-

Dynamic Asynchronous Tasking

with Dependencies

The C++ Conference

TSUNG-WEI HUANG

20
29

ANA

September 13- 19

Takeaways

« Understand the importance of asynchronous tasking with dependencies

Recognize the limitations of existing asynchronous tasking models

Introduce a new dynamic task graph programming model called AsyncTask

Overcome the scheduling challenges to support the model

Demonstrate the efficiency of AsyncTask
Conclude the talk

Why Parallel Computing?

« Advances performance to a new level previously out of reach

10-100x speed-up over manycore CPUs and GPU

600 ‘
500

400

300
1CPU 8CPUs 16 CPUs 24 CPUs 32CPUs 40CPUs 1 GPU

200
Time (minutes) to train a machine learning model

100
0

* Intel Haswell microarchitecture
Released in June 2013

 Typically comes with four cores | o ||| En5ie &
i : ad b "._'_-- ool / "' . oty
« Has an integrated GPU e il | 4L Controller

||||| ding

IIES ST ES S8 SRS Display, PCle

) l EH I Shared L3 Cache** l EH m
BIEEINIEEIE

ontroller))

1.4 B transistors with 22 nm technology
Sophisticated design for ILP acceleration
Deep pipeline — 16 stages

« Superscalar architecture

« Can issue and complete multiple independent

instructions per cycle 3

. Processor g

« Supports hyper-threading tech (HTT) ‘ : 5 € opiics &
- Allows a single physical CPU core to appear | k&

as two logical processors to the OS

If you don'’t do parallel programming, you are not
utilizing your hardware efficiently ...

Today’s Parallel Computing Problem is Very Irregular

« Computational task graph of a GPU-parallel circuit simulation workload?
> 500M gates and nets
> 1000 async kernel tasks
> 1000 dependencies

p0x563568aeald0 I

P0x5635682ed560 |

p0x563568af3ed0 POx563568afaef0 p0x563568af9170 p0x563568af71e0 p0x563568afa030 p0x563568af98d0 p0x5635683fb650 p0x563568af7940 | p0x563568af80a0 p0x563568af8800

=\ o~ =) /
\—— T —
56351

pOx563568aea610)|

pOx563 568:12;1370 pOx563568ae: n4cO p0x563568aef370 pOx563568aeec10 PpO0x563568aeddS0

> hours to finish e e

PpOx563568af10f0

Wi

POXS563568af5460

pOx563568af36e0 68afdb30 pOx563568afcc70
p0x563568nf4d00 5 5 I \p0x5635681fa790 POX563568afe290 POX563568b00770" pOX563568afe9fD ' pOX56356¢
Dy Qa > [D i e
b e~ <
—— P > "aml o ;;'A -
p0x563568b01d90 p0x563568b00ed0 p0x563568aff150 p0x563568b00010 | p0x563568b01630 I
5
> 3 p0x563568b02c50
\
—»Dg Qp \
\

h 4

(. Simulation task graph =

\
\
pOX5635680£1d60 \

Deep learning *,

\

accelerator '\

cudaSubflow: p0x563568ae9c40

p0x5635682e9d40

POx563568ae9c40

T d

CLK

1: Dian-Lun Lin, et al, “From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus,” ACM ICPP, 2022

Another Example of Irregular Parallel Workload

* CPU-parallel VLSI static timing analysis algorithm oo e cmnss

T T

—> : N~
__AND E O/)O\ o
AND)
AND > % O\)O/ -
— Levelize |m| | O]
‘ Pipeline scheduling

Analysis algorithm is
RCP,. 5 modeled as a task graph

SLP;; SLP;.4

\ 4

RCP,; RCP;4

SLP;.,

Stage 1 | RCP, RCP,,, RCP,.,
Stage 2 SLP, SLP,.,
Stage 3 DLP, DLP,,,

DLP,,, ¥ DLP,,; ¥ DLP,., | .-

Stage 4 ATP, ATP,,, ATP,,, ATP,,;

Stage 5 IMP, [IMP,, (P IMP,,| > 100M async tasks
Stage6— — — > 150M dependencies
Level >

Parallel Parallel Parallel Parallel Parallel Parallel

- T: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

Parallelizing such Irregular Problems is Not Easy ...

 You need to deal with A LOT OF technical details

» Parallelism abstraction (software + hardware)
» Concurrency control
» Synchronization

« Task and data race avoidance

* Dependency constraints m
« Scheduling efficiencies (load balancing)
* Programming productivity

 Performance portability m
) Portable

 And, don’t forget about trade-offs

» Performance vs Developer’s intent

Trade-offs Intent

We want a solution that can sit on top to help programmers manage these details as much as
possible because programmers care how fast (performance + productivity) they can get things done!

Why Task-parallel Programming (TPP)?

