
1

2

Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk

3

Why Parallel Computing?

• Advances performance to a new level previously out of reach

0

100

200

300

400

500

600

1 CPU 8 CPUs 16 CPUs 24 CPUs 32 CPUs 40 CPUs 1 GPU

Time (minutes) to train a machine learning model

10-100x speed-up over manycore CPUs and GPU

4

Modern Hardware is Designed to Run in Parallel

• Intel Haswell microarchitecture
• Released in June 2013

• Typically comes with four cores

• Has an integrated GPU

• 1.4 B transistors with 22 nm technology

• Sophisticated design for ILP acceleration

• Deep pipeline – 16 stages

• Superscalar architecture
• Can issue and complete multiple independent

instructions per cycle

• Supports hyper-threading tech (HTT)

• Allows a single physical CPU core to appear
as two logical processors to the OS

If you don’t do parallel programming, you are not

utilizing your hardware efficiently …

5

Today’s Parallel Computing Problem is Very Irregular

• Computational task graph of a GPU-parallel circuit simulation workload1

> 500M gates and nets

> 1000 async kernel tasks

> 1000 dependencies

> hours to finish

…

Simulation task graph

1: Dian-Lun Lin, et al, “From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus,” ACM ICPP, 2022

Deep learning

accelerator

6

Another Example of Irregular Parallel Workload

RCP1Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

RCP1+4

SLP1+3

DLP1+3

ATP1+2

JMP1+1

CRP1

RCP1+1

SLP1

DLP1

RCP1+2

SLP1+1

DLP1+1

ATP1

RCP1+3

SLP1+2

DLP1+2

ATP1+1

JMP1

RCP1+5

SLP1+4

DLP1+4

ATP1+3

JMP1+2

CRP1+1

Parallel Parallel Parallel Parallel Parallel Parallel

Level

…

AND

AND

AND …

Pipeline scheduling

Levelize

1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

• CPU-parallel VLSI static timing analysis algorithm

> 100M async tasks

> 150M dependencies

Analysis algorithm is

modeled as a task graph

7

Parallelizing such Irregular Problems is Not Easy …

• You need to deal with A LOT OF technical details
• Parallelism abstraction (software + hardware)

• Concurrency control

• Synchronization

• Task and data race avoidance

• Dependency constraints

• Scheduling efficiencies (load balancing)

• Programming productivity

• Performance portability

• …

• And, don’t forget about trade-offs
• Performance vs Developer’s intent

Trade-offs Intent

We want a solution that can sit on top to help programmers manage these details as much as

possible because programmers care how fast (performance + productivity) they can get things done!

8

Why Task-parallel Programming (TPP)?

• TPP is an effective solution for parallelizing irregular workloads
• Captures developers’ intention in decomposing an algorithm into a top-down task graph

• Delegates difficult scheduling details (e.g., load balancing) to an optimized runtime

• Modern parallel programming libraries are moving towards task parallelism
• OpenMP 4.0 task dependency clauses (omp depend)

• C++26 execution control library (std::exec)

• TBB flow graph (tbb::flow::graph)

• Taskflow control Taskflow graph (CTFG) model

• … (many others)

Task

dependency

Task graph encapsulates

functions as tasks and their

dependencies as edges.

9

Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk

10

#include <future>
#include <iostream>

int compute(int v) {
 return v;
}

int main() {
 std::future<int> fu = std::async(std::launch::async, compute, 42);
 std::cout << fu.get() << std::endl; // prints 42
}

Use std::async to asynchronously run the

function compute(42) on a new thread.

