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Why GPU Computing?
• GPU has advanced scientific computing to a new level
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CPU vs GPU
• CPU is built for compute-driven applications

• A few powerful threads to compute critical control-flow blocks very fast
• GPU is built for throughput-driven applications 

• Many lightweight threads to compute large volume of data very fast

Nvidia RTX 6000 
GPU card

Intel i7 CPU
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GPU Application Landscape
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Programming GPU
• Compute-unified device architecture (CUDA) model
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// saxpy.cu (single-precision A·X Plus Y) 
__global__ void saxpy(int n, float a, float *x, float *y) 
{ 
int i = blockIdx.x*blockDim.x + threadIdx.x; 
if (i < n) {
y[i] = a*x[i] + y[i];

}
}
// calling the saxpy kernel with grid, block, and shm
saxpy<<<grid, block, shm, stream>>>(n, a, x, y);

// use nvidia cuda compiler to compile the code
~$ nvcc saxpy.cu –o saxpy

2 2 2 2 2 2 2 2 2 2a

x 2 3 2 1 3 2 3 2 1 2

y 1 1 2 3 1 1 2 3 1 1

*

+

5 7 6 5 7 5 8 7 3 5y



Today’s GPU Workload is Very Complex
• GPU-accelerated circuit simulation task graph

• >100 kernels
• >100 dependencies
• >500s to finish

What are the output values of gates? 
(+500M gates in nvdla designs 
https://github.com/nvdla)

…
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The GPU task graph is 
repetitively executed for each 

clock cycle (+100K cycles).

https://github.com/nvdla


Another Example in Machine Learning
• Large neural network inference GPU task graph

• Billions of parameters
• >1000 kernels
• >2000 dependencies
• Hours to finish

9

The GPU task graph is repetitively 
executed for millions (or infinite 

amount) of data batches.



CUDA Execution Model: Stream
• Launch a kernel through an asynchronous stream

• Launch a kernel (e.g., my_kernel<<<grid, block, shm, stream>>>)
• Run a kernel (e.g., __global__ my_kernel())

• The “stream” variable keeps a sequence of kernel tasks to run
• A stream is essentially an in-order queue (like std::queue)
• A stream can synchronize with others through “events” (dependency)
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event

event

event

// example stream APIs 
cudaStreamCreate
cudaStreamMemcpyAsync
cudaStreamSynchronize
cudaEventRecord
…



Pros and Cons of Stream-based Execution
• Pros: Enable asynchronous execution to better utilize GPU

• Memory copies overlap with kernel execution
• Individual kernels running on different streams can overlap

• Cons: Incur per-operation overhead at each stream
• The overhead can become significant for iterative GPU workloads
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for(int step=0; step<1000000; step++){
for(int krnl=0; krnl<1000000; krnl++){
MyKernel<<<grid, block, shm, stream>>>(out_d, in_d);

}
cudaStreamSynchronize(stream);  

}

Execution overhead

Synchronization overhead



Task Dependency Graph is Hard to Build

// using streams to build a task dependency graph 
kernel1<<>>(); 
cudaEventRecord(e1, a); 
kernel2<<>>(); 
cudaStreamWaitEvent(b, e1); 
cudaMemcpyAsync(,,,,b); 
cudaEventRecord(e2, b); 
kernel5<<>>(); 
cudaEventRecord(e3, a); 
cudaEventSynchronize(e2); 
// doing some CPU code to overlap kernel 5 via e2 and e3 
cudaStreamWaitEvent(b, e3); 
kernel4<<>>();

• Need to insert explicit events between GPU operations at different streams
• GPU runtime can’t see tasks ahead to perform whole-graph optimization
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What About Large GPU Task Graphs?
• GPU-accelerated circuit simulation task graph

• >100 kernels
• >100 dependencies



CUDA Execution Model: CUDA Graph
• Run a GPU workload using CUDA Graph with three steps

1. Define an in-memory representation of the task dependency graph
• Each node represents a GPU operation (e.g., memory copy, kernel)
• Each edge represents a dependency

2. Instantiate an optimized executable graph from a defined graph
3. Launch the executable graph and update parameters between runs