« TPP is an effective solution for parallelizing irregular workloads
« Captures developers’ intention in decomposing an algorithm into a top-down task graph
» Delegates difficult scheduling details (e.g., load balancing) to an optimized runtime

 Modern parallel programming libraries are moving towards task parallelism
* OpenMP 4.0 task dependency clauses (omp depend)
» C++26 execution control library (std: : exec)

« TBB flow graph (tbb: :flow: :graph) Task graph encapsulates
» Taskflow control Taskflow graph (CTFG) model I

* ... (many others) dependencies as edges.

OpenMP StarPU "kokkos il m TS

| -0
1:_%@ PaRSEC ﬂ;: QO Zlg?P?TdenCy g

Takeaways

« Understand the importance of asynchronous tasking with dependencies

Recognize the limitations of existing asynchronous tasking models

Introduce a new dynamic task graph programming model called AsyncTask

Overcome the scheduling challenges to support the model

Demonstrate the efficiency of AsyncTask
Conclude the talk

Create an Asynchronous Task using std::async’

« A high-level standard library facility to launch a task asynchronously

#include <future>
#include <iostream>

int compute(int v) {

return v;
) ’ Use std: :async to asynchronously run the

function compute(42) on a new thread.

int main() {
std: :future<int> fu = std::async(std::launch::async, compute, 42);
std::cout << fu.get() << std::endl; // prints 42

¥

Return a std: : future to wait for this asynchronous

task to finish and access its result (i.e., 42)

1. C++ std::async interface: https://en.cppreference.com/w/cpp/thread/async.html

https://en.cppreference.com/w/cpp/thread/async.html

An Example Implementation of std: :async

template <typename F, typename... Args>
auto async(F&& func, Args&&... args) {
using ReturnType = std::invoke result t<F, Args...>;
// promise-future pair for intern-thread sync
std: :promise<ReturnType> prom;
std::future<ReturnType> fu = prom.get future();
std::thread t([prom=std::move(prom),
f=std::forward<F>(func), ...args=std::forward<Args>(args)] () mutable {
if constexpr(std::is_void_v<ReturnType>) {

| promise you that | will run your

function, and you can access the
result from the future object ...

f(std::move(args)...); We create a thread from a lambda
prom.set_value(); function object that captures the function
} else { and its argument (with perfect forwarding?)
prom.set_value(f(std::move(args)...)); and invoke the function in the body.
}
1
t.detach(); // mimic fire-and-forget behavior of std::async
return fu;

}

1. C++ std:: forward: https://en.cppreference.com/w/cpp/utility/forward.html

https://en.cppreference.com/w/cpp/utility/forward.html

Build a Task Graph w/ std: :async and std: : future

» std::future allows us to perform task-specific synchronization

auto A = std::async(std::launch::async, We need to wait for A to finish before
[1(){ std::cout << “A\n”; } launching B and C asynchronously.

)5

A.wait(); <«

auto B = std::async(std::launch::async,
[1(){ std::cout << “B\n”; }

)s

auto C = std::async(std::launch::async,
[J(){ std::cout << “C\n”; }

)s

B.wai‘c();4 : -
C.wait(); | We need to wait for B and C to finish before

launching D asynchronously

auto D = std::async(std::launch::async,
[1(){ std::cout << “D\n”; }
)s

D.wait(); By properly synchronizing tasks using future.wait, we can

dynamically create a task graph (i.e., dynamic task graph)

Sender-Receiver Version (with std: : exec?)

« A standardized abstraction for composing tasks and dependencies

exec::static_thread pool pool; < Schedule tasks on a pool of worker threads

auto scheduler = pool.get scheduler();

// create a sender task for A
auto sa = exec::then(exec::schedule(scheduler), []{ std::cout<<"A\n"; });
exec::sync_wait(sa); // wait for A

// create two parallel sender tasks for B and C

auto sb = exec::then(exec::schedule(scheduler), []{ std::cout<<"B\n"; });
auto sc = exec::then(exec::schedule(scheduler), []{ std::cout<<"C\n"; });
exec::sync_wait(exec::when_all(sb, sc)); // wait for B and C

// create a sender task for D

auto sd = exec::then(exec::schedule(scheduler), []{ std::cout<<"D\n"; });
exec::sync_wait(sd); // wait for D

1. C++ execution control library (experimental): https://en.cppreference.com/w/cpp/experimental/execution.html

https://en.cppreference.com/w/cpp/experimental/execution.html

Intel’s TBB Library with tbb: :task_group’

« A class to create asynchronous tasks and wait for their completion

tbb: :task group tg; <« A class in TBB to create asynchronous
tasks and wait for their completion

