
Taskflow: A General-purpose Task-
parallel Programming System

Dr. Tsung-Wei (TW) Huang, Assistant Professor

Department of Electrical and Computer Engineering

University of Wisconsin at Madison, Madison, WI

https://tsung-wei-huang.github.io/

https://tsung-wei-huang.github.io/
https://tsung-wei-huang.github.io/
https://tsung-wei-huang.github.io/
https://tsung-wei-huang.github.io/
https://tsung-wei-huang.github.io/

2

About UW-Madison ECE Department

• Located at the heart of the campus in the beautiful Madison city
• Surrounded by lakes, consistently ranked top places to live in the US

• Highly ranked undergraduate and graduate ECE programs
• #9 (EE) and #9 (CE) graduate ranking among public universities – USNEWS’25

3

About UW-Madison ECE

4

Connect with UW-Madison ECE

• Host intern, co-op, and other job opportunities
• Engineering Career Services team helps match top talent with internship, co-op, and

full-time opportunities

• Sponsor research for badger engineers
• Philanthropic support

• Student, faculty or research support

• Brand reputation & talent pipeline

• No indirect costs & Tax benefits

• Sponsored research

• Drives innovation in mutually beneficial areas

• Access to broad expertise

• IP rights & early tech access

• Give guest lecturers to our classes
• Share new ideas of your companies with students

5

Takeaways

• Express your parallelism in the right way

• Program static task graph parallelism using Taskflow

• Program dynamic task graph parallelism using Taskflow

• Overcome the scheduling challenges

• Demonstrate the efficiency of Taskflow

• Conclude the talk

6

Why Parallel Computing?

• Advances performance to a new level previously out of reach

0

100

200

300

400

500

600

1 CPU 8 CPUs 16 CPUs 24 CPUs 32 CPUs 40 CPUs 1 GPU

Time (minutes) to speed up a circuit timing analysis algorithm

10-100x speed-up over manycore CPUs

7

Today’s Parallel Workload is Very Complex

• GPU-parallel circuit simulation task graph of Nvidia’s NVDLA design1

> 500M gates and nets

> 1000 kernels

> 1000 dependencies

> 2 hours to finish

…

Simulation task graph

1: Dian-Lun Lin, et al, “From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus,” ACM ICPP, 2022

8

Parallel Programming is Not Easy

• You need to deal with A LOT OF technical details
• Parallelism abstraction (software + hardware)

• Concurrency control

• Task and data race avoidance

• Dependency constraints

• Scheduling efficiencies (load balancing)

• Performance portability

• …

• And, don’t forget about trade-offs
• Performance vs Desires

Trade-offs Desires

9

Need a Good Programming Abstraction

• From user’s perspective, the biggest challenge is transparency
• Programming abstraction, runtime optimization, load balancing, etc.

• Observing from the evolution of parallel programming standards:
• Task graph parallelism (TGP) is the best model for future parallel architectures

• Capture programmers’ intention in decomposing a heterogeneous algorithm into
a top-down task graph

• Runtime can schedule dependent tasks across many processing units

• Increasing numbers of task-parallel programming systems

Task

dependency

10

Two Problems of Existing Tools for EDA …

• EDA has very complex task dependencies
• Example: analysis algorithms compute the circuit network of multi-millions of nodes

and dependencies

• Problem: existing tools are often good at loop parallelism (e.g., embarrassingly-
parallel loops) but weak in expressing task graphs at this large scale

• EDA has very complex control flow
• Example: synthesis algorithms make essential use of dynamic control flow to

implement various patterns

• Combinatorial optimization (e.g., graph algorithms, discrete math)

• Analytical methods (e.g., physical synthesis)

• Problem: existing tools are often limited to direct acyclic graph (DAC) models,
requiring users to manually partition their workloads around control-flow or decision-
making points

11

Takeaways

• Express your parallelism in the right way

• Program static task graph parallelism using Taskflow

• Program dynamic task graph parallelism using Taskflow

• Overcome the scheduling challenges

• Demonstrate the efficiency of Taskflow

• Conclude the talk

12

“Hello World” in Taskflow1

#include <taskflow/taskflow.hpp> // live: https://godbolt.org/z/j8hx3xnnx

int main(){

 tf::Taskflow taskflow;

 tf::Executor executor;

 auto [A, B, C, D] = taskflow.emplace(

 [] () { std::cout << "TaskA\n"; }

 [] () { std::cout << "TaskB\n"; },

 [] () { std::cout << "TaskC\n"; },

 [] () { std::cout << "TaskD\n"; }

);