• Launch the executable graph requires only a single CPU call
• CUDA runtime will perform automatic scheduling optimization
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Define graph Instantiate executable Run Update executable Run …

A B A B A B’



Comparison to Stream-based Execution
• CUDA Graph removes stream launch overhead for iterative patterns

• Launch a CUDA graph requires only a single CPU call
• CUDA runtime can perform the whole-graph optimization
• New GPU architectures (e.g., A100) have many task graph optimizations 
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Ampere architecture white paper performance report: https://images.nvidia.com/aem-dam/en-
zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf


Two Ways to Build a CUDA Graph
• Explicit CUDA Graph construction
• Implicit CUDA Graph construction

16
Explicit Implicit



Explicit CUDA Graph Construction
• Users define a CUDA graph explicitly using CUDA Graph API
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// Graph data structure
cudaGraph_t // CUDA graph (opaque)
cudaGraphNode_t // CUDA graph node (opaque)
cudaKernelNodeParams // CUDA GPU kernel node parameters
…
// Explicit graph construction API
cudaGraphCreate // Creates a graph
cudaGraphAddMemcpyNode // Creates a memcpy node
cudaGraphAddKernelNode // Creates a kernel execution node
cudaGraphGetNodes // Returns a graph's nodes
cudaGraphInstantiate // Creates an executable graph from a graph
cudaGraphLaunch // Launches an executable graph in a stream
cudaGraphExecDestroy // Destroys an executable graph
cudaGraphDestroy // Destroys a graph
...



Implicit CUDA Graph Construction
• Users capture a CUDA graph implicitly through existing streams
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cudaGraph_t graph; 
cudaStreamBeginCapture(a); // begin capturing a CUDA graph
kernel1<<…>>(); 
cudaEventRecord(e1, a); 
kernel2<<…>>(); 
cudaStreamWaitEvent(b, e1); 
cudaMemcpyAsync(,,,,b); 
kernel5<<…>>(); 
cudaEventRecord(e3, a); 
cudaLaunchHostFunc(b, cpucode, params); 
cudaStreamWaitEvent(b, e3); 
kernel4<<…>>(); 
cudaStreamEndCapture(a, &graph);   // end capturing a CUDA graph
cudaGraphInstantiate(…);
…

use stream to execute 
dependent GPU 
operations as before



Comparison between Explicit and Implicit Methods

• Explicit CUDA Graph construction
• J straightforward graph definition identical to an application task graph
• J performance is typically the best
• L extremely tedious to program

• Flat parameter structure and CUDA Graph API produce a lot of boilerplate code
• Often result in 2-10x increase of the codebase

• L can only handle GPU workloads with known parameters
• Implicit CUDA Graph capturing 

• J flexible in getting a CUDA graph from existing stream-based code
• L if that code doesn’t exist, you need to manage streams and events

!!! CUDA Graph performance is highly dependent on the stream assignment
• L not easy to adapt code to new application task graphs
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How can we streamline the programming of CUDA 
Graph while encapsulating technical details 

between an application task graph and its native 
CUDA graph?

cudaFlow Project Mantra

20
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An Explicit Saxpy Task Graph in cudaFlow
// saxpy (single-precision A·X Plus Y) kernel
__global__ void saxpy(int n, float a, float *x, float *y) {
if (int i = blockIdx.x*blockDim.x + threadIdx.x; i < n) {
y[i] = a*x[i] + y[i];

}
}

// create an explicit saxpy task graph using cudaFlow
tf::cudaFlow cf;
tf::cudaTask h2d_x = cf.copy(dx, hx, N);
tf::cudaTask h2d_y = cf.copy(dy, hy, N);
tf::cudaTask d2h_x = cf.copy(hx, dx, N);
tf::cudaTask d2h_y = cf.copy(hy, dy, N);
tf::cudaTask saxpy = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);
cf.offload();

cudaFlow maintains an 1-to-1 mapping between the 
application task graph and a native CUDA graph



An Implicit Saxpy Task Graph in cudaFlow
// capture an implicit saxpy task graph using “cudaFlowCapturer”
tf::cudaFlowCapturer cf;
tf::cudaTask h2d_x = cf.copy(dx, hx, N);
tf::cudaTask h2d_y = cf.copy(dy, hy, N);
tf::cudaTask d2h_x = cf.copy(hx, dx, N);
tf::cudaTask d2h_y = cf.copy(hy, dy, N);
tf::cudaTask saxpy = cf.on([&](cudaStream stream){

