
1

HeteroTime: Accelerating Static
Timing Analysis using GPUs

Dr. Tsung-Wei Huang
Department of Electrical and Computer Engineering

University of Utah, UT
https://tsung-wei-huang.github.io/

https://tsung-wei-huang.github.io/

2

Agenda

q Introduce the scalability problem of STA
q What is STA and its challenges?
q Why do we need new parallel paradigm for STA?

q Accelerate graph-based analysis using GPU
q Accelerate path-based analysis using GPU

3

Static Timing Analysis

q Static timing analysis (STA)
q Key step in the VLSI design
q Verify the circuit timing

q Analyze worst-case timing
q Minimum timing values
q Maximum timing values

q Challenges
q Compute giant graphs
q Analyze millions of paths
q Balance the loads
q … STA Goal: What paths violate the

timing constraint?

4

Timing Checks (Required Arrival Time)

q Modern circuits are sequential
q Drive data signal via clocks
q Capture data via flip-flops (FF)s

q Timing constraints
q Min required arrival time

• After clock: hold

q Max required arrival time
• Before clock: setup

Required arrival time interval

OK – no violation

Hold
violation

Setup
violation

5

Can I pass the block before the
next red light with 40 mph?

“Traffic Light” Analogy

6

Building a Good Traffic System is Hard

Trillions of sections and traffic lights to analyze …

7

STA is Computationally Challenging!

q STA graphs is extremely large and irregular
q Millions to billions of nodes and edges
q Propagate timing information along giant graphs

ISPD circuit design (10M gates)

STA graphs are extremely large and irregular

STA graphs A datapath

Complete analysis can take 8 hours and 800 GB RAM

8

Our STA Solution: OpenTimer

q Open-source incremental timing analysis software
q https://github.com/OpenTimer/OpenTimer

OpenTimer Infrastructure (pluggable modules)

Builder
(lineage)

Action
(update timing)

Accessor
(inspection)

Incremental
timing

OpenTimer C++ API

OpenTimer Shell CI, Regression,
Testing frameworks

Application-dependent binary
(TAU, ICCAD CAD contests)

Parser-SPEF Parser-Verilog Cpp-Taskflow Prompt …

T.-W. Huang et al., “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD21

https://github.com/OpenTimer/OpenTimer

9

How Can We Make STA Run Faster?

q Leverage many-core CPUs to speed up the runtime
q Dramatic speed-up using 8 cores
q Yet, scalability saturates at about 10—16 cores

0 500 1000 1500 2000 2500

80 CPUs
40 CPUs
16 CPUs

8 CPUs
1 CPUs

Runtime vs CPUs

Full Timing Analysis

4-8x faster

saturated

10

Observed Scalability Bottleneck

q CPU-only parallelism stagnates at about 10 cores
q “Amdahl’s Law” limits the strong scalability

• The maximum speed-up you can achieve from a problem is
proportional to the part that can be parallelized

q Circuit graph structures limits the maximum parallelism
• If the graph has only 10 parallel nodes at a level, we won’t

achieve 40x speed-up

q Irregular computations limits the memory bandwidth
• STA is graph-oriented, not cache-friendly

q Need to incorporate new parallel paradigms
q GPU opens opportunities for new scalability milestones

• e.g., 20—80x speed-up reported in placement

11

How can we leverage new GPU parallel paradigms to
accelerate static timing analysis algorithms and

achieve transformational performance milestones?

12

Leverage GPU to Accelerate STA

q We target two important STA steps:
q Graph-based analysis (GBA) – shortest path finding
q Path-based analysis (PBA) – k-shortest path finding

q We design new GPU-accelerated STA algorithms:
q CPU-GPU task decomposition
q GPU kernels for timing update PBA analyzes critical paths one

by one on a updated graph

GBA computes the delay, slew,
arrival time at each node and edge

13

Agenda

q Introduce the scalability problem of STA
q What is STA and its challenges?
q Why do we need new parallel paradigm for STA?

q Accelerate graph-based analysis using GPU
q Accelerate path-based analysis using GPU

14

Z Guo, T-W Huang, and Y Lin, “GPU-
Accelerated Static Timing Analysis,” IEEE/ACM
International Conference on Computer-aided
Design (ICCAD), 2020

Research Question:
• How can we use GPU to speed up graph-

based analysis (GBA)?
• How do we overcome the challenges of

running irregular graph computations on
GPU?

