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Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk
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Why Parallel Computing?

• Advances performance to a new level previously out of reach
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Modern Hardware is Designed to Run in Parallel

• Intel Haswell microarchitecture
• Released in June 2013

• Typically comes with four cores

• Has an integrated GPU

• 1.4 B transistors with 22 nm technology

• Sophisticated design for ILP acceleration

• Deep pipeline – 16 stages

• Superscalar architecture
• Can issue and complete multiple independent 

instructions per cycle

• Supports hyper-threading tech (HTT)

• Allows a single physical CPU core to appear 
as two logical processors to the OS

If you don’t do parallel programming, you are not 

utilizing your hardware efficiently …
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Today’s Parallel Computing Problem is Very Irregular

• Computational task graph of a GPU-parallel circuit simulation workload1

> 500M gates and nets

> 1000 async kernel tasks

> 1000 dependencies

> hours to finish

…

Simulation task graph

1: Dian-Lun Lin, et al, “From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch Stimulus,” ACM ICPP, 2022 

Deep learning 

accelerator
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Another Example of Irregular Parallel Workload
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1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

• CPU-parallel VLSI static timing analysis algorithm

> 100M async tasks

> 150M dependencies

Analysis algorithm is 

modeled as a task graph
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Parallelizing such Irregular Problems is Not Easy …

• You need to deal with A LOT OF technical details
• Parallelism abstraction (software + hardware) 

• Concurrency control

• Synchronization

• Task and data race avoidance

• Dependency constraints

• Scheduling efficiencies (load balancing)

• Programming productivity

• Performance portability

• …

• And, don’t forget about trade-offs
• Performance vs Developer’s intent

Trade-offs Intent

We want a solution that can sit on top to help programmers manage these details as much as 

possible because programmers care how fast (performance + productivity) they can get things done!



8

Why Task-parallel Programming (TPP)?

• TPP is an effective solution for parallelizing irregular workloads
• Captures developers’ intention in decomposing an algorithm into a top-down task graph 

• Delegates difficult scheduling details (e.g., load balancing) to an optimized runtime

• Modern parallel programming libraries are moving towards task parallelism
• OpenMP 4.0 task dependency clauses (omp depend)

• C++26 execution control library (std::exec)  

• TBB flow graph (tbb::flow::graph)

• Taskflow control Taskflow graph (CTFG) model

• … (many others)

Task

dependency

Task graph encapsulates 

functions as tasks and their 

dependencies as edges.
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Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk
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#include <future>
#include <iostream>

int compute(int v) {
  return v;
}

int main() {
  std::future<int> fu = std::async(std::launch::async, compute, 42);
  std::cout << fu.get() << std::endl;  // prints 42
}

Use std::async to asynchronously run the 

function compute(42) on a new thread.

Create an Asynchronous Task using std::async1 

1: C++ std::async interface: https://en.cppreference.com/w/cpp/thread/async.html 

Return a std::future to wait for this asynchronous 

task to finish and access its result (i.e., 42)

• A high-level standard library facility to launch a task asynchronously

https://en.cppreference.com/w/cpp/thread/async.html
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An Example Implementation of std::async

template <typename F, typename... Args>
auto async(F&& func, Args&&... args) {
  using ReturnType = std::invoke_result_t<F, Args...>;
  // promise-future pair for intern-thread sync
  std::promise<ReturnType> prom;
  std::future<ReturnType> fu = prom.get_future();
  std::thread t([prom=std::move(prom), 
    f=std::forward<F>(func), ...args=std::forward<Args>(args)] () mutable {
    if constexpr(std::is_void_v<ReturnType>) {
      f(std::move(args)...);
      prom.set_value();
    } else {
      prom.set_value(f(std::move(args)...));
    }
  });
  t.detach();  // mimic fire-and-forget behavior of std::async
  return fu;
}

We create a thread from a lambda 

function object that captures the function 

and its argument (with perfect forwarding1) 

and invoke the function in the body.

1: C++ std::forward: https://en.cppreference.com/w/cpp/utility/forward.html  

I promise you that I will run your 

function, and you can access the 

result from the future object …

https://en.cppreference.com/w/cpp/utility/forward.html
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Build a Task Graph w/ std::async and std::future

auto A = std::async(std::launch::async, 
  [](){ std::cout << “A\n”; }
);
A.wait();
auto B = std::async(std::launch::async, 
  [](){ std::cout << “B\n”; }
);
auto C = std::async(std::launch::async, 
  [](){ std::cout << “C\n”; }
);
B.wait();
C.wait();
auto D = std::async(std::launch::async, 
  [](){ std::cout << “D\n”; }
);
D.wait();

We need to wait for A to finish before 

launching B and C asynchronously.