// you can capture the saxpy kernel if you know all the kernel execution parameters (e.g., grid)
saxpy<<<(N+255)/256, 256, 0, stream>>>(N, 2.0f, dx, dy)
// or you can capture the saxpy kernel through a public stream-based API
saxpy_through_a_stream_based_API(N, 2.0f, dx, dy)

});
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);
cf.offload();

cudaFlowCapturer automatically performs 
optimization (e.g., deciding tedious stream 

and event insertions) to transform the 
application task graph to a native CUDA graph.
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Why cudaFlow?
• A slightly more complicated task graph can blow up your CUDA Graph code
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cudaFlow Design Philosophy
• What cudaFlow and cudaFlowCapturer do

• Encapsulate tasking details of dependent GPU operations
• Build a GPU task graph (tasks, dependencies, updates)
• Manage offload details (graph optimization, instantiation)
• Clean up graph runtime storage 

• What cudaFlow and cudaFlowCapturer don’t do
• Simply kernel programming
• Abstract memory and data management
• Develop yet another runtime

25

C++ Library developers should think carefully about what 
abstraction is mostly suitable for application developers 



cudaFlow API Category
• Graph construction

• Create a task graph of GPU operations
• Graph execution

• Transform the application task graph to a native CUDA graph
• Instantiate the executable graph

• Graph update
• Update task parameters between successive offloads

26



cudaFlow API: Graph Construction

// create a memory set task
tf::cudaTask memset_target = cf.memset(target, 0, sizeof(int) * count);
tf::cudaTask same_as_above = cf.fill(target, 0, count);

// create a memory copy task
tf::cudaTask memcpy_target = cf.memcpy(target, source, sizeof(int) * count);
tf::cudaTask same_as_above = cf.copy(target, source, count);

// create a kernel task
tf::cudaTask kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);

// create a dependency between two tasks
memset_target.precede(kernel);

// capture a kernel task through an internal stream
tf::cudaTask saxpy = cf.on([&](cudaStream stream){ cuBLAS_API(stream, …); });



cudaFlow API: Graph Execution
// offload a cudaFlow
cf.offload(); // run the cudaFlow once 
cf.offload_n(10); // run the cudaFlow 10 times 
cf.offload_until([loops=5] () mutable { return loops-- == 0; }); // five times

// offload a cudaFlow capturer (additional transformation to a native CUDA graph is required)*
// define a transformation algorithms (round-robin with four streams)
cf.make_optimizer<tf::cudaFlowRoundRobinCapturing>(4);
cf.offload(); // run the cudaFlow once 
cf.offload_n(10); // run the cudaFlow 10 times 
cf.offload_until([loops=5] () mutable { return loops-- == 0; }); // five times

* Dian-Lun Lin and Tsung-Wei Huang, “Efficient GPU Computation using Task Graph Parallelism,” European Conference on
Parallel and Distributed Computing (Euro-Par), Portugal, 2021
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cudaFlow API: Graph Update
// define a task dependency graph
tf::cudaTask task = cf.kernel(grid1, block1, shm1, my_kernel, args1...);
…
// offload the cudaFlow
cf.offload();
// update the parameter of a task previously created by the cudaFlow
cf.kernel(task, grid2, block2, shm2, my_kernel, args2...);
// offload the cudaFlow again with the same graph topology but new kernel parameters
cf.offload();
… Each graph construction method comes with an 

overload to update parameters of a task 
previously created from the same method.
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cudaFlow API: Graph Update (cont’d)
• Graph topology

• Cannot change the graph topology of an offloaded cudaFlow
• Kernel task

• Cannot change the kernel function but only its parameters
• If a kernel is templated on an operator, use functor instead of lambda

• Cannot change the kernel execution context
• Memory operation task

• Cannot change the CUDA devices to which the operands came from
• Cannot change the CUDA devices of source/target memory pointers