Create an Asynchronous Task using std::async1

1: C++ std::async interface: https://en.cppreference.com/w/cpp/thread/async.html

Return a std::future to wait for this asynchronous

task to finish and access its result (i.e., 42)

• A high-level standard library facility to launch a task asynchronously

https://en.cppreference.com/w/cpp/thread/async.html

11

An Example Implementation of std::async

template <typename F, typename... Args>
auto async(F&& func, Args&&... args) {
 using ReturnType = std::invoke_result_t<F, Args...>;
 // promise-future pair for intern-thread sync
 std::promise<ReturnType> prom;
 std::future<ReturnType> fu = prom.get_future();
 std::thread t([prom=std::move(prom),
 f=std::forward<F>(func), ...args=std::forward<Args>(args)] () mutable {
 if constexpr(std::is_void_v<ReturnType>) {
 f(std::move(args)...);
 prom.set_value();
 } else {
 prom.set_value(f(std::move(args)...));
 }
 });
 t.detach(); // mimic fire-and-forget behavior of std::async
 return fu;
}

We create a thread from a lambda

function object that captures the function

and its argument (with perfect forwarding1)

and invoke the function in the body.

1: C++ std::forward: https://en.cppreference.com/w/cpp/utility/forward.html

I promise you that I will run your

function, and you can access the

result from the future object …

https://en.cppreference.com/w/cpp/utility/forward.html

12

Build a Task Graph w/ std::async and std::future

auto A = std::async(std::launch::async,
 [](){ std::cout << “A\n”; }
);
A.wait();
auto B = std::async(std::launch::async,
 [](){ std::cout << “B\n”; }
);
auto C = std::async(std::launch::async,
 [](){ std::cout << “C\n”; }
);
B.wait();
C.wait();
auto D = std::async(std::launch::async,
 [](){ std::cout << “D\n”; }
);
D.wait();

We need to wait for A to finish before

launching B and C asynchronously.

We need to wait for B and C to finish before

launching D asynchronously

• std::future allows us to perform task-specific synchronization

By properly synchronizing tasks using future.wait, we can

dynamically create a task graph (i.e., dynamic task graph)

13

Sender-Receiver Version (with std::exec1)

exec::static_thread_pool pool;
auto scheduler = pool.get_scheduler();

// create a sender task for A
auto sa = exec::then(exec::schedule(scheduler), []{ std::cout<<"A\n"; });
exec::sync_wait(sa); // wait for A

// create two parallel sender tasks for B and C
auto sb = exec::then(exec::schedule(scheduler), []{ std::cout<<"B\n"; });
auto sc = exec::then(exec::schedule(scheduler), []{ std::cout<<"C\n"; });
exec::sync_wait(exec::when_all(sb, sc)); // wait for B and C

// create a sender task for D
auto sd = exec::then(exec::schedule(scheduler), []{ std::cout<<"D\n"; });
exec::sync_wait(sd); // wait for D

1: C++ execution control library (experimental): https://en.cppreference.com/w/cpp/experimental/execution.html

• A standardized abstraction for composing tasks and dependencies

Schedule tasks on a pool of worker threads

https://en.cppreference.com/w/cpp/experimental/execution.html

14

Intel’s TBB Library with tbb::task_group1

tbb::task_group tg;

// A
tg.run([] { std::cout << "A\n"; });
tg.wait();

// B and C in parallel
tg.run([] { std::cout << "B\n"; });
tg.run([] { std::cout << "C\n"; });
tg.wait();

// D
tg.run([] { std::cout << "D\n"; });
tg.wait();

Need to task_group::wait on A

before running B and C

Need to task_group::wait on B and

C before running D

1: TBB task group: https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls

A class in TBB to create asynchronous

tasks and wait for their completion

• A class to create asynchronous tasks and wait for their completion

https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls

15

OpenMP Tasking Model with depend Clauses1

#omp parallel
{
 int A_B, A_C, B_D, C_D;

 #pragma omp task depend(out: A_B, A_C)
 std::cout << “TaskA\n”;

 #pragma omp task depend(in: A_B; out: B_D)
 std::cout << “TaskB\n”;

 #pragma omp task depend(in: A_C; out: C_D)
 std::cout << “TaskB\n”;

 #pragma omp task depend(in: B_D, C_D)
 std::cout << “TaskB\n”;
}

1: OpenMP task dependency clauses (version 5, 2008): https://www.openmp.org/spec-html/5.0/openmpsu99.html

Specify task dependencies using in and

out clauses when creating an OpenMP task

A_B

A_C

B_D

C_D

Define dependency handles

With these OpenMP directives, the compiler will

insert parallel code that launches asynchronous

tasks and enforces their dependencies.