 A.precede(B, C);

 D.succeed(B, C);

 executor.run(taskflow).wait();

 return 0;

}
1: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

https://godbolt.org/z/j8hx3xnnx

13

Taskflow Supports Drop-in Integration

• Taskflow is header-only – no wrangle with installation

clone the Taskflow project

~$ git clone https://github.com/taskflow/taskflow.git

~$ cd taskflow

compile your program and tell it where to find Taskflow header files

~$ g++ -std=c++20 examples/simple.cpp –I ./ -O2 -pthread -o simple

~$./simple

TaskA

TaskC

TaskB

TaskD

https://github.com/taskflow/taskflow.git

14

Built-in Task Execution Visualizer

run you program with the env variable TF_ENABLE_PROFILER enabled

and paste the JSON content to https://taskflow.github.io/tfprof/

~$ TF_ENABLE_PROFILER=simple.json ./simple

https://taskflow.github.io/tfprof/

15

Control Taskflow Graph Programming (CTFG)

// CTFG goes beyond the limitation of traditional DAG-based models

auto cond_1 = taskflow.emplace([](){ return run_B() ? 0 : 1; }); // 0: is the index of B

auto cond_2 = taskflow.emplace([](){ return run_G() ? 0 : 1; }); // 0: is the index of G

auto cond_3 = taskflow.emplace([](){ return loop() ? 0 : 1; }); // 0: is the index of cond_3

cond_1.precede(B, E); // cycle

cond_2.precede(G, H); // if-else

cond_3.precede(cond_3, L); // loop

Very difficult for existing DAG-based

systems to express an efficient overlap

between tasks and control flow …

16

Non-deterministic Control Flow with CTFG

auto A = taskflow.emplace([&](){ });

auto B = taskflow.emplace([&](){ return rand()%2; });

auto C = taskflow.emplace([&](){ return rand()%2; });

auto D = taskflow.emplace([&](){ return rand()%2; });

auto E = taskflow.emplace([&](){ return rand()%2; });

auto F = taskflow.emplace([&](){ return rand()%2; });

auto G = taskflow.emplace([&](){});

A.precede(B).name("init");

B.precede(C, B).name("flip-coin-1");

C.precede(D, B).name("flip-coin-2");

D.precede(E, B).name("flip-coin-3");

E.precede(F, B).name("flip-coin-4");

F.precede(G, B).name("flip-coin-5");

G.name(“end”);

Each task flips a binary

coin to decide the next

task to run

17

Existing Frameworks on Control Flow?

• Most existing libraries are DAG-based
• Do not anticipate conditional execution …

• Unroll a task graph over fixed iterations
• Task graph size becomes very large …

• What about dynamic control flow?
• Resort to client-side partitions of the task graph around

each decision-making points

• Synchronize the execution of partitioned task graphs
around decision-making points

• Lack end-to-end parallelism

tf::Taskflow G;

auto X = G.emplace([](){});

auto Y = G.emplace([](){

 return converged() ? 1 : 0;

});
cond.precede(Z, X);

executor.run(G).wait();

tbb::flow::graph1 X, Y, Z;

do {

 X.run();

 Y.run();

} while (!converged());
Z.run();

Y

0

1
X Z

1: oneAPI Threading Building Blocks (oneTBB): https://github.com/uxlfoundation/oneTBB

https://github.com/uxlfoundation/oneTBB

18

Composable Tasking

tf::Taskflow f1, f2;

auto [f1A, f1B] = f1.emplace(

 []() { std::cout << "Task f1A\n"; },

 []() { std::cout << "Task f1B\n"; }

);

auto [f2A, f2B, f2C] = f2.emplace(

 []() { std::cout << "Task f2A\n"; },

 []() { std::cout << "Task f2B\n"; },

 []() { std::cout << "Task f2C\n"; }

);

auto f1_module_task = f2.composed_of(f1);

f1_module_task.succeed(f2A, f2B)

 .precede(f2C);