/] A
tg.run([] { std::cout << "A\n"; });

tg.wait(); < Need to task_group: :wait on A

before running B and C

// B and C in parallel
tg.run([] { std::cout << "B\n"; });
tg.run([] { std::cout << "C\n"; });

tg.wait(); < Need to task_group: :wait on B and

C before running D

// D
tg.run([] { std::cout << "D\n"; });
tg.wait();

1: TBB task group: https://oneapi-spec.uxIfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls

https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls

OpenMP Tasking Model with depend Clauses’

* Leverages compiler directives to define tasks and dependencies

?Omp parallel Define dependency handles

int A B, AC, BD, CD;

Specify task dependencies using in and
#pragma omp task depend(out: A_B, A _C) out clauses when creating an OpenMP task
std::cout << “TaskA\n”’;

#pragma omp task depend(in: A_B; out: B_D)
std::cout << “TaskB\n”;

#pragma omp task depend(in: A_C; out: C D)
std::cout << “TaskB\n”’;

#pragma omp task depend(in: B D, C_D) With these OpenMP directives, the compiler will

std::cout << “TaskB\n”’;

insert parallel code that launches asynchronous
} tasks and enforces their dependencies.

: OpenMP task dependency clauses (version 5, 2008): https://www.openmp.org/spec-html/5.0/openmpsu99.html

https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html

OpenCilk Version

+ A fork-join programming model relying on compiler-generated parallel code
« With language extensions like cilk spawn and cilk sync

void A() { std::cout << "A\n"; }
void B() { std::cout << "B\n"; }
void C() { std::cout << "C\n"; }
void D() { std::cout << "D\n"; }
int main() {

AC)s

You need a compiler that supports OpenCilk

syntax to run this code.

cilk _spawn B(); < Spawn a child tasl.< on B using c.ilk_spawn and
C(); continue with C in the main thread

cilk _sync; <

Synchronize both B and C using cilk sync
D(); before running task D

}

1. OpenCilk: https://www.opencilk.org/

https://www.opencilk.org/

Limitations of Existing Async Tasking Models

@ Tasks and their dependencies are decoupled during task graph creation

 |f dependencies are not expressed alongside the task creation logic, it's difficult to reason about
the overall task graph structure

« Without a clear dependency structure, the runtime loses opportunities to optimize task
placement and load balancing when constructing an asynchronous task

@ Correct placement of wait calls is left to programmers

* Programmers must determine a correct synchronization order at a fine-grained level
* In the worst case, the number of waits equals the number of dependencies
 |In practice, many applications only care about the completion of the entire task graph instead of

intermediate tasks, making such fine-grained waiting unnecessary, costly, and buggy
@ Limited support for building highly dynamic task graphs

« Highly dynamic task graphs - those whose structures, dependencies, and task content are
highly dependent on runtime variables or dynamic control-flow results

« Ex: OpenMP is not a good fit for this scenario as it relies on static compiler directives

@ May require a non-standard C++ compiler to generate parallel code

Takeaways

« Understand the importance of asynchronous tasking with dependencies

Recognize the limitations of existing asynchronous tasking models

Introduce a new dynamic task graph programming model called AsyncTask

Overcome the scheduling challenges to support the model

Demonstrate the efficiency of AsyncTask
Conclude the talk

Static vs Dynamic Task Graph Programming (TGP)

« All examples we’ve discussed so far are dynamic TGP (DTGP)

In static TGP (STGP), execution A B C ‘ D A B D
follows the construct-and-run model
C t
Task construction Task execution

< Saved time—»

Al B||C||D

A\‘B /;.D
c t

v

Task construction ‘
Task execution

In DTGP, tasks can start as soon as
their dependencies are met

Static Task Graph Programming in Taskflow’

#include <taskflow/taskflow.hpp> // Live: https:/godbolt.org/z/[8hx3xnnx

int main(){
tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

() { std::cout << "TaskA\n"; }

() { std::cout << "TaskB\n"; },

() { std::cout << "TaskC\n"; },

(] () { std::cout << "TaskD\n"; }

)
A.precede(B, C); A B C D A B D
D.succeed(B, C); C
executor.run(taskflow) .wait(); i
return 0; Task construction Task execution

¥

: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

https://godbolt.org/z/j8hx3xnnx

AsyncTask: Dynamic Task Graph Programming in Taskflow

// Live: https://godbolt.org/z/776ThGbWK o
tf::Executor executor; 0“0
auto A = executor.silent dependent async([](){

std::cout << "TaskA\n";