• Leverages compiler directives to define tasks and dependencies

https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html

16

OpenCilk Version

• A fork-join programming model relying on compiler-generated parallel code
• With language extensions like cilk_spawn and cilk_sync

void A() { std::cout << "A\n"; }
void B() { std::cout << "B\n"; }
void C() { std::cout << "C\n"; }
void D() { std::cout << "D\n"; }
int main() {
 A();

 cilk_spawn B();
 C();
 cilk_sync;

 D();
}

1: OpenCilk: https://www.opencilk.org/

Spawn a child task on B using cilk_spawn and

continue with C in the main thread

You need a compiler that supports OpenCilk

syntax to run this code.

Synchronize both B and C using cilk_sync

before running task D

https://www.opencilk.org/

17

Limitations of Existing Async Tasking Models

 Tasks and their dependencies are decoupled during task graph creation
• If dependencies are not expressed alongside the task creation logic, it’s difficult to reason about

the overall task graph structure

• Without a clear dependency structure, the runtime loses opportunities to optimize task
placement and load balancing when constructing an asynchronous task

 Correct placement of wait calls is left to programmers

• Programmers must determine a correct synchronization order at a fine-grained level

• In the worst case, the number of waits equals the number of dependencies

• In practice, many applications only care about the completion of the entire task graph instead of
intermediate tasks, making such fine-grained waiting unnecessary, costly, and buggy

 Limited support for building highly dynamic task graphs
• Highly dynamic task graphs → those whose structures, dependencies, and task content are

highly dependent on runtime variables or dynamic control-flow results

• Ex: OpenMP is not a good fit for this scenario as it relies on static compiler directives

 May require a non-standard C++ compiler to generate parallel code

18

Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk

19

Static vs Dynamic Task Graph Programming (TGP)

• All examples we’ve discussed so far are dynamic TGP (DTGP)

t

Task construction

Task execution

t

Task construction Task execution

Saved time

In static TGP (STGP), execution

follows the construct-and-run model

In DTGP, tasks can start as soon as

their dependencies are met

20

Static Task Graph Programming in Taskflow1

#include <taskflow/taskflow.hpp> // Live: https://godbolt.org/z/j8hx3xnnx

int main(){
 tf::Taskflow taskflow;
 tf::Executor executor;
 auto [A, B, C, D] = taskflow.emplace(
 [] () { std::cout << "TaskA\n"; }
 [] () { std::cout << "TaskB\n"; },
 [] () { std::cout << "TaskC\n"; },
 [] () { std::cout << "TaskD\n"; }
);
 A.precede(B, C);
 D.succeed(B, C);
 executor.run(taskflow).wait();
 return 0;
}

1: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

t

Task construction Task execution

S
T

G
P

https://godbolt.org/z/j8hx3xnnx

21

t

AsyncTask: Dynamic Task Graph Programming in Taskflow

// Live: https://godbolt.org/z/j76ThGbWK

tf::Executor executor;

auto A = executor.silent_dependent_async([](){
 std::cout << "TaskA\n";
});
auto B = executor.silent_dependent_async([](){
 std::cout << "TaskB\n";
}, A);
auto C = executor.silent_dependent_async([](){
 std::cout << "TaskC\n";
}, A);
auto [D, Fu] = executor.dependent_async([](){
 std::cout << "TaskD\n";
}, B, C);

Fu.wait();

Task construction

Specify variable task dependencies using

C++ variadic parameter pack

Task execution

Fu.wait();

https://godbolt.org/z/j76ThGbWK

22

Wait for All Tasks to Finish

// Live: https://godbolt.org/z/T87PrTarx

tf::Executor executor;
auto A = executor.silent_dependent_async([](){
 std::cout << "TaskA\n";
});
auto B = executor.silent_dependent_async([](){
 std::cout << "TaskB\n";
}, A);
auto C = executor.silent_dependent_async([](){
 std::cout << "TaskC\n";
}, A);
auto D = executor.silent_dependent_async([](){
 std::cout << "TaskD\n";
}, B, C);

executor.wait_for_all(); Wait for the entire graph to finish.