19

GPU Tasking with CUDA Graph1

tf::cudaGraph cg;

auto h2d_x = cg.copy(dx, hx.data(), N);

auto h2d_y = cg.copy(dy, hy.data(), N);

auto d2h_x = cg.copy(hx.data(), dx, N);

auto d2h_y = cg.copy(hy.data(), dy, N);

// saxpy kernel with 4 blocks each of 512 threads

auto kernel = cg.kernel(4, 512, 0, saxpy, N, 2f, dx, dy);

kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);

// create an executable and run it 10 times

tf::cudaGraphExec exec(cg);

tf::cudaStream stream;

stream.run_n(exec, 10).synchronize();

1: Dian-Lun Lin and Tsung-Wei Huang, "Efficient GPU Computation using Task Graph Parallelism," Euro-Par, 2021

Advantage of CUDA Graph

20

Everything is Composable in Taskflow

• End-to-end parallelism in one graph
• Task, dependency, control flow all together

• Scheduling with whole-graph optimization

• Efficient overlap among heterogeneous tasks

• Largely improved productivity!
GPU task graph

(Euro-Par’21,’24)

Composition

(HPDC’22, ICPP’22, HPEC’19)

Subflow task

(IPDPS’19, MM’19)

Control flow

(TPDS’22)

Reddit: https://www.reddit.com/r/cpp/ [under taskflow]

Industrial use-case of productivity improvement using Taskflow1

1: OSSIA’s experience with Taskflow: https://www.reddit.com/r/cpp/comments/g8ebnj/cpptaskflow_a_generalpurpose_parallel_and/

https://www.reddit.com/r/cpp/
https://www.reddit.com/r/cpp/comments/g8ebnj/cpptaskflow_a_generalpurpose_parallel_and/

21

Takeaways

• Express your parallelism in the right way

• Program static task graph parallelism using Taskflow

• Program dynamic task graph parallelism using Taskflow

• Overcome the scheduling challenges

• Demonstrate the efficiency of Taskflow

• Conclude the talk

22

Static Task Graph Parallelism (STGP)

• In STGP, the graph structure must be known up front
• Execution of STGP is based on the construct-and-run model

• Lack of overlap between task construction and task execution
• For large task graphs (e.g., multi-million tasks and dependencies), such an overlap

can bring a significant performance advantage

• Lack of flexible and dynamic expression of TGP
• Task graph structure cannot depend on runtime values or control-flow results

t

Task construction Task execution

STGP

23

Task graph construction time takes

over 50% of the entire runtime

(typically done in one thread)

Problem of STGP: Example #1

net_delay

init

inc_loop

get_cands

rc1 rc2rc3 rc4

cpu_gpu

cpu_run

0

rc_update

1

merge

0 gpu_run

1

0

stop

1

h2d_slew

elmore_slew

d2h_slew

d2h_at

elmore_delay_0 elmore_delay_1 elmore_delay_2 elmore_delay_3

h2d_atflattern_net_1flattern_net_2

c1

c2

c3

c4

chk

0

52%48% Build Graph

Run Graph

• Runtime breakdown of a task-parallel circuit timing analyzer1

> 10M tasks

> 10M edges

1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

24

Problem of STGP: Example #2

• Express TGP that depends on runtime variables…?

if (a == true) {

 G1 = build_task_graph1();

 if (b == true) {

 G2 = build_task_graph2();

 G1.precede(G2);

 if (c == true) {

 … // need another different TGP

 }

 }

 else {

 G3 = build_task_graph3();

 G3.precede(G1);

}

G1 = build_task_graph1();

G2 = build_task_graph2();

if (G1.num_tasks() == 100) {

 G1.precede(G2);

}

else {

 G3 = build_task_graph3();

 G2.precede(G1, G3);

 if (G2.num_dependencies() >= 10) {

 {

 … // define dependencies on the fly

 }

}

25

t

Dynamic TGP (DTGP) in Taskflow

// Live: https://godbolt.org/z/j76ThGbWK

tf::Executor executor;

auto A = executor.silent_dependent_async([](){

 std::cout << "TaskA\n";

});

auto B = executor.silent_dependent_async([](){

 std::cout << "TaskB\n";

}, A);

auto C = executor.silent_dependent_async([](){

 std::cout << "TaskC\n";