15

Runtime Breakdown of GBA

q GBA has three time-consuming steps
1. Prepare tasks through levelization à 42% runtime

• All pins at the same level can run in parallel => data parallelism

2. Compute RC delay à 48% runtime
• RC network (e.g., SPEF) can take GBs of data to compute

3. Propagate timing à 10% runtime

Leon2 circuit diagram and layoutLeon2 GBA runtime breakdown

16

GPU-Accelerated GBA Algorithm Flow

“Data parallelism”“Data parallelism”

17

Step #1: Levelization

q Levelize the circuit graph to a 2D levellist
q Nodes at the same level can run in parallel (red circle)
q Nodes at the same level can be modeled as a batch

q GPU-accelerated levelization using parallel frontiers

18

Step #1: Levelization (cont’d)

q Levelization kernels

Each GPU thread to expand pin level from l to l+1

19

Step #2: RC Update

q The Elmore delay model
q Phase 1: 𝑙𝑜𝑎𝑑! = ∑" #$ %&#'()* ! 𝑐𝑎𝑝"

q For example, 𝑙𝑜𝑎𝑑! = 𝑐𝑎𝑝! + 𝑐𝑎𝑝" + 𝑐𝑎𝑝# + 𝑐𝑎𝑝$ = 𝑐𝑎𝑝! +
𝑙𝑜𝑎𝑑" + 𝑙𝑜𝑎𝑑$

q Phase 2: 𝑑𝑒𝑙𝑎𝑦! = ∑" #$ +,- ,)(. 𝑐𝑎𝑝"×𝑅/→123 !,"
q For example, 𝑑𝑒𝑙𝑎𝑦" = 𝑐𝑎𝑝!𝑅%→! + 𝑐𝑎𝑝$𝑅%→! + 𝑐𝑎𝑝"𝑅%→" +

𝑐𝑎𝑝#𝑅%→" = 𝑑𝑒𝑙𝑎𝑦! + 𝑅!→"𝑙𝑜𝑎𝑑"

Two-phase tree
traversal to

compute delay

20

Step #2: RC Update Upward Phase

q Store the parent index of each node on GPU
q Perform dynamic programming on trees

DFS_load(u):
load[u] = cap[u]
For child v of u:

DFS_load(v)
load[u] += load[v]

GPU_load:
For u in [C, D, B, E, A]:

load[u] += cap[u]
load[u.parent] += load[u]

21

Step #2: RC Update Downward Phase

q Store the parent index of each node on GPU
q Perform dynamic programming on trees

DFS_delay(u):
For child v of u:

temp := R[u,v]*load[v]
delay[v] = delay[u] + temp
DFS_delay(v)

GPU_delay:
For u in [A, E, B, D, C]:

temp := R[u.parent,u]*load[u]
delay[u]=delay[u.parent] + temp

22

Step #2: RC Update Memory Coalesce

q Consecutive threads access consecutive memory
q RC update has four cases: {Rise, Fall} x {Early, Late}

23

Step #2: RC Update Kernels (flatten + update)

Flatten the
data to array

for “data
parallelism”

Each thread
computes

one RC tree

24

Step #3: Cell Delay Update

q Perform linear inter- and extra-polation in batches
q x-axis (input slew) and then y-axis (output load)

25

Step #3: Cell Delay Update Kernels

Each thread performs binary
search on x-axis and y-axis to find

the slew and capacitance

26

Experimental Setting

q Machine configuration
q Nvidia CUDA, RTX 2080
q 40 Intel Xeon Gold 6138 CPU cores

q Execution parameters for GPU kernels
q RC Tree Flattening

• 64 threads per block with one block for each net
q Levelization

• 128 threads per block
q RC delay computation

• 4 threads for each net (one for each Early/Late and Rise/Fall
condition) with a block of 64 nets

q Cell delay computation
• 4 threads for each arc, with a block of 32 arcs

27

Overall Performance

q Comparison with OpenTimer of 40 CPUs
q Run on large TAU15 Benchmarks (>20K gates)

TAU15 Contest on Incremental Timing Analysis: https://sites.google.com/site/taucontest2015

T.-W. Huang et al., “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD21

https://sites.google.com/site/taucontest2015

28

Runtime Breakdown

q Circuit leon2 (21 M nodes)

29

Runtime vs CPUs

Our runtime of 1 CPU and 1 GPU is very close to OpenTimer of 40 CPUs

q Significant performance gap between CPU and GPU

Improvement of
GPU

30

Runtime vs Problem Sizes

q Problem size matters for GPU acceleration
q When to enable GPU acceleration?

q Net count > 20K
q Gate count > 50K
q Propagation candidate count > 15K

31

Agenda

q Introduce the scalability problem of STA
q What is STA and its challenges?
q Why do we need new parallel paradigm for STA?

q Accelerate graph-based analysis using GPU
q Accelerate path-based analysis using GPU

32

G Guo, T-W Huang, Y Lin, and M Wong, “GPU-
Accelerated Path-based Timing Analysis,”
IEEE/ACM Design Automation Conference
(DAC), 2021

Research Question:
• How can we use GPU to speed up path-

based analysis (PBA)?
• How do we overcome the challenges of

generating large numbers of critical paths
to analyze with GPU?