t

Task construction

Task execution

wait_for_all

https://godbolt.org/z/T87PrTarx

23

Need a Correct Topological Order

auto A = executor.silent_dependent_async(
 [](){ std::cout << "TaskA\n"; }
);
auto B = executor.silent_dependent_async(
 [](){ std::cout << "TaskB\n"; }, A
);
auto C = executor.silent_dependent_async(
 [](){ std::cout << "TaskC\n"; }, A
);
auto D = executor.silent_dependent_async(
 [](){ std::cout << "TaskD\n"; }, B, C
);

auto A = executor.silent_dependent_async(
 [](){ std::cout << "TaskA\n"; }
);
auto C = executor.silent_dependent_async(
 [](){ std::cout << "TaskC\n"; }, A
);
auto B = executor.silent_dependent_async(
 [](){ std::cout << "TaskB\n"; }, A
);
auto D = executor.silent_dependent_async(
 [](){ std::cout << "TaskD\n"; }, B, C
);

Topological order #1: A→B→C→D

Topological order #2: A→C→B→D

24

Incorrect Topological Order …

tf::Executor executor;
auto A = executor.silent_dependent_async([](){
 std::cout << "TaskA\n";
});
auto D = executor.silent_dependent_async([](){
 std::cout << "TaskD\n";
}, B-is-unavailable-yet, C-is-unavailable-yet);

auto B = executor.silent_dependent_async([](){
 std::cout << "TaskB\n";
}, A);
auto C = executor.silent_dependent_async([](){
 std::cout << "TaskC\n";
}, A);

executor.wait_for_all();

An incorrect topological order

(A→D→B→C) prevents you

from expressing a correct

dynamic task graph.

25

Variable Range of Task Dependencies

• Both methods can take a variable range of dependent-async tasks
• Useful when the task dependencies come as a runtime variable (e.g., loaded from a file)

// Live: https://godbolt.org/z/6Pvco4KeE
std::vector<tf::AsyncTask> tasks = {
 executor.silent_dependent_async([](){ std::cout << "TaskA\n"; }),
 executor.silent_dependent_async([](){ std::cout << "TaskB\n"; }),
 executor.silent_dependent_async([](){ std::cout << "TaskC\n"; }),
 executor.silent_dependent_async([](){ std::cout << "TaskD\n"; })
};
// create a dependent-async tasks that depends on tasks, A, B, C, and D
executor.dependent_async([](){}, tasks.begin(), tasks.end());
// create a silent-dependent-async task that depends on tasks, A, B, C, and D
executor.silent_dependent_async([](){}, tasks.begin(), tasks.end());

While this feature may look trivial, I found it very difficult to achieve with existing asynchronous tasking

libraries because their task creation and dependency expression are decoupled from each other …

https://godbolt.org/z/6Pvco4KeE

26

DTGP is Flexible for Runtime-driven Execution

• Assemble task graphs driven by runtime variables and control-flow results

if (a == true) {
 G1 = build_task_graph1();
 if (b == true) {
 G2 = build_task_graph2();
 G1.precede(G2);
 if (c == true) {
 … // defined other TGPs
 }
 }
 else {
 G3 = build_task_graph3();
 G1.precede(G3);
 }
}

G1 = build_task_graph1();
G2 = build_task_graph2();
if (G1.num_tasks() == 100) {
 G1.precede(G2);
}
else {
 G3 = build_task_graph3();
 G1.precede(G2, G3);
 if(G2.num_dependencies()>=10){
 … // define another TGP
 } else {
 … // define another TGP
 }
}

This type of dynamic task graph is very difficult to achieve using static task graph programming …

27

AsyncTask doesn’t Touch Data Abstraction

• Focus on coarse-grained task parallelism not fine-grained data parallelism
• Our goal is to have users describe tasks and their dependencies in an expressive language

• Users describe func as a lambda and capture necessary data or func arguments themselves

• The advantage of this decision is twofold:
• Users retain full control over data layout and ownership, allowing them to optimize data

structures and memory layout for their specific application domains

• Letting users decide how and where to store data keeps AsyncTask lightweight and non-
intrusive – no need to modify existing data structures to fit our framework

