
cudaFlow: A Modern C++ Programming 
Model for GPU Task Graph Parallelism

Tsung-Wei (TW) Huang and Dian-Lun (Luan) Lin
Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT



2

Agenda
• Understand the motivation behind cudaFlow
• Learn to use the cudaFlow C++ programming model
• Dive into the cudaFlow transformation algorithm
• Evaluate cudaFlow on real-world large GPU applications
• Conclusion



3

Agenda
• Understand the motivation behind cudaFlow
• Learn to use the cudaFlow C++ programming model
• Dive into the cudaFlow transformation algorithm
• Evaluate cudaFlow on real-world large GPU applications
• Conclusion



4

Why GPU Computing?
• GPU has advanced scientific computing to a new level

0

100

200

300

400

500

600

1 CPU 8 CPUs 16 CPUs 24 CPUs 32 CPUs 40 CPUs 1 GPU

Time to Solve a Machine Learning Workload

CPU

GPU

Over 60x speedup in neural 
network training since 2013

NVLink Performance

Tensor core

10-100x speed-up over many cores CPUs



CPU vs GPU
• CPU is built for compute-driven applications

• A few powerful threads to compute critical control-flow blocks very fast
• GPU is built for throughput-driven applications 

• Many lightweight threads to compute large volume of data very fast

Nvidia RTX 6000 
GPU card

Intel i7 CPU

5



GPU Application Landscape

6

Scientific Computing Gaming

Simulation



Programming GPU
• Compute-unified device architecture (CUDA) model

7

// saxpy.cu (single-precision A·X Plus Y) 
__global__ void saxpy(int n, float a, float *x, float *y) 
{ 
int i = blockIdx.x*blockDim.x + threadIdx.x; 
if (i < n) {
y[i] = a*x[i] + y[i];

}
}
// calling the saxpy kernel with grid, block, and shm
saxpy<<<grid, block, shm, stream>>>(n, a, x, y);

// use nvidia cuda compiler to compile the code
~$ nvcc saxpy.cu –o saxpy

2 2 2 2 2 2 2 2 2 2a

x 2 3 2 1 3 2 3 2 1 2

y 1 1 2 3 1 1 2 3 1 1

*

+

5 7 6 5 7 5 8 7 3 5y



Today’s GPU Workload is Very Complex
• GPU-accelerated circuit simulation task graph

• >100 kernels
• >100 dependencies
• >500s to finish

What are the output values of gates? 
(+500M gates in nvdla designs 
https://github.com/nvdla)

…

8

The GPU task graph is 
repetitively executed for each 

clock cycle (+100K cycles).

https://github.com/nvdla


Another Example in Machine Learning
• Large neural network inference GPU task graph

• Billions of parameters
• >1000 kernels
• >2000 dependencies
• Hours to finish

9

The GPU task graph is repetitively 
executed for millions (or infinite 

amount) of data batches.



CUDA Execution Model: Stream
• Launch a kernel through an asynchronous stream

• Launch a kernel (e.g., my_kernel<<<grid, block, shm, stream>>>)
• Run a kernel (e.g., __global__ my_kernel())

• The “stream” variable keeps a sequence of kernel tasks to run
• A stream is essentially an in-order queue (like std::queue)
• A stream can synchronize with others through “events” (dependency)

10

event

event

event

// example stream APIs 
cudaStreamCreate
cudaStreamMemcpyAsync
cudaStreamSynchronize
cudaEventRecord
…



Pros and Cons of Stream-based Execution
• Pros: Enable asynchronous execution to better utilize GPU

• Memory copies overlap with kernel execution
• Individual kernels running on different streams can overlap

• Cons: Incur per-operation overhead at each stream
• The overhead can become significant for iterative GPU workloads

11

for(int step=0; step<1000000; step++){
for(int krnl=0; krnl<1000000; krnl++){
MyKernel<<<grid, block, shm, stream>>>(out_d, in_d);

}
cudaStreamSynchronize(stream);  