})s A

auto B = executor.silent_dependent_async([](){ AllB1c1D

std::cout << "TaskB\n"; N = =
}, A); . A Fu.wait();
auto C = executor.silent_dependent_async([](){ C

std::cout << "TaskC\n"; t >
}, A); Task construction |
auto [D, Fu] = executor.dependent_async([](){ Task execution

std::cout << "TaskD\n"; v

}, B, C);«¢ Specify variable task dependencies using

C++ variadic parameter pack

Fu.wait();

https://godbolt.org/z/j76ThGbWK

Wait for All Tasks to Finish

// Live: https://godbolt.org/z/T87PrTarx

tf::Executor executor;

auto A = executor.silent dependent async([](){
std::cout << "TaskA\n";

})s

auto B = executor.silent dependent async([](){
std::cout << "TaskB\n";

}s A);

auto C = executor.silent dependent async([](){
std::cout << "TaskC\n";

}s A);

auto D = executor.silent dependent async([](){
std::cout << "TaskD\n";

}, B, C);

A 1 B

e

C

wait for_a

Task construction
Task execution

executor.wait for all(); <

»
»

11

\4

Wait for the entire graph to finish.

https://godbolt.org/z/T87PrTarx

Need a Correct Topological Order

auto A = executor.silent_dependent async(°

[1O){ std::cout << "TaskA\n"; } °?¢

auto B = executor.silent _dependent_async(_
[1(){ std::cout << "TaskB\n"; }, A Topological order #2: A>C->B->D

)

auto C = executor.silent dependent _async(auto A = executor.silent _dependent _async(
[](){ std::cout << "TaskC\n"; }, A [1](){ std::cout << "TaskA\n"; }

)

auto D = executor.silent _dependent _async(

[1(){ std::cout << "TaskD\n"; }, B, C

)5

)

auto C = executor.silent _dependent _async(
[1(){ std::cout << "TaskC\n"; }, A

)

auto B = executor.silent _dependent_async(
[](){ std::cout << "TaskB\n"; }, A

);

auto D = executor.silent _dependent _async(
[1O){ std::cout << "TaskD\n"; }, B, C

<D) .

Incorrect Topological Order ...

tf: :Executor executor;

auto A = executor.silent dependent_async([](){
std::cout << "TaskA\n";

})s

auto D = executor.silent dependent _async([](){
std::cout << "TaskD\n"; _ ,

}, B-is-unavailable-yet, C-is-unavailable-vyet) ; JERadUSCUCR@delele](oz1Relfe [y

(A>D—->B->C) prevents you

auto B = executor.silent dependent _async([](){ from expressing a correct
std: :cout << "TaskB\n"; dynamic task graph.

}s A);

auto C = executor.silent dependent _async([](){
std::cout << "TaskC\n";

}, A);

executor.wait _for _all();

Variable Range of Task Dependencies

 Both methods can take a variable range of dependent-async tasks
« Useful when the task dependencies come as a runtime variable (e.g., loaded from a file)

// Live: https://godbolt.org/z/6Pvcod4KeE

std::vector<tf::AsyncTask> tasks = {
executor.silent dependent_async([](){ std::cout << "TaskA\n"; }),
executor.silent dependent_async([](){ std::cout << "TaskB\n"; }),
executor.silent dependent _async([](){ std::cout << "TaskC\n"; }),
executor.silent dependent_async([](){ std::cout << "TaskD\n"; })

}s

// create a dependent-async tasks that depends on tasks, A, B, C, and D

executor.dependent_async([](){}, tasks.begin(), tasks.end());

// create a silent-dependent-async task that depends on tasks, A, B, C, and D

executor.silent _dependent_async([](){}, tasks.begin(), tasks.end());

While this feature may look trivial, | found it very difficult to achieve with existing asynchronous tasking
libraries because their task creation and dependency expression are decoupled from each other ...

https://godbolt.org/z/6Pvco4KeE

DTGP is Flexible for Runtime-driven Execution

 Assemble task graphs driven by runtime variables and control-flow results

if (a == true) { . 'Gl = build_task_graphi1(); i
' Gl = build task_graphi1(); . 1G2 = build_task_graph2(); i
i if (b == true) { . 1if (Gl.num_tasks() == 100) { i
| G2 = build task graph2(); | i Gl.precede(G2); |
| Gl.precede(G2); |) i
i if (c == true) { i relse { i
i .. // defined other TGPs i . G3 = build_task_graph3(); |
i } i . Gl.precede(G2, G3); i
o} .1 if(G2.num_dependencies()>=10){ |
. else { o .. // define another TGP |
| G3 = build task_graph3(); 1} else { |

| Gl.precede(G3); L .. // define another TGP :

AsyncTask doesn’t Touch Data Abstraction

 Focus on coarse-grained task parallelism not fine-grained data parallelism
« Our goal is to have users describe tasks and their dependencies in an expressive language

' template <typename F, typename... Tasks>
auto dependent_async(F&& func, Tasks&&... tasks) {

This is how std: :async is implemented

(e.g., args are captured with perfect forwarding)