}, A);

auto [D, Fu] = executor.dependent_async([](){

 std::cout << "TaskD\n";

}, B, C);

Fu.wait();

Task construction

Specify arbitrary task dependencies using

C++ variadic parameter pack

Task execution

Fu.wait();

https://godbolt.org/z/j76ThGbWK

27

Comparison between STGP and DTGP

t

Task construction

Task execution

t

Task construction Task execution

Saved time

28

DTGP Needs a Correct Topological Order

auto A = executor.silent_dependent_async([](){

 std::cout << "TaskA\n";

});

auto B = executor.silent_dependent_async([](){

 std::cout << "TaskB\n";

}, A);

auto C = executor.silent_dependent_async([](){

 std::cout << "TaskC\n";

}, A);

auto D = executor.silent_dependent_async([](){

 std::cout << "TaskD\n";

}, B, C);

auto A = executor.silent_dependent_async([](){

 std::cout << "TaskA\n";

});

auto C = executor.silent_dependent_async([](){

 std::cout << "TaskC\n";

}, A);

auto B = executor.silent_dependent_async([](){

 std::cout << "TaskB\n";

}, A);

auto D = executor.silent_dependent_async([](){

 std::cout << "TaskD\n";

}, B, C);

Topological order #1: A→B→C→D

Topological order #2: A→C→B→D

29

Incorrect Topological Order …

tf::Executor executor;

auto A = executor.silent_dependent_async([](){

 std::cout << "TaskA\n";

});

auto D = executor.silent_dependent_async([](){

 std::cout << "TaskD\n";

}, B-is-unavailable-yet, C-is-unavailable-yet);

auto B = executor.silent_dependent_async([](){

 std::cout << "TaskB\n";

}, A);

auto C = executor.silent_dependent_async([](){

 std::cout << "TaskC\n";

}, A);

executor.wait_for_all();

An incorrect topological order

(A→D→B→C) disallows us from

expressing correct DTGP

30

Variable Range of Task Dependencies

• Both methods can take a range of dependent-async tasks
• useful when the task dependencies come as a runtime variable

// Live: https://godbolt.org/z/6Pvco4KeE

std::vector<tf::AsyncTask> tasks = {

 executor.silent_dependent_async([](){ std::cout << "TaskA\n"; }),

 executor.silent_dependent_async([](){ std::cout << "TaskB\n"; }),

 executor.silent_dependent_async([](){ std::cout << "TaskC\n"; }),

 executor.silent_dependent_async([](){ std::cout << "TaskD\n"; })

};

// create a dependent-async tasks that depends on tasks, A, B, C, and D

executor.dependent_async([](){}, tasks.begin(), tasks.end());

// create a silent-dependent-async tasks that depends on tasks, A, B, C, and D

executor.silent_dependent_async([](){}, tasks.begin(), tasks.end());

https://godbolt.org/z/6Pvco4KeE

31

Takeaways

• Express your parallelism in the right way

• Program static task graph parallelism using Taskflow

• Program dynamic task graph parallelism using Taskflow

• Overcome the scheduling challenges

• Demonstrate the efficiency of Taskflow

• Conclude the talk

32

STGP Scheduling Algorithm

• Task-level scheduling

Dequeue a task t
invoke(t)

Dec remaining strong

dependencies of t‘s

successors by one

Enqueue successors of

zero remaining strong

dependencies

r = invoke(t)

enqueue rth child

Condition task?

Queue empty?

N

Y

N

Wait for tasks
Y

• Worker-level scheduling
• Work stealing

• Load balancing

Key results: schedule tasks with in-graph control flow with a strong balance between the number of

active workers and dynamically generated tasks – low latency, energy efficient, and high throughput

33

DTGP Scheduling Algorithm

• The algorithm has three parts:
• Build dependencies

• Wait for dependents to finish

• Execute the task

• Three key scheduling challenges:
1. ABA – a specified dependent task must

exist correctly

2. Data race – multiple threads may
simultaneously add and remove
successors to and from a task

3. Synchronization – application can issue
a global synchronization at anytime to
wait for all tasks to finish

34

Solving Challenge #1: ABA Problem1

tf::Executor executor;

auto A = executor.silent_dependent_async([](){

 std::cout << "TaskA\n";