}

Execution overhead

Synchronization overhead



Task Dependency Graph is Hard to Build

// using streams to build a task dependency graph 
kernel1<<>>(); 
cudaEventRecord(e1, a); 
kernel2<<>>(); 
cudaStreamWaitEvent(b, e1); 
cudaMemcpyAsync(,,,,b); 
cudaEventRecord(e2, b); 
kernel5<<>>(); 
cudaEventRecord(e3, a); 
cudaEventSynchronize(e2); 
// doing some CPU code to overlap kernel 5 via e2 and e3 
cudaStreamWaitEvent(b, e3); 
kernel4<<>>();

• Need to insert explicit events between GPU operations at different streams
• GPU runtime can’t see tasks ahead to perform whole-graph optimization

12



What About Large GPU Task Graphs?
• GPU-accelerated circuit simulation task graph

• >100 kernels
• >100 dependencies



CUDA Execution Model: CUDA Graph
• Run a GPU workload using CUDA Graph with three steps

1. Define an in-memory representation of the task dependency graph
• Each node represents a GPU operation (e.g., memory copy, kernel)
• Each edge represents a dependency

2. Instantiate an optimized executable graph from a defined graph
3. Launch the executable graph and update parameters between runs

• Launch the executable graph requires only a single CPU call
• CUDA runtime will perform automatic scheduling optimization

14

Define graph Instantiate executable Run Update executable Run …

A B A B A B’



Comparison to Stream-based Execution
• CUDA Graph removes stream launch overhead for iterative patterns

• Launch a CUDA graph requires only a single CPU call
• CUDA runtime can perform the whole-graph optimization
• New GPU architectures (e.g., A100) have many task graph optimizations 

15

Ampere architecture white paper performance report: https://images.nvidia.com/aem-dam/en-
zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf


Two Ways to Build a CUDA Graph
• Explicit CUDA Graph construction
• Implicit CUDA Graph construction

16
Explicit Implicit



Explicit CUDA Graph Construction
• Users define a CUDA graph explicitly using CUDA Graph API

17

// Graph data structure
cudaGraph_t // CUDA graph (opaque)
cudaGraphNode_t // CUDA graph node (opaque)
cudaKernelNodeParams // CUDA GPU kernel node parameters
…
// Explicit graph construction API
cudaGraphCreate // Creates a graph
cudaGraphAddMemcpyNode // Creates a memcpy node
cudaGraphAddKernelNode // Creates a kernel execution node
cudaGraphGetNodes // Returns a graph's nodes
cudaGraphInstantiate // Creates an executable graph from a graph
cudaGraphLaunch // Launches an executable graph in a stream
cudaGraphExecDestroy // Destroys an executable graph
cudaGraphDestroy // Destroys a graph
...



Implicit CUDA Graph Construction
• Users capture a CUDA graph implicitly through existing streams

18

cudaGraph_t graph; 
cudaStreamBeginCapture(a); // begin capturing a CUDA graph
kernel1<<…>>(); 
cudaEventRecord(e1, a); 
kernel2<<…>>(); 
cudaStreamWaitEvent(b, e1); 
cudaMemcpyAsync(,,,,b); 
kernel5<<…>>(); 
cudaEventRecord(e3, a); 
cudaLaunchHostFunc(b, cpucode, params); 
cudaStreamWaitEvent(b, e3); 
kernel4<<…>>(); 
cudaStreamEndCapture(a, &graph);   // end capturing a CUDA graph
cudaGraphInstantiate(…);
…

use stream to execute 
dependent GPU 
operations as before



Comparison between Explicit and Implicit Methods

• Explicit CUDA Graph construction
• J straightforward graph definition identical to an application task graph
• J performance is typically the best
• L extremely tedious to program

• Flat parameter structure and CUDA Graph API produce a lot of boilerplate code
• Often result in 2-10x increase of the codebase

• L can only handle GPU workloads with known parameters
• Implicit CUDA Graph capturing 

• J flexible in getting a CUDA graph from existing stream-based code
• L if that code doesn’t exist, you need to manage streams and events

!!! CUDA Graph performance is highly dependent on the stream assignment
• L not easy to adapt code to new application task graphs

19



How can we streamline the programming of CUDA 
Graph while encapsulating technical details 

between an application task graph and its native 
CUDA graph?

cudaFlow Project Mantra

20



21

Agenda
• Understand the motivation behind cudaFlow
• Learn to use the cudaFlow C++ programming model
• Dive into the cudaFlow transformation algorithm
• Evaluate cudaFlow on real-world large GPU applications
• Conclusion