• Ex: Models that count on data abstraction (e.g., Fastflow, TBB pipeline) require users to
rewrite their code to library-specific data abstraction in order to gain parallelism

template <typename F, typename... Tasks>
auto dependent_async(F&& func, Tasks&&... tasks) {
 ...
}

This is how std::async is implemented

(e.g., args are captured with perfect forwarding)

28

Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk

29

Overview: Taskflow’s Work-stealing Scheduler1

• Task-level scheduling

Dequeue a task t
invoke(t)

Dec remaining strong

dependencies of t‘s

successors by one

Enqueue successors of

zero remaining strong

dependencies

r = invoke(t)

enqueue rth child

Condition task?

Queue empty?

N

Y

N

Wait for tasks
Y

• Worker-level scheduling

Key results: schedule tasks with in-graph control flow with a strong balance between the number of

active workers and dynamically generated tasks – low latency, energy efficient, and high throughput

1: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

30

Scheduling a Dynamic Task Graph

Call tf::Executor::dependent_async

Execute the task Add the task to

the successor of

each task in the

dependency list

Y N

Enqueue the task and pop

it out when dependencies

are met

Sync on wait

(application)

Challenge #1 (ABA):

Dependent async tasks

must exist correctly – we

cannot specify a task

dependency that points to
an invalid memory location.

Challenge #2 (race):

Since task graph

construction and execution

in DTGP can happen

simultaneously, multiple
workers may concurrently

access the successor of a

dependent-async task.

Challenge #3 (sync):

Applications can issue fine-

grained wait calls to

synchronize the execution

at any time.

Dependencies met?

31

Solving Challenge #1: ABA Problem

A (0x0010)

B C

D

A’ (0x0010)

Runtime opt

(e.g., mem pool)

worker #1

worker #2

tf::Executor executor;

auto A = executor.silent_dependent_async([]{
 std::cout << "TaskA\n";
});
auto B = executor.silent_dependent_async([]{
 std::cout << "TaskB\n";
}, A);
auto C = executor.silent_dependent_async([]{
 std::cout << "TaskC\n";
}, A);
auto D = executor.silent_dependent_async([]{
 std::cout << "TaskD\n";
}, B, C);

executor.wait_for_all();

1: ABA Problem: https://en.wikipedia.org/wiki/ABA_problem

https://en.wikipedia.org/wiki/ABA_problem

32

Retain a Shared Ownership of Each Task Needed

tf::Executor executor;

tf::AsyncTask A = executor.silent_dependent_async([]{
 std::cout << "TaskA\n";
});
tf::AsyncTask B = executor.silent_dependent_async([]{
 std::cout << "TaskB\n";
}, A);
tf::AsyncTask C = executor.silent_dependent_async([]{
 std::cout << "TaskC\n";
}, A);
tf::AsyncTask D = executor.silent_dependent_async([]{
 std::cout << "TaskD\n";
}, B, C);

executor.wait_for_all();

tf::AsyncTask acts like

a std::shared_ptr to

ensure tasks stay alive

when they are used

33

Solving Challenge #2: Data Race

• Both B and C want to add themselves to the successors of A
• Meanwhile, A may want to remove some of its successor when the task finishes

• Use compare-and-swap (CAS) with spinning to enable exclusive access
• Spinning does not incur much overhead because most task graphs are sparse

• If you task graph is very dense, probably DTGP is not the right solution to your application

34

Solving Challenge #3: Synchronization

• Users can issue both coarse- and fine-grained synchronizations at any time
• Coarse-grained sync: executor.wait_for_all()

• Fine-grained sync: future.wait()

tf::Executor executor;
auto A = executor.silent_dependent_async([]{});
auto B = executor.silent_dependent_async([]{}, A);
executor.wait_for_all(); // wait for A and B

auto C = executor.silent_dependent_async([]{}, A);
auto D = executor.silent_dependent_async([]{}, B, C);
executor.wait_for_all(); // wait for C and D

// lock-based sync
std::unique_lock lock(mtx);
cv.wait(lock, [&](){
 return num_tasks == 0;
});

// atomic wait-based sync
auto n = num_tasks.load();
while(n != 0) {
 num_tasks.wait(n);
 n = num_tasks.load();
});

We leverage C++20 atomic variables to perform

waiting/notifying operations1, which allows much of the

synchronization to occur in user space rather than in the

kernel space (~11% performance improvement).