» Users describe func as a lambda and capture necessary data or func arguments themselves

 The advantage of this decision is twofold:

» Users retain full control over data layout and ownership, allowing them to optimize data
structures and memory layout for their specific application domains

« Letting users decide how and where to store data keeps AsyncTask lightweight and non-
intrusive — no need to modify existing data structures to fit our framework

» Ex: Models that count on data abstraction (e.g., Fastflow, TBB pipeline) require users to
rewrite their code to library-specific data abstraction in order to gain parallelism

Takeaways

« Understand the importance of asynchronous tasking with dependencies

Recognize the limitations of existing asynchronous tasking models

Introduce a new dynamic task graph programming model called AsyncTask

Overcome the scheduling challenges to support the model

Demonstrate the efficiency of AsyncTask
Conclude the talk

Overview: Taskflow’s Work-stealing Scheduler’

« Task-level scheduling Worker-level scheduling

Wait for tasks

invoke(t)
Dequeue a task ¢ *
Dec remaining strong ‘
Condition task? dependencies of t's

WA

successors by one

r = invoke(t) +
Enqueue successors of
+ zero remaining strong
enqueue rih child dependencies

Key results: schedule tasks with in-graph control flow with a strong balance between the number of

active workers and dynamically generated tasks — low latency, energy efficient, and high throughput

: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

Scheduling a Dynamic Task Graph

Challenge #1 (ABA):
Dependent async tasks
¢ must exist correctly — we
cannot specify a task

i | Call tf::Executor::dependent_async
grained wait calls to Dependencies met? dependency that points to

Challenge #3 (sync):
Applications can issue fine-

synchronize the execution an invalid memory location.

are met dependent-async task.

at any time.
2N

?g;;iggtml)t <«— Execute the task Add the task to Challenge #2 (race):
i 7y the successor of Since task graph
| 3a°h tZSk n tlhet construction and execution
; ependency 11 in DTGP can happen
| l simultaneously, multiple
| Enqueue the task and pop workers may concurrently
| it out when dependencies access the successor of a

b o o e

Solving Challenge #1: ABA Problem

worker #1
/ A (0x0010) \ g

\
\
\
1
1
1
1

tf::Executor executor

auto A = executor.silent dependent _async([]{
std::cout << "TaskA\n";
})s

Runtime opt
auto B = executor.silent dependent_async([]{ §

(e.g., mem pool)

std: :cout << "TaskB\n";

b, A); < %

auto C = executor.silent dependent_async([]{
std: :cout << "TaskC\n";

}, A);

auto D = executor.silent dependent async([]{
std::cout << "TaskD\n";

}, B, C);

worker #2

executor.wait for all();

: ABA Problem: https://en.wikipedia.org/wiki/ABA_problem

https://en.wikipedia.org/wiki/ABA_problem

Retain a Shared Ownership of Each Task Needed

tf: :Executor executor;

tf::AsyncTask A = executor.
std::cout << "TaskA\n";

1)

tf::AsyncTask B = executor.
std::cout << "TaskB\n";

}, A); <

silent dependent_async([]{

silent_dependent_async([]{

tf::AsyncTask acts like
a std: :shared ptrto

tf::AsyncTask C = executor.
std: :cout << "TaskC\n";

}s A);
tf::AsyncTask D = executor.
std: :cout << "TaskD\n";

}, B, C);

executor.wait _for _all();

ensure tasks stay alive

silent_dependent _async([]{ when they are used

silent dependent_async([]{

Solving Challenge #2: Data Race

« Both B and C want to add themselves to the successors of A
* Meanwhile, A may want to remove some of its successor when the task finishes

BONWS OO
A7 A7
1'1. . 1'., N Y, . — Adding a task
))) - - Compare and swap
F FINISHED
U UNFINISHED
(a) (b) () . LOCKED

 Use compare-and-swap (CAS) with spinning to enable exclusive access
» Spinning does not incur much overhead because most task graphs are sparse
 |If you task graph is very dense, probably DTGP is not the right solution to your application

Solving Challenge #3: Synchronization

« Users can issue both coarse- and fine-grained synchronizations at any time
» Coarse-grained sync: executor.wait _for _all()

» Fine-grained sync: future.wait() /| // lock-based sync

/ | std::unique lock lock(mtx);

tf::Executor executor; /| ev.owait(lock, [&]1(){
auto A = executor.silent dependent_async([]{}); / return num tasks == @;
auto B = executor.silent _dependent_async([]{}, A); 1) B

executor.wait for_all(); // wait for A and B

auto C = executor.silent _dependent_async([]{}, A);
auto D = executor.silent dependent_async([]{}, B,‘C); // atomic wait-based sync

executor.wait for_all(); // wait for C and D Y auto n = num_tasks.load();
‘' |while(n != @) {
We leverage C++20 atomic variables to perform \ num_tasks.wait(n);
waiting/notifying operations?, which allows much of the \ n = num_tasks.load();
synchronization to occur in user space rather than in the \)
kernel space (~11% performance improvement). ‘ T