We need to wait for B and C to finish before 

launching D asynchronously

• std::future allows us to perform task-specific synchronization

By properly synchronizing tasks using future.wait, we can 

dynamically create a task graph (i.e., dynamic task graph)
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Sender-Receiver Version (with std::exec1)

exec::static_thread_pool pool;
auto scheduler = pool.get_scheduler();

// create a sender task for A
auto sa = exec::then(exec::schedule(scheduler), []{ std::cout<<"A\n"; });
exec::sync_wait(sa);  // wait for A

// create two parallel sender tasks for B and C 
auto sb = exec::then(exec::schedule(scheduler), []{ std::cout<<"B\n"; });
auto sc = exec::then(exec::schedule(scheduler), []{ std::cout<<"C\n"; });
exec::sync_wait(exec::when_all(sb, sc));  // wait for B and C

// create a sender task for D
auto sd = exec::then(exec::schedule(scheduler), []{ std::cout<<"D\n"; });
exec::sync_wait(sd);  // wait for D

1: C++ execution control library (experimental): https://en.cppreference.com/w/cpp/experimental/execution.html 

• A standardized abstraction for composing tasks and dependencies

Schedule tasks on a pool of worker threads

https://en.cppreference.com/w/cpp/experimental/execution.html
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Intel’s TBB Library with tbb::task_group1

tbb::task_group tg;

// A
tg.run([] { std::cout << "A\n"; });
tg.wait();  

// B and C in parallel
tg.run([] { std::cout << "B\n"; });
tg.run([] { std::cout << "C\n"; });
tg.wait();  

// D
tg.run([] { std::cout << "D\n"; });
tg.wait();  

Need to task_group::wait on A 

before running B and C

Need to task_group::wait on B and 

C before running D

1: TBB task group: https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls 

A class in TBB to create asynchronous 

tasks and wait for their completion

• A class to create asynchronous tasks and wait for their completion

https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
https://oneapi-spec.uxlfoundation.org/specifications/oneapi/v1.3-rev-1/elements/onetbb/source/task_scheduler/task_group/task_group_cls
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OpenMP Tasking Model with depend Clauses1

#omp parallel 
{    
  int A_B, A_C, B_D, C_D;

  #pragma omp task depend(out: A_B, A_C) 
  std::cout << “TaskA\n”;

  #pragma omp task depend(in: A_B; out: B_D)
  std::cout << “TaskB\n”;

  #pragma omp task depend(in: A_C; out: C_D)
  std::cout << “TaskB\n”;  

  #pragma omp task depend(in: B_D, C_D) 
  std::cout << “TaskB\n”;
}

1: OpenMP task dependency clauses (version 5, 2008): https://www.openmp.org/spec-html/5.0/openmpsu99.html 

Specify task dependencies using in and 

out clauses when creating an OpenMP task

A_B

A_C

B_D

C_D

Define dependency handles

With these OpenMP directives, the compiler will 

insert parallel code that launches asynchronous 

tasks and enforces their dependencies.

• Leverages compiler directives to define tasks and dependencies

https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html
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OpenCilk Version

• A fork-join programming model relying on compiler-generated parallel code
• With language extensions like cilk_spawn and cilk_sync

void A() { std::cout << "A\n"; }
void B() { std::cout << "B\n"; }
void C() { std::cout << "C\n"; }
void D() { std::cout << "D\n"; }
int main() {
  A();

  cilk_spawn B();
  C();
  cilk_sync;

  D();
}

1: OpenCilk: https://www.opencilk.org/ 

Spawn a child task on B using cilk_spawn and 

continue with C in the main thread

You need a compiler that supports OpenCilk 

syntax to run this code.

