with 1K elements
q GPU task: aX + Y (saxpy) with 1M elements

q Comparison with TBB, StarPU, HPX, and OpenMP
q What is the turnaround time to program?
q What is the overhead of task graph parallelism?

Table I: Programming cost Table II: Task graph overhead (amortized)

SLOCCount: https://dwheeler.com/sloccount/

https://dwheeler.com/sloccount/

41

Micro-benchmarks (cont’d)

q Performance on 40 Intel CPUs and 4 Nvidia GPUs

q Runtime distribution and corun throughput

42

Application 1: Machine Learning

q Compute a 1920-layer DNN each of 65536 neurons
q IEEE HPEC 2020 Neural Network Challenge Compute

A partial taskflow graph of 4 cudaFlows, 6 static tasks, and 8 conditioned cycles for this workload

Each cudaFlow
contains thousands

of GPU tasks

43

Application 1: Machine Learning (cont’d)

q Comparison with TBB and StarPU
q Unroll task graphs across iterations found in hindsight
q Implement cudaGraph for all

q Taskflow’s runtime is up to 2x faster
q Taskflow’s memory is up to 1.6x less

Champions of HPEC 2020 Graph Challenge: https://graphchallenge.mit.edu/champions

Due to the
conditional tasking

https://graphchallenge.mit.edu/champions

44

Application 2: VLSI Placement

q Optimize cell locations on a chip

A partial TDG of 4 cudaFlows, 1 conditioned cycle, and 12 static tasks

VLSI optimization
makes essential use of
dynamic control flow

45

Application 2: VLSI Placement (cont’d)

q Runtime, memory, power, and throughput

Performance improvement comes from end-to-end expression of CPU-GPU
dependent tasks using condition tasks

46

Different models give different implementations. The
parallel code/algorithm may run fast, yet the parallel
computing infrastructure to support that algorithm

may dominate the entire performance.

Parallel programming
infrastructure matters

Taskflow enables end-to-end expression of
CPU-GPU dependent tasks along with

algorithmic control flow

47

Agenda

q Express your parallelism in the right way
q Parallelize your applications using Taskflow
q Understand our scheduling algorithm
q Boost performance in real applications
q Make C++ amenable to heterogeneous parallelism

48

Parallel Computing is Never Standalone

Pa
ral
lel
ism

Language
Compiler

Algorithm

Composition
Models Programmers Scheduling

Control flow

49

No One Can Express All Parallelisms

q Languages ∪ Compilers ∪ Libraries ∪ Programmers

50

IMHO, C++ Parallelism Needs Enhancement

q C++ parallelism is still very primitive
q std::thread is powerful but very low-level
q std::async leaves off handling task dependencies
q No easy ways to describe control flow in parallelism

• C++17 parallel STL count on bulk synchronous parallelism
q No standard ways to offload tasks to accelerators (GPU)

q Existing 3rd-party tools have enabled vast success but
q Lack an easy and expressive interface for parallelism

• Users are often confused by many distinct notations …
q Lack a mechanism for modeling control flow

• Users resort to client-side decision making or manual partition
q Lack an efficient executor for heterogeneous tasking

• Good at either CPU- or GPU-focused workload, but rarely both
simultaneously

51

Conclusion

q Taskflow is a general-purpose parallel tasking tool
q Simple, efficient, and transparent tasking models
q Efficient heterogeneous work-stealing executor
q Promising performance in large-scale ML and VLSI CAD

q Taskflow is not to replace anyone but to
q Complement the current state-of-the-art
q Leverage modern C++ to express task graph parallelism

q Taskflow is very open to collaboration
q We want to integrate OpenCL, SYCL, Intel DPC++, etc.
q We want to provide higher-level algorithms
q We want to broaden real use cases

52

Thank You All Using Taskflow!

53

Taskflow: https://taskflow.github.io

Dr. Tsung-Wei Huang
tsung-wei.huang@utah.edu

https://taskflow.github.io/
mailto:tsung-wei.huang@utah.edu

