An Efficient Implementation of Parallel Breadth-
first Search

Pao-l Chen and Tsung-Wei (TW) Huang
Department of Electrical and Computer Engineering
University of Wisconsin at Madison, Madison, WI
https://tsung-wei-huang.github.io/

https://tsung-wei-huang.github.io/

Breadth-first Search (BFS) and Algorithm

* BFS is a fundamental graph traversal algorithm for many applications
* Ex: shortest path finding, network analysis, path finding

* BFS is easy to parallelize due to its level-by-level traversal process
* Nodes at level L finish first before going to L+1
* Nodes at the same level can run in parallel

Algorithm 1: Parallel Breadth-First Search (BFS)

* Implemented via a frontier-based framework Input :Graph G = (V, E), source vertex s

. Output: Distance array dist[|V|], initialized to oo
* Guarded by compare-and-swap (CAS) operations 1 dist[s] « 0

2 Q «—{sh

3 while Q # 0 do

4 Onext < 0;

5 foreach u € Q in parallel do

6 foreach v € Neighbors(u) do
7 if AtomicCAS(dist[v], oo, dist[u] + 1) then
8 ‘ Add v to Qnext;

9 end

10 end
11 end
12 Q < QOnext;

13 end

Bi-directional BFS (BD-BFS) Algorithm

* Instead of finding next frontiers from current frontiers (“top-down”)

* Process all vertices in parallel and let each unexplored vertex decide whether it can be the
next frontier, i.e., with a neighbor at the current frontier

* Aka “bottom-up step”

* Pros and cons of this bottom-up step: Algorithm 2: Bottom-up Step

© High parallelism, early break, no CAS operations Input :Current frontier queue Q

® Redundant work (i.e., no neighbors in frontiers) Output: Next frontier queue Qnex:
Onext < 0;
foreach u € V in parallel do
foreach v € Neighbors(u) do
if v € Q then
dist[u] « dist[v] + 1;
Add u to Qpext;
break;

end

(-~ JEEEN Y- NS T T T R R

9 end

10 end

1S. Beamer, “Direction-optimizing Breadth-First Search,” SC’12

Implementation Challenges in BD-BFS

* BD-BFS relies on carefully tuned parameters to balance the two steps
* N the number of current frontiers

M. the number of edges to check from current frontiers

M ,: the number of edges to check from unexplored vertices

C75: user-defined threshold to switch from top-down step to bottom-up step

* Cgr: user-defined threshold to switch from bottom-up step to top-down step

* Other costly implementation details?

 Concurrent bitmap for tracking vertex status Start
 Sliding window-based queue / me > Crp & growing .
* |terative parallel reductions for]')TOP- o c(;(;lz?})uinkmg Bottom-
* Updating M, M, own et CConverD Up
e Extracting unexplored vertices
mg =Crp ng =Cpgr

1GAP benchmark suite: https://github.com/sbeamer/gapbs

https://github.com/sbeamer/gapbs

The Proposed Algorithm (1/2)

* A simple yet effective idea — directly estimate the workload of each step
e Q: frontier queue, tracking the current frontiers

R: remainder queue, tracking the current unexplored vertices

* o: average edge degree per vertex, |E|/| V|

Top-down work « |Q|x a
Bottom-up work o |R|

Top down: a|Q]| < |R]|

The Proposed Algorithm (2/2)

Algorithm 3 v
Input :Graph G = (V, E), source vertex s, current frontier v ‘ | end
queue Q, current remainder queue R, next frontier = end
queue Qpext, next remainder queue Ryext 9 end
Output:Distance array dist[|V|], initialized to oo 20 end

1 RV —{s}h 2o | else ,
2 Q « {s} 22 i foreach u € Q in parallel do i
5 i} il 23 | foreach v € Neighbors(u) do i
s a — |E|/|V]; 24 | if AtomicCAS(dist[v], oo, dist[u] + 1) i

: ’ ! then :
T ey s | L] T A0 O
g Ruext — 0 26 i end i
s | ifIRl<|Olxathen | Bottom-upstep | = | i | end ;
9 | foreach u € R in parallel do i = Lend :
10 | if dist[u] # oo then i 2 end Top-down step
1 i bottom_step(u); i 30 Q < Qnext;
12 i if dist[u] = co then i 31 R < Rpext;
13 i ‘ Add u to Ruext; i 32 end
14 i end i
15 i else !
16 i ‘ Add u to Qnext; j

Optimization Details

 We perform parallel traversal only when the queue size is greater than 32
* Avoid unnecessary threading overhead when the vertex parallelism is limited

* We perform lazy initialization and lazy update on R whenever needed
* Avoid frequent update on R as in practice bottom-up steps happen only a few times

 We perform different scheduling algorithms for bottom-up and top-down steps
* Top-down step runs static scheduling as frontiers needs to scan all their neighbors
e chunksize=4
* Bottom-up step runs dynamic scheduling as unexplored vertices may early-break the scan

e chunk size =32

* We keep per-thread storage for Q (frontier queue) and R (remainder queue)
* Avoid excessive synchronization and contention due to centralized storage

Experimental Results

* Baseline: BD-BFS, implemented using OpenMP with our optimization strategies
* Also removed the bitmap data structure as we didn’t observe much performance advantage
 Original BD-BFS implementation?! achieved an overall score of about 640M edges/s

e Our algorithm, implemented using C++ Thread, Taskflow?, and OpenMP
* Achieved nearly 40% performance improvement over the BD-BFS baseline

Reference BD-BFS Ours Ours Ours
(OpenMP) (C++ Thread) (Taskflow) (OpenMP)
V]| |E| Time Time edges/s Time edges/s Time edges/s Time edges/s
Collaboration Network 1 1.1M 113M 470 5.21 21.20B 4.28 25.82B 4.07 27.09B 3.90 28.31B
Road Network 1 22.1M 30M 3310 210 283.03M 640 90.74M 160 355.93M 160 356.41M
Road Network 2 87M 112.9M 14670 720 199.15M 760 285.76M 560 387.62M 530 407.30M
Social Network 49M 85.8M 1060 20.04 4.19B 13.30 6.31B 17.59 4.77B 13.57 6.19B
Synthetic Dense 10M 1B 11870 4345 22.61B 40.17 2440B 41.80 23.44B 40.51 24.19B
Synthetic Sparse 10M 40M 1620 130 293.54M 450 86.44M 90.08 435.21IM 85.40 459.06M
Web Graph 6.6M 300M 2860 2492 11.81B 16.44 1790B 1990 14.79B 17.38 16.94B
kNN Graph 249M 158M 2100 180 876.23M 320 476.68M 130 1.22B 110 1.42B
Score (Geomean) 2042.57 66.87 2.18B 84.64 1.72B 53.02 2.75B 48.31 3.01B

- 1GAP benchmark suite: https://github.com/sbeamer/gapbs 2Taskflow: https://github.com/taskflow/taskflow.git

https://github.com/taskflow/taskflow.git
https://github.com/sbeamer/gapbs

Thank youl!