Synchronize both B and C using cilk_sync 

before running task D

https://www.opencilk.org/
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Limitations of Existing Async Tasking Models 

 Tasks and their dependencies are decoupled during task graph creation
• If dependencies are not expressed alongside the task creation logic, it’s difficult to reason about 

the overall task graph structure

• Without a clear dependency structure, the runtime loses opportunities to optimize task 
placement and load balancing when constructing an asynchronous task

 Correct placement of wait calls is left to programmers

• Programmers must determine a correct synchronization order at a fine-grained level

• In the worst case, the number of waits equals the number of dependencies 

• In practice, many applications only care about the completion of the entire task graph instead of 
intermediate tasks, making such fine-grained waiting unnecessary, costly, and buggy

 Limited support for building highly dynamic task graphs
• Highly dynamic task graphs → those whose structures, dependencies, and task content are 

highly dependent on runtime variables or dynamic control-flow results

• Ex: OpenMP is not a good fit for this scenario as it relies on static compiler directives

 May require a non-standard C++ compiler to generate parallel code
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Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk
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Static vs Dynamic Task Graph Programming (TGP)

• All examples we’ve discussed so far are dynamic TGP (DTGP)

t

Task construction

Task execution

t

Task construction Task execution

Saved time

In static TGP (STGP), execution 

follows the construct-and-run model

In DTGP, tasks can start as soon as 

their dependencies are met
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Static Task Graph Programming in Taskflow1

#include <taskflow/taskflow.hpp>  // Live: https://godbolt.org/z/j8hx3xnnx

int main(){ 
  tf::Taskflow taskflow; 
  tf::Executor executor; 
  auto [A, B, C, D] = taskflow.emplace( 
    [] () { std::cout << "TaskA\n"; }
    [] () { std::cout << "TaskB\n"; }, 
    [] () { std::cout << "TaskC\n"; }, 
    [] () { std::cout << "TaskD\n"; } 
  );
  A.precede(B, C); 
  D.succeed(B, C); 
  executor.run(taskflow).wait(); 
  return 0; 
}

1: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

t

Task construction Task execution

S
T

G
P

https://godbolt.org/z/j8hx3xnnx
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t

AsyncTask: Dynamic Task Graph Programming in Taskflow

// Live: https://godbolt.org/z/j76ThGbWK

tf::Executor executor;  

auto A = executor.silent_dependent_async([](){ 
    std::cout << "TaskA\n"; 
}); 
auto B = executor.silent_dependent_async([](){ 
    std::cout << "TaskB\n"; 
}, A); 
auto C = executor.silent_dependent_async([](){ 
    std::cout << "TaskC\n"; 
}, A); 
auto [D, Fu] = executor.dependent_async([](){ 
    std::cout << "TaskD\n"; 
}, B, C); 

Fu.wait(); 

Task construction

Specify variable task dependencies using 

C++ variadic parameter pack

Task execution

Fu.wait();

https://godbolt.org/z/j76ThGbWK
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Wait for All Tasks to Finish

// Live: https://godbolt.org/z/T87PrTarx 

tf::Executor executor; 
auto A = executor.silent_dependent_async([](){ 
    std::cout << "TaskA\n"; 
}); 
auto B = executor.silent_dependent_async([](){ 
    std::cout << "TaskB\n"; 
}, A); 
auto C = executor.silent_dependent_async([](){ 
    std::cout << "TaskC\n"; 
}, A); 
auto D = executor.silent_dependent_async([](){ 
    std::cout << "TaskD\n"; 
}, B, C); 

executor.wait_for_all(); Wait for the entire graph to finish.

t

Task construction

Task execution

wait_for_all

https://godbolt.org/z/T87PrTarx
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Need a Correct Topological Order

auto A = executor.silent_dependent_async(
  [](){ std::cout << "TaskA\n"; }
); 
auto B = executor.silent_dependent_async(
  [](){ std::cout << "TaskB\n"; }, A
); 
auto C = executor.silent_dependent_async(
  [](){ std::cout << "TaskC\n"; }, A
); 
auto D = executor.silent_dependent_async(
  [](){ std::cout << "TaskD\n"; }, B, C
); 

auto A = executor.silent_dependent_async(
  [](){ std::cout << "TaskA\n"; }
); 
auto C = executor.silent_dependent_async(
  [](){ std::cout << "TaskC\n"; }, A
); 
auto B = executor.silent_dependent_async(
  [](){ std::cout << "TaskB\n"; }, A
); 
auto D = executor.silent_dependent_async(
  [](){ std::cout << "TaskD\n"; }, B, C
); 

Topological order #1: A→B→C→D

Topological order #2: A→C→B→D



24

Incorrect Topological Order …

tf::Executor executor; 
auto A = executor.silent_dependent_async([](){ 
    std::cout << "TaskA\n"; 
}); 
auto D = executor.silent_dependent_async([](){ 
    std::cout << "TaskD\n"; 
}, B-is-unavailable-yet, C-is-unavailable-yet);
 
auto B = executor.silent_dependent_async([](){ 
    std::cout << "TaskB\n"; 
}, A); 
auto C = executor.silent_dependent_async([](){ 
    std::cout << "TaskC\n"; 
}, A); 

executor.wait_for_all(); 