An Explicit Saxpy Task Graph in cudaFlow
// saxpy (single-precision A·X Plus Y) kernel
__global__ void saxpy(int n, float a, float *x, float *y) {
if (int i = blockIdx.x*blockDim.x + threadIdx.x; i < n) {
y[i] = a*x[i] + y[i];

}
}

// create an explicit saxpy task graph using cudaFlow
tf::cudaFlow cf;
tf::cudaTask h2d_x = cf.copy(dx, hx, N);
tf::cudaTask h2d_y = cf.copy(dy, hy, N);
tf::cudaTask d2h_x = cf.copy(hx, dx, N);
tf::cudaTask d2h_y = cf.copy(hy, dy, N);
tf::cudaTask saxpy = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);
cf.offload();

cudaFlow maintains an 1-to-1 mapping between the 
application task graph and a native CUDA graph



An Implicit Saxpy Task Graph in cudaFlow
// capture an implicit saxpy task graph using “cudaFlowCapturer”
tf::cudaFlowCapturer cf;
tf::cudaTask h2d_x = cf.copy(dx, hx, N);
tf::cudaTask h2d_y = cf.copy(dy, hy, N);
tf::cudaTask d2h_x = cf.copy(hx, dx, N);
tf::cudaTask d2h_y = cf.copy(hy, dy, N);
tf::cudaTask saxpy = cf.on([&](cudaStream stream){

// you can capture the saxpy kernel if you know all the kernel execution parameters (e.g., grid)
saxpy<<<(N+255)/256, 256, 0, stream>>>(N, 2.0f, dx, dy)
// or you can capture the saxpy kernel through a public stream-based API
saxpy_through_a_stream_based_API(N, 2.0f, dx, dy)

});
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);
cf.offload();

cudaFlowCapturer automatically performs 
optimization (e.g., deciding tedious stream 

and event insertions) to transform the 
application task graph to a native CUDA graph.

23



Why cudaFlow?
• A slightly more complicated task graph can blow up your CUDA Graph code

24



cudaFlow Design Philosophy
• What cudaFlow and cudaFlowCapturer do

• Encapsulate tasking details of dependent GPU operations
• Build a GPU task graph (tasks, dependencies, updates)
• Manage offload details (graph optimization, instantiation)
• Clean up graph runtime storage 

• What cudaFlow and cudaFlowCapturer don’t do
• Simply kernel programming
• Abstract memory and data management
• Develop yet another runtime

25

C++ Library developers should think carefully about what 
abstraction is mostly suitable for application developers 



cudaFlow API Category
• Graph construction

• Create a task graph of GPU operations
• Graph execution

• Transform the application task graph to a native CUDA graph
• Instantiate the executable graph

• Graph update
• Update task parameters between successive offloads

26



cudaFlow API: Graph Construction

// create a memory set task
tf::cudaTask memset_target = cf.memset(target, 0, sizeof(int) * count);
tf::cudaTask same_as_above = cf.fill(target, 0, count);

// create a memory copy task
tf::cudaTask memcpy_target = cf.memcpy(target, source, sizeof(int) * count);
tf::cudaTask same_as_above = cf.copy(target, source, count);

// create a kernel task
tf::cudaTask kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);

// create a dependency between two tasks
memset_target.precede(kernel);

// capture a kernel task through an internal stream
tf::cudaTask saxpy = cf.on([&](cudaStream stream){ cuBLAS_API(stream, …); });



cudaFlow API: Graph Execution
// offload a cudaFlow
cf.offload(); // run the cudaFlow once 
cf.offload_n(10); // run the cudaFlow 10 times 
cf.offload_until([loops=5] () mutable { return loops-- == 0; }); // five times

// offload a cudaFlow capturer (additional transformation to a native CUDA graph is required)*
// define a transformation algorithms (round-robin with four streams)
cf.make_optimizer<tf::cudaFlowRoundRobinCapturing>(4);
cf.offload(); // run the cudaFlow once 
cf.offload_n(10); // run the cudaFlow 10 times 
cf.offload_until([loops=5] () mutable { return loops-- == 0; }); // five times