1: C++20 atomic wait and notification: https://en.cppreference.com/w/cpp/atomic/atomic/wait

https://en.cppreference.com/w/cpp/atomic/atomic/wait

35

Our Scheduling Algorithm is Lock-free1

1: Cheng-Hsiang Chiu, et. al, “Programming Dynamic Task Parallelism for Heterogeneous EDA Algorithms,” IEEE/ACM ICCAD, 2023

36

Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk

37

Evaluation of AsyncTask (1/2)

• Evaluated on both microbenchmarks and a real-world application
• Study the performance of AsyncTask w/o and w/ the impact of application tasks

• Microbenchmarks
• Measure the performance on four commonly used graph patterns

• Real-world application: VLSI Static Timing Analysis1

• Parallelize the timing propagation algorithm using AsyncTask

1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

Linear chain Binary tree No deps Random G

Propagation

task graph

38

Evaluation of AsyncTask (2/2)

• We consider the following baselines:
• OpenMP tasking: https://www.openmp.org/spec-html/5.0/openmpsu99.html

• PaRSEC: https://github.com/ICLDisco/parsec

• OpenCilk: https://github.com/opencilk

• AsyncTaskLK: replaced AsyncTask’s scheduler with OpenMP’s task scheduler1

We want to see how good our lock-free scheduling algorithm is

• AsyncTaskCV: replaced AsyncTask’s atomic wait with std::condition_variable

We want to see how good our C++20-based notification algorithm is

• We compiled all programs using g++12 with –std=c++20 and –O3
• 64-bit Linux machine with 128 GB RAM and 20 Intel i5-13500 CPU cores at 4.8 GHz

• All data is an average of ten runs to reduce variance

1: OpenMP task graph scheduler leverages a lock-based hash table to keep track of tasks and their dependency handles

https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://github.com/ICLDisco/parsec
https://github.com/opencilk

39

Microbenchmarks

Linear chain Binary tree

No deps Random G

40

Ease of Use of AsyncTask

• Surveyed 300+ graduate students in my HPC course at UW-Madison
• Asked students to finish four microbenchmarks using five DTGP models

• Rated each library in 1–10 (the higher the better) by the end of this programming assignment

0

2

4

6

8

10

12

Learning ease Completion Debuggability Conciseness Productivity Correctness

AsyncTask OpenMP OpenCilk PaRSEC std::async

Most students have hard time programming

the random graph especially using OpenMP

Most students can complete the assignments

using AsyncTask and std::async

41

Real-world Application: Static Timing Analysis (STA)

• Implemented task-parallel STA1 using AsyncTask
• Models the timing propagation as a dynamic task graph

• Propagates timing data from inputs to outputs

• Evaluated on four industrial circuit graphs
• aes_core: 66,751 tasks and 86,446 dependencies

• des_perf: 303,690 tasks and 387,291 dependencies

• vga_lcd: 397,809 tasks and 498,863 dependencies

• leon2: 4,328,255 tasks and 7,984,262 dependencies

1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

42

Runtime Comparison: STGP1 vs DTGP

In STGP, building the task

graph is typically done in

just one thread and does

not overlap with the task

graph execution

However, when graphs are small,

the scheduling overhead of DTGP

outweighs this overlap advantage

1: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

43

Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk

44

Everything has been Integrated to Taskflow1

• Taskflow is a header-only C++ library for task-parallel programming
• Started in 2018 to help DARPA parallelize critical design automation workloads

• Using AsyncTask is very easy

clone the Taskflow project
~$ git clone https://github.com/taskflow/taskflow.git
~$ cd taskflow

compile your program and tell your compiler where to find Taskflow header files
~$ g++ -std=c++20 examples/simple.cpp –I ./ -O2 -pthread -o simple
~$./simple
TaskA
TaskC
TaskB
TaskD

1: Taskflow: A General-purpose Task-parallel Programming system in Modern C++: https://taskflow.github.io/

https://github.com/taskflow/taskflow.git
https://taskflow.github.io/

45

Thank you for using Taskflow!