An incorrect topological order 

(A→D→B→C) prevents you 

from expressing a correct 

dynamic task graph.
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Variable Range of Task Dependencies

• Both methods can take a variable range of dependent-async tasks
• Useful when the task dependencies come as a runtime variable (e.g., loaded from a file)

// Live: https://godbolt.org/z/6Pvco4KeE 
std::vector<tf::AsyncTask> tasks = {
  executor.silent_dependent_async([](){ std::cout << "TaskA\n"; }),
  executor.silent_dependent_async([](){ std::cout << "TaskB\n"; }), 
  executor.silent_dependent_async([](){ std::cout << "TaskC\n"; }),
  executor.silent_dependent_async([](){ std::cout << "TaskD\n"; })
};
// create a dependent-async tasks that depends on tasks, A, B, C, and D
executor.dependent_async([](){}, tasks.begin(), tasks.end());
// create a silent-dependent-async task that depends on tasks, A, B, C, and D
executor.silent_dependent_async([](){}, tasks.begin(), tasks.end());

While this feature may look trivial, I found it very difficult to achieve with existing asynchronous tasking 

libraries because their task creation and dependency expression are decoupled from each other …

https://godbolt.org/z/6Pvco4KeE
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DTGP is Flexible for Runtime-driven Execution

• Assemble task graphs driven by runtime variables and control-flow results

if (a == true) {
  G1 = build_task_graph1();
  if (b == true) {
    G2 = build_task_graph2();
    G1.precede(G2);
    if (c == true) {
      … // defined other TGPs
    }
  }
  else {
    G3 = build_task_graph3();
    G1.precede(G3);
  }
}

G1 = build_task_graph1();
G2 = build_task_graph2();
if (G1.num_tasks() == 100) {
  G1.precede(G2);
}
else {
  G3 = build_task_graph3();
  G1.precede(G2, G3);
  if(G2.num_dependencies()>=10){
    … // define another TGP
  } else {
    … // define another TGP
  }
}

This type of dynamic task graph is very difficult to achieve using static task graph programming …
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AsyncTask doesn’t Touch Data Abstraction

• Focus on coarse-grained task parallelism not fine-grained data parallelism
• Our goal is to have users describe tasks and their dependencies in an expressive language

• Users describe func as a lambda and capture necessary data or func arguments themselves

• The advantage of this decision is twofold:
• Users retain full control over data layout and ownership, allowing them to optimize data 

structures and memory layout for their specific application domains

• Letting users decide how and where to store data keeps AsyncTask lightweight and non-
intrusive – no need to modify existing data structures to fit our framework

• Ex: Models that count on data abstraction (e.g., Fastflow, TBB pipeline) require users to 
rewrite their code to library-specific data abstraction in order to gain parallelism

template <typename F, typename... Tasks> 
auto dependent_async(F&& func, Tasks&&... tasks) {
   ...
}

This is how std::async is implemented

(e.g., args are captured with perfect forwarding)
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Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk
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Overview: Taskflow’s Work-stealing Scheduler1

• Task-level scheduling

Dequeue a task t
invoke(t)

Dec remaining strong 

dependencies of t‘s 

successors by one

Enqueue successors of 

zero remaining strong 

dependencies

r = invoke(t)

enqueue rth child

Condition task?

Queue empty?

N

Y

N

Wait for tasks
Y

• Worker-level scheduling

Key results: schedule tasks with in-graph control flow with a strong balance between the number of 

active workers and dynamically generated tasks – low latency, energy efficient, and high throughput 

1: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022
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Scheduling a Dynamic Task Graph

Call tf::Executor::dependent_async

Execute the task Add the task to 

the successor of 

each task in the 

dependency list

Y N

Enqueue the task and pop 

it out when dependencies 

are met

Sync on wait

(application)

Challenge #1 (ABA): 

Dependent async tasks 

must exist correctly – we 

cannot specify a task 

dependency that points to 
an invalid memory location.

Challenge #2 (race): 

Since task graph 

construction and execution 

in DTGP can happen 

simultaneously, multiple 
workers may concurrently 

access the successor of a 

dependent-async task.