1. C++20 atomic wait and notification: https://en.cppreference.com/w/cpp/atomic/atomic/wait

https://en.cppreference.com/w/cpp/atomic/atomic/wait

Our Scheduling Algorithm is Lock-free’

Algorithm 1 dependent async(callable, deps)

Create a future

num_ deps < sizeof(deps)

task < initialize task(callable,num deps, future)
for all dep € deps do

process _dependent(task, dep, num _deps)

end for
if num deps == (0 then

schedule async task(task)

hod IRl DAY IR ol i v

end 1t
10: return (task, future)

Algorithm 2 process dependent(task, dep, num deps)

: dep state < dep.state
: target state <~ UNFINISHED
if dep state.CAS(target state, LOCKED) then
dep.successors.push(task)
dep state +— UNFINISHED
else if target state == FINISHED then
num __deps <—AtomDec(task.join _counter)
else
goto line 2
10: end if

bR A L o > vy

Il:Algorithm 3 schedule async task(task)

1:

target state < UNFINISHED

2: while not task.state.CAS(target state, FINISHED)
do
3: target state <~ UNFINISHED
4: end while
5: Invoke(task.callable)
6: for all successor € task.successors do
7: if AtomDec(successor.join counter) == 0 then
8: schedule async task(successor)
9: end if
10: end for
11: if AtomDec(task.ref count) == 0 then
V12 Delete task
\ 13: end if

1: Cheng-Hsiang Chiu, et. al, “Programming Dynamic Task Parallelism for Heterogeneous EDA Algorithms,” IEEE/ACM ICCAD, 2023

Takeaways

Understand the importance of asynchronous tasking with dependencies

Recognize the limitations of existing asynchronous tasking models

Introduce a new dynamic task graph programming model called AsyncTask

Overcome the scheduling challenges to support the model

Demonstrate the efficiency of AsyncTask
Conclude the talk

Evaluation of AsyncTask (1/2)

- Evaluated on both microbenchmarks and a real-world application
» Study the performance of AsyncTask w/o and w/ the impact of application tasks

 Microbenchmarks
» Measure the performance on four commonly used graph patterns

000

T: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

Evaluation of AsyncTask (2/2)

 We consider the following baselines:
* OpenMP tasking: https://www.openmp.org/spec-html/5.0/openmpsu99.html

PaRSEC: https://qgithub.com/ICLDisco/parsec
OpenCilk: https://github.com/opencilk
AsyncTaskK: replaced AsyncTask’s scheduler with OpenMP’s task scheduler’

@ We want to see how good our lock-free scheduling algorithm is
AsyncTaskCV: replaced AsyncTask’s atomic wait with std: :condition_variable

() We want to see how good our C++20-based notification algorithm is

 We compiled all programs using g++12 with -std=c++20 and -03
» 64-bit Linux machine with 128 GB RAM and 20 Intel i5-13500 CPU cores at 4.8 GHz
» All data is an average of ten runs to reduce variance

: OpenMP task graph scheduler leverages a lock-based hash table to keep track of tasks and their dependency handles

https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://github.com/ICLDisco/parsec
https://github.com/opencilk

Microbenchmarks

1

! ! ! !
| | ! !
' 8| - OpenMP A g8l & N ' | 8 -@- OpenMP A A |
! ®- AsyncTask 7 AN P ! | B AsyncTask 7 8 -8 _A i
| 6l | AsyncTask” e *‘,-,_,_Ar-""r ' i #— AsyncTask®Y R i T :
= —#— AsyncTask!¥ . —~ 6 ' i~ 6| |- AsyncTask"K ’ ~ -8~ OpenMP !
i a _A- PaRSEC e g ~@— OpenMP : ! g _A- PaRSEC E 6| |- AsyncTask '
~ 4 |- OpenCik | .-~ = 8- AsyncTask : I~ e OpenCilk D #= AsyncTask®" I
1 - .
: g —& E Al AsyncTask®Y : ! E 4 QE) 4| |~ AsyncTask"¥ |
Fs r : —#+— AsyncTask"¥ | s = -4~ PaRSEC |
: 2 - = A~ PaRSEC ! ! g e OpenCilk !
| - -® OpenCilk | ! 2 M !
i | : |
1 I 1
1 1 h 0 . \
1 1 1 0 1
1 1]
| 1 2 4 8 16 i 0 0.5 1 1.5 2 1 2 4 8 16 !
1 1
' . ________________Number of threads_______ : I Number of tasks (millions) _______________] Number of threads _____ :