…

46

Thank you for Sponsoring Taskflow!

47

Questions?

// Live: https://godbolt.org/z/j8hx3xnnx

tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(
 [](){ std::cout << "TaskA\n"; }
 [](){ std::cout << "TaskB\n"; },
 [](){ std::cout << "TaskC\n"; },
 [](){ std::cout << "TaskD\n"; }
);

A.precede(B, C);
D.succeed(B, C);
executor.run(taskflow).wait();

// Live: https://godbolt.org/z/T87PrTarx

tf::Executor executor;
auto A = executor.silent_dependent_async([]{
 std::cout << "TaskA\n";
});
auto B = executor.silent_dependent_async([]{
 std::cout << "TaskB\n";
}, A);
auto C = executor.silent_dependent_async([]{
 std::cout << "TaskC\n";
}, A);
auto D = executor.silent_dependent_async([]{
 std::cout << "TaskD\n";
}, B, C);
executor.wait_for_all();

Static task graph parallelism Dynamic task graph parallelism

Taskflow: https://taskflow.github.io

T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

https://godbolt.org/z/j8hx3xnnx
https://godbolt.org/z/T87PrTarx
https://taskflow.github.io/

	Slide 1
	Slide 2: Takeaways
	Slide 3: Why Parallel Computing?
	Slide 4: Modern Hardware is Designed to Run in Parallel
	Slide 5: Today’s Parallel Computing Problem is Very Irregular
	Slide 6: Another Example of Irregular Parallel Workload
	Slide 7: Parallelizing such Irregular Problems is Not Easy …
	Slide 8: Why Task-parallel Programming (TPP)?
	Slide 9: Takeaways
	Slide 10: Create an Asynchronous Task using std::async1
	Slide 11: An Example Implementation of std::async
	Slide 12: Build a Task Graph w/ std::async and std::future
	Slide 13: Sender-Receiver Version (with std::exec1)
	Slide 14: Intel’s TBB Library with tbb::task_group1
	Slide 15: OpenMP Tasking Model with depend Clauses1
	Slide 16: OpenCilk Version
	Slide 17: Limitations of Existing Async Tasking Models
	Slide 18: Takeaways
	Slide 19: Static vs Dynamic Task Graph Programming (TGP)
	Slide 20: Static Task Graph Programming in Taskflow1
	Slide 21: AsyncTask: Dynamic Task Graph Programming in Taskflow
	Slide 22: Wait for All Tasks to Finish
	Slide 23: Need a Correct Topological Order
	Slide 24: Incorrect Topological Order …
	Slide 25: Variable Range of Task Dependencies
	Slide 26: DTGP is Flexible for Runtime-driven Execution
	Slide 27: AsyncTask doesn’t Touch Data Abstraction
	Slide 28: Takeaways
	Slide 29: Overview: Taskflow’s Work-stealing Scheduler1
	Slide 30: Scheduling a Dynamic Task Graph
	Slide 31: Solving Challenge #1: ABA Problem
	Slide 32: Retain a Shared Ownership of Each Task Needed
	Slide 33: Solving Challenge #2: Data Race
	Slide 34: Solving Challenge #3: Synchronization
	Slide 35: Our Scheduling Algorithm is Lock-free1
	Slide 36: Takeaways
	Slide 37: Evaluation of AsyncTask (1/2)
	Slide 38: Evaluation of AsyncTask (2/2)
	Slide 39: Microbenchmarks
	Slide 40: Ease of Use of AsyncTask
	Slide 41: Real-world Application: Static Timing Analysis (STA)
	Slide 42: Runtime Comparison: STGP1 vs DTGP
	Slide 43: Takeaways
	Slide 44: Everything has been Integrated to Taskflow1
	Slide 45: Thank you for using Taskflow!
	Slide 46: Thank you for Sponsoring Taskflow!
	Slide 47: Questions?