33

Path-based Analysis (PBA)

q Identify a set of critical paths from a updated graph
q Exponential number of paths in the circuit graph

q Re-analyze each path with path-specific update
q Re-propagate the slew and remove pessimism
q Advanced on-chip variation (AOCV)
q Common path pessimism removal (CPPR)
q … Paths marked failing at GBA may become passing

after PBA!

34

PBA is Extremely Time-Consuming

q Speed vs Accuracy (pessimism removal) tradeoff

/RJDULWKPLF�5XQWLPH

3H
VV
LP
LVP

PLQ PD[

PD[

�

2XU�3%$
�&38��*38

)XQGDPHQWDO�FRPSXWDWLRQDO�FKDOOHQJHV�RI�3DWK�
EDVHG�$QDO\VLV�PXVW�EH�VROYHG

35

A Key Step: Generate Critical Paths

q We introduce implicit path representation
q Each path is represented using O(1) space and time
q Each path is ranked through a prefix tree & a suffix tree

T.-W. Huang et al., “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD21

36

GPU-Accelerated PBA Algorithm Flow

&RQVWUXFW�6KRUWHVW�3DWK�)RUHVW

/RRN�DKHDG�/HYHO�$OORFDWLRQ

,QWHUOHYHO�([SDQVLRQ

,QWUDOHYHO�&RPSUHVVLRQ

PD[�OHYHO

,QFUHPHQW�OHYHO

<

1

3DWK�5HFRYHU\

&38�([HFXWLRQ

*38�([HFXWLRQ

Level 1

Level 2

37

Step #1: Generate Suffix Tree on GPU

38

Step #1: Generate Suffix Tree Kernel

Flattened data
structure to benefit

data parallelism

Bellman loop to find
the shortest path tree
(each thread per edge)

39

Step #2: Expand Prefix Tree on GPU

$ '

(

*

+ .

% (

*

+ .

(

&) ,

.

6WDUWSRLQW (QGSRLQW'HYLDWLRQ�(GJH 6XIIL[�(GJH

3DWK�$(+.

3DWK�%(+.

3DWK�&).

/HYHO�� /HYHO��

40

Step #2: Expand Prefix Tree on GPU (cont’d)

q Iteratively grow GPU memory at each expansion
q Each iteration uses GPU to decide path candidates
q Each iteration uses CPU to prune path candidates
q Each path candidate takes O(1) space “deviation edge”

100 paths

1000 paths

10000 paths

More levels = More paths
= Higher accuracy

41

Step #2: Expand Prefix Tree Kernel

Level 1

Level 2

expand
reduce

cudaMalloc

Key idea: levelized prefix tree

Level 1, 2, 3, …

42

Experimental Setting

q Machine configuration
q Nvidia CUDA, RTX 2080
q 40 Intel Xeon Gold 6138 CPU cores

q Measure the accuracy-runtime tradeoff
q “MDL” stands for maximum deviation level

q Execution parameters for GPU kernels
q Suffix tree kernel

• 1024 threads per block

q Prefix tree kernel
• 1024 threads per block

43

Overall Performance

q Compare with OpenTimer’s CPU-based PBA
q Report speed-up at different MDLs

q Achieve significant speed-up at large designs
q 611x speed-up in leon2 (1.3M gates)
q 221x speed-up in leon3mp (1.2M gates)

T.-W. Huang et al., “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD21

44

Path Accuracy vs MDL

q Achieve decent accuracy at 10—12 GPU iterations

&RQVWUXFW�6KRUWHVW�3DWK�)RUHVW

/RRN�DKHDG�/HYHO�$OORFDWLRQ

,QWHUOHYHO�([SDQVLRQ

,QWUDOHYHO�&RPSUHVVLRQ

PD[�OHYHO

,QFUHPHQW�OHYHO

<

1

3DWK�5HFRYHU\

&38�([HFXWLRQ

*38�([HFXWLRQ

45

GPU Speed-up vs CPUs

q one GPU is even faster than OpenTimer with 40 CPUs
q 44x on leon2
q 25x on leon3mp
q 46x on netcard
q 35x on b19

46

Conclusion

q Introduced the runtime challenges of STA
q Introduced graph-based analysis
q Introduced path-based analysis

q Accelerated the graph-based analysis using GPU
q Achieved 4x speed-up over 40 CPUs on large designs

q Accelerated the path-based analysis using GPU
q Achieved 600x speed-up over 40 CPUs on large designs

q Future work
q Consider other important STA tasks (CPPR, CCS, etc.)
q Leverage cudaMallocAsync to boost memory efficiency
q Leverage cudaGraph to reduce kernel launch overheads
q Collaborate with experts in Nvidia!

Use right algorithms for GPU!
tsung-wei.huang@utah.edu

mailto:tsung-wei.huang@utah.edu