});

auto B = executor.silent_dependent_async([](){

 std::cout << "TaskB\n";

}, A);

auto C = executor.silent_dependent_async([](){

 std::cout << "TaskC\n";

}, A);

auto D = executor.silent_dependent_async([](){

 std::cout << "TaskD\n";

}, B, C);

executor.wait_for_all();

A (0x0010)

B C

D

A’ (0x0010)

Runtime opt

(e.g., task pool)

worker #1

worker #2

1: ABA Problem: https://en.wikipedia.org/wiki/ABA_problem

https://en.wikipedia.org/wiki/ABA_problem

35

Retain Shared Ownership of Every Task

tf::Executor executor;

tf::AsyncTask A = executor.silent_dependent_async([](){

 std::cout << "TaskA\n";

});

tf::AsyncTask B = executor.silent_dependent_async([](){

 std::cout << "TaskB\n";

}, A);

tf::AsyncTask C = executor.silent_dependent_async([](){

 std::cout << "TaskC\n";

}, A);

tf::AsyncTask D = executor.silent_dependent_async([](){

 std::cout << "TaskD\n";

}, B, C);

executor.wait_for_all();

tf::AsyncTask acks like

a std::shared_ptr to

ensure tasks stay alive

when they are used

36

Solving Challenge #2: Data Race

• Both B and C want to add themselves to the successors of A
• In the meantime, A may want to remove its successor

• Apply compare-and-swap (CAS) to enable exclusive access
• As a result, constructing a dynamic task graph can be completely thread-safe

37

Solving Challenge #3: Synchronization

• Application can issue a global synchronization at any time
• Ex: executor.wait_for_all(), future.get(), etc.

tf::Executor executor;

auto A = executor.silent_dependent_async([](){});

auto B = executor.silent_dependent_async([](){}, A);

executor.wait_for_all(); // wait for A and B to finish

auto C = executor.silent_dependent_async([](){}, A);

auto D = executor.silent_dependent_async([](){}, B, C);

executor.wait_for_all(); // wait for C and D to finish

// lock-based solution

std::unique_lock lock(mutex);

cv.wait(lock, [&](){

 return num_tasks == 0;

});

// atomic wait-based solution

auto n = num_tasks.load();

while(n != 0) {

 num_tasks.wait(n);

 n = num_tasks.load();

});

C++17

C++20

Taskflow uses C++20 atomic variables to perform

waiting/notifying operations; many synchronizations

can happen at user space instead of kernel

1: C++20 atomic wait/notify: https://en.cppreference.com/w/cpp/atomic/atomic/wait

https://en.cppreference.com/w/cpp/atomic/atomic/wait

38

Lock-free Scheduling Algorithm1

1: Cheng-Hsiang Chiu, et. al, "Programming Dynamic Task Parallelism for Heterogeneous EDA Algorithms," IEEE/ACM ICCAD, 2023

39

Takeaways

• Express your parallelism in the right way

• Program static task graph parallelism using Taskflow

• Program dynamic task graph parallelism using Taskflow

• Overcome the scheduling challenges

• Demonstrate the efficiency of Taskflow

• Conclude the talk

40

Case Study 1: Task-parallel STA

• Model graph-based analysis (GBA) in Taskflow1
net_delay

init

inc_loop

get_cands

rc1 rc2rc3 rc4

cpu_gpu

cpu_run

0

rc_update

1

merge

0 gpu_run

1

0

stop

1

h2d_slew

elmore_slew

d2h_slew

d2h_at

elmore_delay_0 elmore_delay_1 elmore_delay_2 elmore_delay_3

h2d_atflattern_net_1flattern_net_2

RCP1Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

RCP1+4

SLP1+3

DLP1+3

ATP1+2

JMP1+1

CRP1

RCP1+1

SLP1

DLP1

RCP1+2

SLP1+1

DLP1+1

ATP1

RCP1+3

SLP1+2

DLP1+2

ATP1+1

JMP1

RCP1+5

SLP1+4

DLP1+4

ATP1+3

JMP1+2

CRP1+1

Parallel Parallel Parallel Parallel Parallel Parallel

Level

…

AND

AND

AND …

Pipeline scheduling

Levelize

c1

c2

c3

c4

chk

0

Taskflow flows the propagation

tasks more asynchronously

with the circuit structure

1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

Loop-parallel level-by-level timing propagation in GBA

41

Levelization-based vs Task-parallel GBA

• OpenTimer v1: levelization-based parallel timing propagation1

• Implemented using OpenMP “parallel_for” primitive

• OpenTimer v2: task-parallel timing propagation2

• Implemented using Taskflow (https://taskflow.github.io/)