Challenge #3 (sync): 

Applications can issue fine-

grained wait calls to 

synchronize the execution 

at any time.

Dependencies met?
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Solving Challenge #1: ABA Problem

A (0x0010)

B C

D

A’ (0x0010)

Runtime opt

(e.g., mem pool)

worker #1

worker #2

tf::Executor executor; 

auto A = executor.silent_dependent_async([]{ 
  std::cout << "TaskA\n"; 
}); 
auto B = executor.silent_dependent_async([]{ 
  std::cout << "TaskB\n"; 
}, A); 
auto C = executor.silent_dependent_async([]{ 
  std::cout << "TaskC\n"; 
}, A); 
auto D = executor.silent_dependent_async([]{ 
  std::cout << "TaskD\n"; 
}, B, C); 

executor.wait_for_all(); 

1: ABA Problem: https://en.wikipedia.org/wiki/ABA_problem 

https://en.wikipedia.org/wiki/ABA_problem
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Retain a Shared Ownership of Each Task Needed

tf::Executor executor; 

tf::AsyncTask A = executor.silent_dependent_async([]{ 
  std::cout << "TaskA\n"; 
}); 
tf::AsyncTask B = executor.silent_dependent_async([]{ 
  std::cout << "TaskB\n"; 
}, A); 
tf::AsyncTask C = executor.silent_dependent_async([]{ 
  std::cout << "TaskC\n"; 
}, A); 
tf::AsyncTask D = executor.silent_dependent_async([]{ 
  std::cout << "TaskD\n"; 
}, B, C); 

executor.wait_for_all(); 

tf::AsyncTask acts like 

a std::shared_ptr to 

ensure tasks stay alive 

when they are used 
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Solving Challenge #2: Data Race

• Both B and C want to add themselves to the successors of A
• Meanwhile, A may want to remove some of its successor when the task finishes

• Use compare-and-swap (CAS) with spinning to enable exclusive access
• Spinning does not incur much overhead because most task graphs are sparse

• If you task graph is very dense, probably DTGP is not the right solution to your application
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Solving Challenge #3: Synchronization

• Users can issue both coarse- and fine-grained synchronizations at any time
• Coarse-grained sync: executor.wait_for_all() 

• Fine-grained sync: future.wait()

tf::Executor executor; 
auto A = executor.silent_dependent_async([]{}); 
auto B = executor.silent_dependent_async([]{}, A); 
executor.wait_for_all();  // wait for A and B 

auto C = executor.silent_dependent_async([]{}, A); 
auto D = executor.silent_dependent_async([]{}, B, C);
executor.wait_for_all();  // wait for C and D 

// lock-based sync 
std::unique_lock lock(mtx);
cv.wait(lock, [&](){ 
  return num_tasks == 0; 
});

// atomic wait-based sync 
auto n = num_tasks.load(); 
while(n != 0) {
  num_tasks.wait(n);
  n = num_tasks.load();
});

We leverage C++20 atomic variables to perform 

waiting/notifying operations1, which allows much of the 

synchronization to occur in user space rather than in the 

kernel space (~11% performance improvement).

1: C++20 atomic wait and notification: https://en.cppreference.com/w/cpp/atomic/atomic/wait 

https://en.cppreference.com/w/cpp/atomic/atomic/wait
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Our Scheduling Algorithm is Lock-free1 

1: Cheng-Hsiang Chiu, et. al, “Programming Dynamic Task Parallelism for Heterogeneous EDA Algorithms,” IEEE/ACM ICCAD, 2023 
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Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk
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Evaluation of AsyncTask (1/2)

• Evaluated on both microbenchmarks and a real-world application
• Study the performance of AsyncTask w/o and w/ the impact of application tasks

• Microbenchmarks
• Measure the performance on four commonly used graph patterns

• Real-world application: VLSI Static Timing Analysis1

• Parallelize the timing propagation algorithm using AsyncTask

1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

Linear chain Binary tree No deps Random G

Propagation 

task graph
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Evaluation of AsyncTask (2/2)

• We consider the following baselines:
• OpenMP tasking: https://www.openmp.org/spec-html/5.0/openmpsu99.html 

• PaRSEC: https://github.com/ICLDisco/parsec 

• OpenCilk: https://github.com/opencilk 

• AsyncTaskLK: replaced AsyncTask’s scheduler with OpenMP’s task scheduler1

We want to see how good our lock-free scheduling algorithm is

• AsyncTaskCV: replaced AsyncTask’s atomic wait with std::condition_variable

We want to see how good our C++20-based notification algorithm is

• We compiled all programs using g++12 with –std=c++20 and –O3 
• 64-bit Linux machine with 128 GB RAM and 20 Intel i5-13500 CPU cores at 4.8 GHz