* Dian-Lun Lin and Tsung-Wei Huang, “Efficient GPU Computation using Task Graph Parallelism,” European Conference on
Parallel and Distributed Computing (Euro-Par), Portugal, 2021

28



cudaFlow API: Graph Update
// define a task dependency graph
tf::cudaTask task = cf.kernel(grid1, block1, shm1, my_kernel, args1...);
…
// offload the cudaFlow
cf.offload();
// update the parameter of a task previously created by the cudaFlow
cf.kernel(task, grid2, block2, shm2, my_kernel, args2...);
// offload the cudaFlow again with the same graph topology but new kernel parameters
cf.offload();
… Each graph construction method comes with an 

overload to update parameters of a task 
previously created from the same method.

29



cudaFlow API: Graph Update (cont’d)
• Graph topology

• Cannot change the graph topology of an offloaded cudaFlow
• Kernel task

• Cannot change the kernel function but only its parameters
• If a kernel is templated on an operator, use functor instead of lambda

• Cannot change the kernel execution context
• Memory operation task

• Cannot change the CUDA devices to which the operands came from
• Cannot change the CUDA devices of source/target memory pointers

More details can be found at the page of CUDA Graph Runtime API: https://docs.nvidia.com/cuda/cuda-runtime-
api/group__CUDART__GRAPH.html

30

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html


Integration to Taskflow
• cudaFlow can be used as a “cudaFlow task” in Taskflow*

Taskflow@CppCon20: 
https://www.youtube.com/watc
h?v=MX15huP5DsM

* Tsung-Wei Huang, Dian-Lun Lin, Chun-
Xun Lin, and Yibo Lin, “Taskflow: A
Lightweight Parallel and Heterogeneous
Task Graph Computing System,” IEEE
TPDS, 2021 [https://taskflow.github.io/]

const unsigned N = 1<<20; 
std::vector<float> hx(N, 1.0f), hy(N, 2.0f); 
float *dx{nullptr}, *dy{nullptr}; 
auto allocate_x = taskflow.emplace([&](){ cudaMalloc(&dx, 4*N);}); 
auto allocate_y = taskflow.emplace([&](){ cudaMalloc(&dy, 4*N);});

auto cudaflow = taskflow.emplace([&](tf::cudaFlow& cf) { 
auto h2d_x = cf.copy(dx, hx.data(), N);  // CPU-GPU data transfer
auto h2d_y = cf.copy(dy, hy.data(), N);  
auto d2h_x = cf.copy(hx.data(), dx, N);  // GPU-CPU data transfer
auto d2h_y = cf.copy(hy.data(), dy, N); 
auto kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);     
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y); 

}); 

cudaflow.succeed(allocate_x, allocate_y); 
executor.run(taskflow).wait(); 31

https://www.youtube.com/watch?v=MX15huP5DsM
https://taskflow.github.io/


Granularity Matters
tf::Task h2d_x = taskflow.emplace([&](tf::cudaFlow& cf) {
cf.copy(dx, hx.data(), N);

});
tf::Task h2d_y = taskflow.emplace([&](tf::cudaFlow& cf) {
cf.copy(dy, hy.data(), N);

});
tf::Task d2h_x = taskflow.emplace([&](tf::cudaFlow& cf) {
cf.copy(hx.data(), dx, N);

});
tf::Task d2h_y = taskflow.emplace([&](tf::cudaFlow& cf) {
cf.copy(hy.data(), dy, N);

});
tf::Task kernel = taskflow.emplace([&](tf::cudaFlow& cf) { 
cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);

});
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);

The static cost of CUDA Graph is non-
negligible, typically at hundreds of million-

seconds scale. 

// Five cudaFlows to describe saxpy task graph



Granularity Matters (cont’d)
// one cudaFlow to describe the saxpy task graph
tf::cudaFlow cf;
tf::cudaTask h2d_x = cf.copy(dx, hx, N);
tf::cudaTask h2d_y = cf.copy(dy, hy, N);
tf::cudaTask d2h_x = cf.copy(hx, dx, N);
tf::cudaTask d2h_y = cf.copy(hy, dy, N);
tf::cudaTask saxpy = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);
cf.offload();

Putting together as many GPU operations 
in a CUDA graph as possible typically gives 

a better performance.