1: Tsung-Wei Huang and Martin Wong, “OpenTimer: A High-Performance Timing Analysis Tool,” IEEE/ACM ICCAD, 2015
2: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

Taskflow allows us to more asynchronously parallelize the timing propagation

https://taskflow.github.io/

42

Our Research atop Task-parallel STA

Taskflow-powered

STA engine1

1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

GPU-accelerated PBA

(DAC’21, TCAD’23)

GPU-accelerated GBA

(ICCAD’20, DAC’24)

GPU-accelerated CCS

(DATE’24, DAC’24)

GPU-accelerated CPPR

(ICCAD’21, TCAD’22)

7–14x faster25–45x faster

43

GPU-accelerated Path-based Analysis (PBA)

• A GPU-parallel path generation algorithm1

1: G. Guo, et al, “A GPU-Accelerated Framework for Path-Based Timing Analysis,” IEEE TCAD, 2023

CUDA Graph

44

Performance of GPU-based Path Generation
S

p
e
e

d
-u

p

Number of CPU cores in baseline

1 8 16 24 32 40

leon2 (1.6M gates)
543.00x

181.00x

69.70x

56.39x 50.65x 44.88x

500

400

300

200

100

0

1 8 16 24 32 40

300

200

100

netcard (1.4M gates)

303.80x

75.95x 54.64x 49.24x 46.10x 45.68x

Number of CPU cores in baseline
S

p
e
e

d
-u

p

45

Case Study 2: GPU-accelerated SSTA

• Model the SSTA propagation workload into a GPU task graph

1: Chih-Chun Chang, et. al, "SSTA-X: GPU-Accelerated First-Order Block-Based Statistical Static Timing Analysis,” under submission

46

GPU-accelerated STA vs CPU-parallel SSTA1

1: Chih-Chun Chang, et. al, "SSTA-X: GPU-Accelerated First-Order Block-Based Statistical Static Timing Analysis,” under submission

47

Other Industrial Applications of Taskflow

• Quantum computing
• Xanadu used Taskflow in their state vector-based simulator, JET

• Computer graphics and game rendering
• Vulkan recommends Taskflow for parallelizing your rendering engines

• FPGA physical design
• Vivado uses Taskflow for synthesis

• Embedded/edge computing

• Tesseract (robotics planning)

• Cruise (autonomous car)

• Reveal.Tech (drone vision)

• Tesseract Robotic (planning tool)

• …

• C++26 std::exec (coming soon)
• Benefit millions of C++ developers ☺

1: Nvidia’s implementation of C++26 std::exec: https://github.com/NVIDIA/stdexec/tree/main/include/execpools/taskflow

0

2000

4000

6000

8000

10000

12000

2018 2019 2020 2021 2022 2023 2024

W
e

e
k
ly

 G
it
H

u
b

 C
lo

n
e
s

Design
Automation

35%

Computer
Graphics

33%

Quantum
Computing

17%

Others
15%

NSF POSE

Phase I

Within DARPA OpenTimer

https://github.com/NVIDIA/stdexec/tree/main/include/execpools/taskflow

48

Conclusion

• Expressed your parallelism in the right way

• Programmed static task graph parallelism using Taskflow

• Programmed dynamic task graph parallelism using Taskflow

• Overcame the scheduling challenges

• Demonstrated the efficiency of Taskflow

• Concluding the talk

49

Thank you for using Taskflow!

…

50

Thank you for Sponsoring Taskflow!

51

Acknowledgment: Excellent PhD Students

• Please contact me if you have any intern/full-time opportunities!
• We specialize in CAD, HPC, and GPU heterogeneous programming!

• https://tsung-wei-huang.github.io/team/ (or tsung-wei.huang@wisc.edu)

https://tsung-wei-huang.github.io/team/
https://tsung-wei-huang.github.io/team/
https://tsung-wei-huang.github.io/team/
https://tsung-wei-huang.github.io/team/
https://tsung-wei-huang.github.io/team/
https://tsung-wei-huang.github.io/team/
mailto:tsung-wei.huang@wisc.edu
mailto:tsung-wei.huang@wisc.edu
mailto:tsung-wei.huang@wisc.edu

52

Questions?

