
An Efficient Implementation of Parallel Breadth-
first Search

Pao-I Chen and Tsung-Wei (TW) Huang
Department of Electrical and Computer Engineering

University of Wisconsin at Madison, Madison, WI
https://tsung-wei-huang.github.io/

https://tsung-wei-huang.github.io/

2

Breadth-first Search (BFS) and Algorithm
• BFS is a fundamental graph traversal algorithm for many applications

• Ex: shortest path finding, network analysis, path finding

• BFS is easy to parallelize due to its level-by-level traversal process
• Nodes at level L finish first before going to L+1
• Nodes at the same level can run in parallel
• Implemented via a frontier-based framework

• Guarded by compare-and-swap (CAS) operations

0

0

1

1

1

2

2

2

3
3

3

3

frontiers

4

4

4

4

3

Bi-directional BFS (BD-BFS) Algorithm
• Instead of finding next frontiers from current frontiers (“top-down”)

• Process all vertices in parallel and let each unexplored vertex decide whether it can be the
next frontier, i.e., with a neighbor at the current frontier
• Aka “bottom-up step”

• Pros and cons of this bottom-up step:
J High parallelism, early break, no CAS operations
L Redundant work (i.e., no neighbors in frontiers)

0

0

1

1

1

2

2

2

3
3

3

3

frontiers

4

4

4

4

1S. Beamer, “Direction-optimizing Breadth-First Search,” SC’12

4

Implementation Challenges in BD-BFS
• BD-BFS relies on carefully tuned parameters to balance the two steps

• Nf: the number of current frontiers
• Mf: the number of edges to check from current frontiers
• Mu: the number of edges to check from unexplored vertices
• CTB: user-defined threshold to switch from top-down step to bottom-up step
• CBT: user-defined threshold to switch from bottom-up step to top-down step

• Other costly implementation details1
• Concurrent bitmap for tracking vertex status
• Sliding window-based queue
• Iterative parallel reductions for

• Updating Mf, Mu

• Extracting unexplored vertices
• …

1GAP benchmark suite: https://github.com/sbeamer/gapbs

https://github.com/sbeamer/gapbs

5

The Proposed Algorithm (1/2)
• A simple yet effective idea – directly estimate the workload of each step

• Q: frontier queue, tracking the current frontiers
• R: remainder queue, tracking the current unexplored vertices
• ⍺: average edge degree per vertex, |E|/|V|
• Top-down work ∝ |Q|× ⍺
• Bottom-up work ∝ |R|

0

0

1

1

1

2

2

2

3
3

3

3

Top down: ⍺|Q| < |R|

4

4

4

4

Bottom up: ⍺|Q| ≥ |R|

6

The Proposed Algorithm (2/2)

Top-down step

Bottom-up step

7

Optimization Details
• We perform parallel traversal only when the queue size is greater than 32

• Avoid unnecessary threading overhead when the vertex parallelism is limited

• We perform lazy initialization and lazy update on R whenever needed
• Avoid frequent update on R as in practice bottom-up steps happen only a few times

• We perform different scheduling algorithms for bottom-up and top-down steps
• Top-down step runs static scheduling as frontiers needs to scan all their neighbors

• chunk size = 4
• Bottom-up step runs dynamic scheduling as unexplored vertices may early-break the scan

• chunk size = 32

• We keep per-thread storage for Q (frontier queue) and R (remainder queue)
• Avoid excessive synchronization and contention due to centralized storage

8

Experimental Results
• Baseline: BD-BFS, implemented using OpenMP with our optimization strategies

• Also removed the bitmap data structure as we didn’t observe much performance advantage
• Original BD-BFS implementation1 achieved an overall score of about 640M edges/s

• Our algorithm, implemented using C++ Thread, Taskflow2, and OpenMP
• Achieved nearly 40% performance improvement over the BD-BFS baseline

2Taskflow: https://github.com/taskflow/taskflow.git 1GAP benchmark suite: https://github.com/sbeamer/gapbs

https://github.com/taskflow/taskflow.git
https://github.com/sbeamer/gapbs

Thank you!