33



Place a cudaFlow on a Specific GPU
// create a cudaFlow is created under the default GPU context (GPU 0)
tf::cudaFlow cf_on_gpu0;
tf::cudaTask task = cf_on_gpu0.kernel(grid1, block1, shm1, my_kernel_1, args1...);

// create a cudaFlow under the context of GPU 2 using RAII-styled context switch
{

tf::cudaScopedDevice gpu2(2);
tf::cudaFlow gpu2;
tf::cudaTask task = gpu2.kernel(grid2, block2, shm2, my_kernel_2, args2...);

}

// emplace a cudaFlow task under the context of GPU 3 using taskflow
taskflow.emplace_on([](tf::cudaFlow& cf){

cf.kernel(…);
}, 3);

34



35

Agenda
• Understand the motivation behind cudaFlow
• Learn to use the cudaFlow C++ programming model
• Dive into the cudaFlow transformation algorithm
• Evaluate cudaFlow on real-world large GPU applications
• Conclusion



cudaFlow vs cudaFlowCapturer Execution
• cudaFlow is essentially a C++ wrapper over CUDA Graph

• Always has an 1-to-1 mapping between cudaFlow and its CUDA graph
• cudaFlowCapturer instead captures the CUDA graph later

• No guarantee to have 1-to-1 mapping due to closed kernel source code
• cuBLAS, cuSparse, cuDNN, third-party kernel implementations, etc.

• Need transformation from cudaFlowCapturer to a CUDA graph

𝑛!

𝑛"

𝑛#

𝑛$

𝑛%

𝑛&

𝑛'

S1

S2

𝑛! 𝑛" 𝑛& 𝑛'

𝑛# 𝑛$ 𝑛%

Application graph 
(cudaFlowCapturer)

Transformed CUDA graph 
(two streams and four events)

Transformation algorithm by the 
cudaFlow library



Objective of cudaFlowCapturer Transformation

• Multiple transformed graphs exist
• Objective of transformation

• Achieve good load balancing
• Minimize the transformed graph size

𝑛!

𝑛"

𝑛#

𝑛$

𝑛%

𝑛&

𝑛'

S1

S2

𝑛! 𝑛" 𝑛& 𝑛'

𝑛# 𝑛$ 𝑛%

Application graph 
(cudaFlowCapturer)

S1

S2

𝑛! 𝑛" 𝑛# 𝑛$ 𝑛% 𝑛&

𝑛'

S1

S2

𝑛! 𝑛# 𝑛% 𝑛&

𝑛" 𝑛$ 𝑛'Each red point represents an CUDA event



Key Challenge of Graph Transformation
• Streams are asynchronous and stateful
• Events can only be created by the last enqueued node

• Dependency can only be created in a forward manner

n1 n3

n2

S1

S2

n1 n3

n2 n4

S1

S2

𝑛!

𝑛"

𝑛#

𝑛$

𝑛%

𝑛&

𝑛'

Must decide an event at n1



Graph Transformation Algorithm

𝑛!

𝑛"

𝑛#

𝑛$

𝑛%

𝑛&

𝑛'

1. Perform levelization
2. Loop from the lowest to the 

highest level, schedule 
nodes in round-robin (RR)

3. Create events based on the 
scheduled results

Round-robin stream assignment 
enables load balancing and look-
ahead event creation



Graph Transformation Algorithm (cont’d)
1. Perform levelization
2. Loop from the lowest to the 

highest level, schedule 
nodes in round-robin (RR)

3. Create events based on the 
scheduled results

𝑛!

𝑛"

𝑛#

𝑛$

𝑛%

𝑛&

𝑛'

Round-robin stream assignment 
enables load balancing and look-
ahead event creation

Level 1 2 3 



Graph Transformation Algorithm (cont’d)

𝑛!