More details can be found at the page of CUDA Graph Runtime API: https://docs.nvidia.com/cuda/cuda-runtime-
api/group__CUDART__GRAPH.html

30

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html


Integration to Taskflow
• cudaFlow can be used as a “cudaFlow task” in Taskflow*

Taskflow@CppCon20: 
https://www.youtube.com/watc
h?v=MX15huP5DsM

* Tsung-Wei Huang, Dian-Lun Lin, Chun-
Xun Lin, and Yibo Lin, “Taskflow: A
Lightweight Parallel and Heterogeneous
Task Graph Computing System,” IEEE
TPDS, 2021 [https://taskflow.github.io/]

const unsigned N = 1<<20; 
std::vector<float> hx(N, 1.0f), hy(N, 2.0f); 
float *dx{nullptr}, *dy{nullptr}; 
auto allocate_x = taskflow.emplace([&](){ cudaMalloc(&dx, 4*N);}); 
auto allocate_y = taskflow.emplace([&](){ cudaMalloc(&dy, 4*N);});

auto cudaflow = taskflow.emplace([&](tf::cudaFlow& cf) { 
auto h2d_x = cf.copy(dx, hx.data(), N);  // CPU-GPU data transfer
auto h2d_y = cf.copy(dy, hy.data(), N);  
auto d2h_x = cf.copy(hx.data(), dx, N);  // GPU-CPU data transfer
auto d2h_y = cf.copy(hy.data(), dy, N); 
auto kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);     
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y); 

}); 

cudaflow.succeed(allocate_x, allocate_y); 
executor.run(taskflow).wait(); 31

https://www.youtube.com/watch?v=MX15huP5DsM
https://taskflow.github.io/


Granularity Matters
tf::Task h2d_x = taskflow.emplace([&](tf::cudaFlow& cf) {
cf.copy(dx, hx.data(), N);

});
tf::Task h2d_y = taskflow.emplace([&](tf::cudaFlow& cf) {
cf.copy(dy, hy.data(), N);

});
tf::Task d2h_x = taskflow.emplace([&](tf::cudaFlow& cf) {
cf.copy(hx.data(), dx, N);

});
tf::Task d2h_y = taskflow.emplace([&](tf::cudaFlow& cf) {
cf.copy(hy.data(), dy, N);

});
tf::Task kernel = taskflow.emplace([&](tf::cudaFlow& cf) { 
cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);

});
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);

The static cost of CUDA Graph is non-
negligible, typically at hundreds of million-

seconds scale. 

// Five cudaFlows to describe saxpy task graph



Granularity Matters (cont’d)
// one cudaFlow to describe the saxpy task graph
tf::cudaFlow cf;
tf::cudaTask h2d_x = cf.copy(dx, hx, N);
tf::cudaTask h2d_y = cf.copy(dy, hy, N);
tf::cudaTask d2h_x = cf.copy(hx, dx, N);
tf::cudaTask d2h_y = cf.copy(hy, dy, N);
tf::cudaTask saxpy = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);
cf.offload();

Putting together as many GPU operations 
in a CUDA graph as possible typically gives 

a better performance.
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Place a cudaFlow on a Specific GPU
// create a cudaFlow is created under the default GPU context (GPU 0)
tf::cudaFlow cf_on_gpu0;
tf::cudaTask task = cf_on_gpu0.kernel(grid1, block1, shm1, my_kernel_1, args1...);

// create a cudaFlow under the context of GPU 2 using RAII-styled context switch
{

tf::cudaScopedDevice gpu2(2);
tf::cudaFlow gpu2;
tf::cudaTask task = gpu2.kernel(grid2, block2, shm2, my_kernel_2, args2...);

}

// emplace a cudaFlow task under the context of GPU 3 using taskflow
taskflow.emplace_on([](tf::cudaFlow& cf){

cf.kernel(…);
}, 3);

34
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cudaFlow vs cudaFlowCapturer Execution
• cudaFlow is essentially a C++ wrapper over CUDA Graph

• Always has an 1-to-1 mapping between cudaFlow and its CUDA graph
• cudaFlowCapturer instead captures the CUDA graph later

• No guarantee to have 1-to-1 mapping due to closed kernel source code
• cuBLAS, cuSparse, cuDNN, third-party kernel implementations, etc.