• All data is an average of ten runs to reduce variance

1: OpenMP task graph scheduler leverages a lock-based hash table to keep track of tasks and their dependency handles

https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://www.openmp.org/spec-html/5.0/openmpsu99.html
https://github.com/ICLDisco/parsec
https://github.com/opencilk
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Microbenchmarks

Linear chain Binary tree

No deps Random G
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Ease of Use of AsyncTask

• Surveyed 300+ graduate students in my HPC course at UW-Madison 
• Asked students to finish four microbenchmarks using five DTGP models

• Rated each library in 1–10 (the higher the better) by the end of this programming assignment

0
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12

Learning ease Completion Debuggability Conciseness Productivity Correctness

AsyncTask OpenMP OpenCilk PaRSEC std::async

Most students have hard time programming 

the random graph especially using OpenMP

Most students can complete the assignments 

using AsyncTask and std::async
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Real-world Application: Static Timing Analysis (STA)

• Implemented task-parallel STA1 using AsyncTask
• Models the timing propagation as a dynamic task graph

• Propagates timing data from inputs to outputs

• Evaluated on four industrial circuit graphs
• aes_core: 66,751 tasks and 86,446 dependencies 

• des_perf: 303,690 tasks and 387,291 dependencies

• vga_lcd: 397,809 tasks and 498,863 dependencies

• leon2: 4,328,255 tasks and 7,984,262 dependencies

1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022
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Runtime Comparison: STGP1 vs DTGP

In STGP, building the task 

graph is typically done in 

just one thread and does 

not overlap with the task 

graph execution

However, when graphs are small, 

the scheduling overhead of DTGP 

outweighs this overlap advantage

1: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022
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Takeaways

• Understand the importance of asynchronous tasking with dependencies

• Recognize the limitations of existing asynchronous tasking models

• Introduce a new dynamic task graph programming model called AsyncTask

• Overcome the scheduling challenges to support the model

• Demonstrate the efficiency of AsyncTask

• Conclude the talk
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Everything has been Integrated to Taskflow1

• Taskflow is a header-only C++ library for task-parallel programming
• Started in 2018 to help DARPA parallelize critical design automation workloads

• Using AsyncTask is very easy

# clone the Taskflow project 
~$ git clone https://github.com/taskflow/taskflow.git
~$ cd taskflow

# compile your program and tell your compiler where to find Taskflow header files
~$ g++ -std=c++20 examples/simple.cpp –I ./ -O2 -pthread -o simple 
~$ ./simple 
TaskA 
TaskC 
TaskB 
TaskD

1: Taskflow: A General-purpose Task-parallel Programming system in Modern C++: https://taskflow.github.io/ 

https://github.com/taskflow/taskflow.git
https://taskflow.github.io/
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Thank you for using Taskflow!

…
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Thank you for Sponsoring Taskflow!
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Questions?

// Live: https://godbolt.org/z/j8hx3xnnx

tf::Taskflow taskflow; 
tf::Executor executor; 
auto [A, B, C, D] = taskflow.emplace( 
  [](){ std::cout << "TaskA\n"; }
  [](){ std::cout << "TaskB\n"; }, 
  [](){ std::cout << "TaskC\n"; }, 
  [](){ std::cout << "TaskD\n"; } 
);

A.precede(B, C); 
D.succeed(B, C); 
executor.run(taskflow).wait(); 

// Live: https://godbolt.org/z/T87PrTarx 

tf::Executor executor; 
auto A = executor.silent_dependent_async([]{ 
  std::cout << "TaskA\n"; 
}); 
auto B = executor.silent_dependent_async([]{ 
  std::cout << "TaskB\n"; 
}, A); 
auto C = executor.silent_dependent_async([]{ 
  std::cout << "TaskC\n"; 
}, A); 
auto D = executor.silent_dependent_async([]{ 
  std::cout << "TaskD\n"; 
}, B, C); 
executor.wait_for_all(); 

Static task graph parallelism Dynamic task graph parallelism

Taskflow: https://taskflow.github.io

T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS, 2022

https://godbolt.org/z/j8hx3xnnx
https://godbolt.org/z/T87PrTarx
https://taskflow.github.io/
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