// Live: https://godbolt.org/z/j8hx3xnnx
tf::Taskflow taskflow;

tf::Executor executor;

auto [A, B, C, D] = taskflow.emplace(

 [] () { std::cout << "TaskA\n"; }

 [] () { std::cout << "TaskB\n"; },

 [] () { std::cout << "TaskC\n"; },

 [] () { std::cout << "TaskD\n"; }

);

A.precede(B, C);

D.succeed(B, C);

executor.run(taskflow).wait();

return 0;

// Live: https://godbolt.org/z/T87PrTarx

tf::Executor executor;

auto A = executor.silent_dependent_async([](){

 std::cout << "TaskA\n";

});

auto B = executor.silent_dependent_async([](){

 std::cout << "TaskB\n";

}, A);

auto C = executor.silent_dependent_async([](){

 std::cout << "TaskC\n";

}, A);

auto D = executor.silent_dependent_async([](){

 std::cout << "TaskD\n";

}, B, C);

executor.wait_for_all();

Static task graph parallelism Dynamic task graph parallelism

Taskflow: https://taskflow.github.io

https://godbolt.org/z/j8hx3xnnx
https://godbolt.org/z/T87PrTarx
https://taskflow.github.io/

	Slide 1: Taskflow: A General-purpose Task-parallel Programming System
	Slide 2: About UW-Madison ECE Department
	Slide 3: About UW-Madison ECE
	Slide 4: Connect with UW-Madison ECE
	Slide 5: Takeaways
	Slide 6: Why Parallel Computing?
	Slide 7: Today’s Parallel Workload is Very Complex
	Slide 8: Parallel Programming is Not Easy
	Slide 9: Need a Good Programming Abstraction
	Slide 10: Two Problems of Existing Tools for EDA …
	Slide 11: Takeaways
	Slide 12: “Hello World” in Taskflow1
	Slide 13: Taskflow Supports Drop-in Integration
	Slide 14: Built-in Task Execution Visualizer
	Slide 15: Control Taskflow Graph Programming (CTFG)
	Slide 16: Non-deterministic Control Flow with CTFG
	Slide 17: Existing Frameworks on Control Flow?
	Slide 18: Composable Tasking
	Slide 19: GPU Tasking with CUDA Graph1
	Slide 20: Everything is Composable in Taskflow
	Slide 21: Takeaways
	Slide 22: Static Task Graph Parallelism (STGP)
	Slide 23: Problem of STGP: Example #1
	Slide 24: Problem of STGP: Example #2
	Slide 25: Dynamic TGP (DTGP) in Taskflow
	Slide 27: Comparison between STGP and DTGP
	Slide 28: DTGP Needs a Correct Topological Order
	Slide 29: Incorrect Topological Order …
	Slide 30: Variable Range of Task Dependencies
	Slide 31: Takeaways
	Slide 32: STGP Scheduling Algorithm
	Slide 33: DTGP Scheduling Algorithm
	Slide 34: Solving Challenge #1: ABA Problem1
	Slide 35: Retain Shared Ownership of Every Task
	Slide 36: Solving Challenge #2: Data Race
	Slide 37: Solving Challenge #3: Synchronization
	Slide 38: Lock-free Scheduling Algorithm1
	Slide 39: Takeaways
	Slide 40: Case Study 1: Task-parallel STA
	Slide 41: Levelization-based vs Task-parallel GBA
	Slide 42: Our Research atop Task-parallel STA
	Slide 43: GPU-accelerated Path-based Analysis (PBA)
	Slide 44: Performance of GPU-based Path Generation
	Slide 45: Case Study 2: GPU-accelerated SSTA
	Slide 46: GPU-accelerated STA vs CPU-parallel SSTA1
	Slide 47: Other Industrial Applications of Taskflow
	Slide 48: Conclusion
	Slide 49: Thank you for using Taskflow!
	Slide 50: Thank you for Sponsoring Taskflow!
	Slide 51: Acknowledgment: Excellent PhD Students
	Slide 52: Questions?