• Need transformation from cudaFlowCapturer to a CUDA graph
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Objective of cudaFlowCapturer Transformation

• Multiple transformed graphs exist
• Objective of transformation

• Achieve good load balancing
• Minimize the transformed graph size
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Key Challenge of Graph Transformation
• Streams are asynchronous and stateful
• Events can only be created by the last enqueued node

• Dependency can only be created in a forward manner
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Graph Transformation Algorithm
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Graph Transformation Algorithm (cont’d)
1. Perform levelization
2. Loop from the lowest to the 

highest level, schedule 
nodes in round-robin (RR)

3. Create events based on the 
scheduled results
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Graph Transformation Algorithm (cont’d)
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Machine Learning with cudaFlow
• Model neural network inference using cudaFlow

• Instantiate the CUDA graph once (one-time creation overhead)
• Iterate inference across data batches on the same executable graph
• Update graph parameters between successive inference iterations

Each cudaFlow
contains >1000

of GPU tasks

HPEC 2020 Sparse Neural Network Inference Graph Challenge: https://graphchallenge.mit.edu/champions

Radix-net neural network

https://graphchallenge.mit.edu/champions


Machine Learning with cudaFlow
• Our method “SNIG” *
• Baseline

• Google’s method “Gpipe”
• Nvidia’s method “BF”

• Neural networks
• Four neuron numbers

• 1024, 4096, 16384, 65536
• Three layer numbers

• 120, 480, 1920

• 4 RTX 2080 Ti GPUs
* Dian-Lun Lin and Tsung-Wei Huang, “A Novel Inference Algorithm for Large Sparse Neural Network using Task Graph
Parallelism,” IEEE High-performance and Extreme Computing Conference (HPEC), MA, 2020.

Bold texts denote the best runtime/throughput results



Machine Learning with cudaFlow
• Our method “SNIG” *
• Baseline

• Google’s method “Gpipe”
• Nvidia’s method “BF”

• Neural networks
• Four neuron numbers

• 1024, 4096, 16384, 65536
• Three layer numbers

• 120, 480, 1920

• 4 RTX 2080 Ti GPUs
* Dian-Lun Lin and Tsung-Wei Huang, “A Novel Inference Algorithm for Large Sparse Neural Network using Task Graph
Parallelism,” IEEE High-performance and Extreme Computing Conference (HPEC), MA, 2020.

Bold texts denote the best runtime/throughput results > 2x faster



Machine Learning with cudaFlow Capturer

inference task graph

• Model neural network inference using cudaFlow Capturer *

Runtime

* Dian-Lun Lin and Tsung-Wei Huang, “Efficient GPU Computation using Task Graph Parallelism,” European Conference on
Parallel and Distributed Computing (Euro-Par), Portugal, 2021



Machine Learning with cudaFlow Update
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Graph management
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Graph management

Update graph reduces 
significant amount of overhead



Circuit Simulation

Transform a hardware design into a task graph

Apply cudaFlow to perform circuit simulation

transform simulate



Circuit Simulation (cont’d)

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1024 4096 16384 65536

Ru
nt

im
e 

(s
ec

on
ds

)

Number of testbenches

Circuit simulation runtime on Spinal benchmark with 1000000 cycles

cudaFlow stream



50

Agenda
• Understand the motivation behind cudaFlow
• Learn to use the cudaFlow C++ programming model
• Dive into the cudaFlow transformation algorithm
• Evaluate cudaFlow on real-world large GPU applications
• Conclusion



Conclusion
• We have presented the motivation behind cudaFlow
• We have presented the cudaFlow C++ programming model

• Explicit graph construction using cudaFlow
• Implicit graph capturing using cudaFlowCapturer
• Integration to the Taskflow project: https://taskflow.github.io

• We have presented the cudaFlow transformation algorithm
• We have presented the performance of cudaFlow

• Large-scale machine learning workload
• Large-scale circuit simulation workload

• Future work will focus on integrating coroutine into cudaFlow
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https://taskflow.github.io/
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Thank You All Using cudaFlow/Taskflow!



Use the right tool for the right job
Taskflow: https://taskflow.github.io

https://taskflow.github.io/