______T ion tasks I .16 threads Random G "2 million tasks |
! 2 million tasks . : 16 threads 2 million tasks :
! ! 1 1
1 ! \
! ¢! |-® OpenMP A i : : —® OpenMP —@ OpenMP i
' B AsyncTask & N : ! B AsyncTask - AsyncTask !
' “+— AsyncTask®V 2 6 i e G ot i ' L5 || AsyncTaskC 1.5 | | =+ AsyncTask®" !
I~ —#— AsyncTask"K ~~ ~@- OpenMP 1 —~ —— AsyncTask! ¥ —_ —— AsyncTask!K '
1 ——

g 4 % " ParsEe 2] B AsyncTask " I E E '
:v i E e KkEV 1 = 1 = |
i -® OpenCilk P 4 AsyncTas i ! py 1 !
! § g —— AsyncTaskLK " ! E E !
= = -4~ PaRSEC | s = |
' 2| |-® OpenCilk %] : 0.5 :
: ‘ x| ! 0.5 |
! u | 1 1
. 0 — . ! | 0 |
| 0 : : :
: 0 0.5 1 15 2 1 2 4 8 16 ! | 0 0.5 1 1.5 2 1 2 4 8 16

11 1 ! 1. 1
| Number of tasks (millions) Number of threads : : Number of tasks (millions) Number of threads :

Ease of Use of AsyncTask

« Surveyed 300+ graduate students in my HPC course at UW-Madison

» Asked students to finish four microbenchmarks using five DTGP models
» Rated each library in 1-10 (the higher the better) by the end of this programming assignment

‘P Most students can complete the assignments Most students have hard time programming
using AsyncTask and std: :async the random graph especially using OpenMP

Learning ease = Completion Debuggability Conciseness Productivity Correctness

10

o N B O O

B AsyncTask B OpenMP B OpenCilk PaRSEC M®std::async

Real-world Application: Static Timing Analysis (STA)

- Implemented task-parallel STA' using AsyncTask e b e
* Models the timing propagation as a dynamic task graph 5 5
» Propagates timing data from inputs to outputs

« Evaluated on four industrial circuit graphs
* aes_core: 66,751 tasks and 86,446 dependencies
» des perf: 303,690 tasks and 387,291 dependencies NN L}")
* vga_lcd: 397,809 tasks and 498,863 dependencies - le"u
» leon2: 4,328,255 tasks and 7,984,262 dependencies — —

__

‘“\/‘“\r“_r’“\f‘_“\

||n:4|—|- 2A e kY —l-
y ‘_ f

aes_core des_perf vga_lcd leon2_iccad
10% ‘ ‘
10 —@— OpenMP -~ OpenMP 10% | ~® OpenMP || 1004] .—.\./. i
- AsyncTask B AsyncTask —- AsyncTask
+#— AsyncTask®" , - AsyncTaskCV —#— AsyncTaskC” = OpenMPk
—#— AsyncTask!X 10 —— AsyncTask!® 102 F —+— AsyncTask’K |- 1012 - AsyncTasC
_— o o 1= —+— AsyncTask®”
S ~— £ »
E 10° g Qé q'é —k— AsyncTaskEK
o * — o . 10! g 1l
r 10 o=
M 10° w o /
107! T ——a——a— % f 108 — ”"-/.
L [|
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 2 4 8 16
Number of threads Number of threads Number of threads Number of threads

T: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

Runtime Comparison: STGP' vs DTGP

vga_lcd
des perf
aes core In STGP, building the task vga_lcd (398K tasks)
graph is typically done in | - |
aco7_ctrl just one thread and does [|
not overlap with the task | |
wb_dma : | |
— graph execution ! |
usb_ph i |
—phy & | 86% |
tv80 However, when graphs are small, | i
the scheduling overhead of DTGP | |
c1355 outweighs this overlap advantage . mBuild Graph = Run Graph |
0 50 100 150 200 250 300 350 400 450

aDTGP mSTGP

: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

Takeaways

« Understand the importance of asynchronous tasking with dependencies

Recognize the limitations of existing asynchronous tasking models

Introduce a new dynamic task graph programming model called AsyncTask

Overcome the scheduling challenges to support the model

Demonstrate the efficiency of AsyncTask
Conclude the talk

Everything has been Integrated to Taskflow’

- Taskflow is a header-only C++ library for task-parallel programming
» Started in 2018 to help DARPA parallelize critical design automation workloads

* Using AsyncTask is very easy
clone the Taskflow project
' ~$ git clone https://github.com/taskflow/taskflow.git
' ~$ cd taskflow

compile your program and tell your compiler where to find Taskflow header files
i ~$ g++ -std=c++20 examples/simple.cpp -1 ./ -02 -pthread -o simple
~$./simple

' TaskA

' TaskC

iTaskB

1: Taskflow: A General-purpose Task-parallel Programming system in Modern C++: https://taskflow.github.io/

https://github.com/taskflow/taskflow.git
https://taskflow.github.io/

Thank you for using Taskflow!