𝑛"

𝑛#

𝑛$

𝑛%

𝑛&

𝑛'𝑺𝟏

𝑺𝟐

𝑺𝟏

𝑺𝟐

𝑺𝟏

𝑺𝟏

𝑺𝟐

Transformed CUDA graph

Level 1 2 3 

1. Perform levelization
2. Loop from the lowest to the 

highest level, schedule 
nodes in round-robin (RR)

3. Create events based on the 
scheduled results

Round-robin stream assignment 
enables load balancing and look-
ahead event creation



42

Agenda
• Understand the motivation behind cudaFlow
• Learn to use the cudaFlow C++ programming model
• Dive into the cudaFlow transformation algorithm
• Evaluate cudaFlow on real-world large GPU applications
• Conclusion



Machine Learning with cudaFlow
• Model neural network inference using cudaFlow

• Instantiate the CUDA graph once (one-time creation overhead)
• Iterate inference across data batches on the same executable graph
• Update graph parameters between successive inference iterations

Each cudaFlow
contains >1000

of GPU tasks

HPEC 2020 Sparse Neural Network Inference Graph Challenge: https://graphchallenge.mit.edu/champions

Radix-net neural network

https://graphchallenge.mit.edu/champions


Machine Learning with cudaFlow
• Our method “SNIG” *
• Baseline

• Google’s method “Gpipe”
• Nvidia’s method “BF”

• Neural networks
• Four neuron numbers

• 1024, 4096, 16384, 65536
• Three layer numbers

• 120, 480, 1920

• 4 RTX 2080 Ti GPUs
* Dian-Lun Lin and Tsung-Wei Huang, “A Novel Inference Algorithm for Large Sparse Neural Network using Task Graph
Parallelism,” IEEE High-performance and Extreme Computing Conference (HPEC), MA, 2020.

Bold texts denote the best runtime/throughput results



Machine Learning with cudaFlow
• Our method “SNIG” *
• Baseline

• Google’s method “Gpipe”
• Nvidia’s method “BF”

• Neural networks
• Four neuron numbers

• 1024, 4096, 16384, 65536
• Three layer numbers

• 120, 480, 1920

• 4 RTX 2080 Ti GPUs
* Dian-Lun Lin and Tsung-Wei Huang, “A Novel Inference Algorithm for Large Sparse Neural Network using Task Graph
Parallelism,” IEEE High-performance and Extreme Computing Conference (HPEC), MA, 2020.

Bold texts denote the best runtime/throughput results > 2x faster



Machine Learning with cudaFlow Capturer

inference task graph

• Model neural network inference using cudaFlow Capturer *

Runtime

* Dian-Lun Lin and Tsung-Wei Huang, “Efficient GPU Computation using Task Graph Parallelism,” European Conference on
Parallel and Distributed Computing (Euro-Par), Portugal, 2021



Machine Learning with cudaFlow Update

279.84
82.21%

15.82
4.65%

21.65
6.36%

7.07
2.08%

4.47
1.31%

5.3
1.56%

2.23
0.66%
4

1.18%

60.54
17.79%

Graph management

281.36
94.13% 14.38

4.81%

3.18
1.06%17.56

5.87%

Graph management

Update graph reduces 
significant amount of overhead



Circuit Simulation

Transform a hardware design into a task graph

Apply cudaFlow to perform circuit simulation

transform simulate



Circuit Simulation (cont’d)

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1024 4096 16384 65536

Ru
nt

im
e 

(s
ec

on
ds

)

Number of testbenches

Circuit simulation runtime on Spinal benchmark with 1000000 cycles

cudaFlow stream



50

Agenda
• Understand the motivation behind cudaFlow
• Learn to use the cudaFlow C++ programming model
• Dive into the cudaFlow transformation algorithm
• Evaluate cudaFlow on real-world large GPU applications
• Conclusion



Conclusion
• We have presented the motivation behind cudaFlow
• We have presented the cudaFlow C++ programming model

• Explicit graph construction using cudaFlow
• Implicit graph capturing using cudaFlowCapturer
• Integration to the Taskflow project: https://taskflow.github.io

• We have presented the cudaFlow transformation algorithm
• We have presented the performance of cudaFlow

• Large-scale machine learning workload
• Large-scale circuit simulation workload

• Future work will focus on integrating coroutine into cudaFlow

51

https://taskflow.github.io/


52

Thank You All Using cudaFlow/Taskflow!



Use the right tool for the right job
Taskflow: https://taskflow.github.io

https://taskflow.github.io/