- VAR e
&) «ossia a vommcses (Qrannov {gTivaD

LE R J
2::ROS
A i eew

OX &N industrial
b"n:lr'p""- £ . Y

<I’9> S N I GJ’

Inference Engine

@ TOPERON

2/ NVIDIA. ‘ Explosion Q g@gqtomicDEx
& W g EEES AmMDOl D <SS

&0 ModuleWorks

I Thank you for Sponsoring Taskflow!

NUMFOCUS

OPEN CODE = BETTER SCIENCE

>/ nVIDIA.

Google Summer of Code

Questions?

-0
O‘O Taskflow: https:/taskflow.github.io

Static task graph parallelism

' // Live: https://godbolt.ora/z/i8hx3xnnx

i tf::Taskflow taskflow;
. tf::Executor executor;

rauto [A, B, C

[J](){ std::
[1O){ std:
[1O){ std:
) [1(){ std:

' A.precede (B,
. D.succeed(B,

, D] = taskflow.emplace(

cout <«

ccout <«
rcout <<
:cout <<

C);
C);

"TaskA\n"; }
"TaskB\n"; 1},
"TaskC\n"; 1},
"TaskD\n"; }

. executor. run(taskflow).wait();

Dynamic task graph parallelism

Etf::Executor executor;
auto A = executor.silent_dependent_async([]{
. std::cout << "TaskA\n";
1)
rauto B = executor.silent_dependent_async([]{
i std::cout << "TaskB\n";

L}, A);

'auto C = executor.silent dependent_async([]{
i std::cout << "TaskC\n";

L}, A);

. auto D = executor.silent dependent_async([]{
' std::cout << "TaskD\n";

'}, B, O);

iexecutor.wait_for_all();

T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

https://godbolt.org/z/j8hx3xnnx
https://godbolt.org/z/T87PrTarx
https://taskflow.github.io/

	Slide 1
	Slide 2: Takeaways
	Slide 3: Why Parallel Computing?
	Slide 4: Modern Hardware is Designed to Run in Parallel
	Slide 5: Today’s Parallel Computing Problem is Very Irregular
	Slide 6: Another Example of Irregular Parallel Workload
	Slide 7: Parallelizing such Irregular Problems is Not Easy …
	Slide 8: Why Task-parallel Programming (TPP)?
	Slide 9: Takeaways
	Slide 10: Create an Asynchronous Task using std::async1
	Slide 11: An Example Implementation of std::async
	Slide 12: Build a Task Graph w/ std::async and std::future
	Slide 13: Sender-Receiver Version (with std::exec1)
	Slide 14: Intel’s TBB Library with tbb::task_group1
	Slide 15: OpenMP Tasking Model with depend Clauses1
	Slide 16: OpenCilk Version
	Slide 17: Limitations of Existing Async Tasking Models
	Slide 18: Takeaways
	Slide 19: Static vs Dynamic Task Graph Programming (TGP)
	Slide 20: Static Task Graph Programming in Taskflow1
	Slide 21: AsyncTask: Dynamic Task Graph Programming in Taskflow
	Slide 22: Wait for All Tasks to Finish
	Slide 23: Need a Correct Topological Order
	Slide 24: Incorrect Topological Order …
	Slide 25: Variable Range of Task Dependencies
	Slide 26: DTGP is Flexible for Runtime-driven Execution
	Slide 27: AsyncTask doesn’t Touch Data Abstraction
	Slide 28: Takeaways
	Slide 29: Overview: Taskflow’s Work-stealing Scheduler1
	Slide 30: Scheduling a Dynamic Task Graph
	Slide 31: Solving Challenge #1: ABA Problem
	Slide 32: Retain a Shared Ownership of Each Task Needed
	Slide 33: Solving Challenge #2: Data Race
	Slide 34: Solving Challenge #3: Synchronization
	Slide 35: Our Scheduling Algorithm is Lock-free1
	Slide 36: Takeaways
	Slide 37: Evaluation of AsyncTask (1/2)
	Slide 38: Evaluation of AsyncTask (2/2)
	Slide 39: Microbenchmarks
	Slide 40: Ease of Use of AsyncTask
	Slide 41: Real-world Application: Static Timing Analysis (STA)
	Slide 42: Runtime Comparison: STGP1 vs DTGP
	Slide 43: Takeaways
	Slide 44: Everything has been Integrated to Taskflow1
	Slide 45: Thank you for using Taskflow!
	Slide 46: Thank you for Sponsoring Taskflow!
	Slide 47: Questions?

