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abstract

Graph and hypergraph play critical roles in computer-aided design (CAD)
because it allows us to break down a large circuit into several manageable
pieces that facilitate efficient CAD algorithm designs. However, as circuit
sizes continue to grow, partitioning becomes increasingly time-consuming.
To address this runtime bottleneck, many researchers have leveraged CPU-
parallel techniques to accelerate partitioning. However, the speedups are
typically limited to 8–16 CPU threads. To overcome this challenge, this
thesis leverages the massive parallelism of GPUs and introduces two GPU-
accelerated partitioning algorithms: iG-kway for graphs and iHyperG for
hypergraphs. G-kway features a union find-based coarsening algorithm
that merges many vertices simultaneously, and a novel independent-set-
based refinement algorithm that refines thousands of vertices in parallel.
HyperG introduces a balanced group coarsening method and a sequence-
based refinement algorithm. Experimental results show that G-kway
achieves an average speedup of 8.6× over the CPU-parallel graph parti-
tioner mt-metis [1], while HyperG delivers an average speedup of 4.1×
over the CPU-parallel hypergraph partitioner Mt-KaHyPar [2], both main-
taining comparable cut quality.

While G-kway and HyperG achieve new performance milestones in
graph and hypergraph partitioning, they are limited to full partitioning.
This lack of support for incrementality presents a critical limitation for
many CAD applications, where circuits undergo iterative modifications as
part of optimization loops. To address this limitation, this thesis also intro-
duces two GPU-parallel incremental partitioning algorithms: iG-kway for
graphs and iHyperG for hypergraphs. iG-kway features an incrementality-
aware bucket-list data structure and a refinement kernel that refines only
affected vertices. iHyperG introduces a scalable delta-based hypergraph
data structure for efficient incremental modifications on the GPU, along



xiv

with an effective incremental partitioning algorithm that rebalances the
partition in a single pass and refines only cut-critical vertices. Experimen-
tal results show that iG-kway achieves an average speedup of 84× over the
GPU-based full graph partitioner G-kway, while iHyperG delivers 190×
speedup for hypergraph modification and 83× for partitioning over the
state-of-the-art GPU-based full hypergraph partitioner, both maintaining
comparable cut quality.
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introduction

Graph and hypergraph partitioning play important roles in various stages
of computer-aided design (CAD), including placement, routing, timing
analysis, and logic simulation [3]. For example, partitioning helps op-
timize component placement by dividing the circuit into smaller, more
manageable blocks while minimizing interconnections between them [4].
Given that partitioning a graph or hypergraph from scratch (known as
full partitioning) is NP-hard [5, 6, 2, 4], many heuristics have been devel-
oped [7, 8, 9]. Among them, multilevel partitioning is the most popular
approach for large-scale graphs and hypergraphs due to its ability to
generate high-quality partitions while ensuring fast runtime. A typical
multilevel partitioner begins by iteratively coarsening the input graph or
hypergraph into smaller representations. Once the structure becomes suffi-
ciently small, the partitioner finds an initial partitioning result using a fast
heuristic. It then performs uncoarsening, where the graph or hypergraph
is iteratively restored to its original size. At each level of uncoarsening, a
refinement algorithm is applied to improve partition quality.

However, as circuit sizes continue to grow, sequential full partition-
ers become increasingly time-consuming. For example, the sequential
full graph partitioner Metis [10] can take five minutes to partition a
five-million-gate circuit. Since partitioning can be performed multiple
times during a CAD algorithm (e.g., incremental timing [11], RTL simula-
tion [12]), the cumulative partitioning time can extend to several hours.

To address this challenge, existing full partitioners have leveraged
multi-core CPUs to parallelize the partitioning process. For graph parti-
tioning, mt-metis [1] is a state-of-the-art CPU-based partitioner that par-
allelizes the sequential k-way Fiduccia–Mattheyses (FM) algorithm [13].
For hypergraph partitioning, Mt-KaHyPar [2] leverages multithreading to
parallelize both the coarsening and refinement algorithms, achieving sig-
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nificant speedups over the widely used sequential hypergraph partitioner
hMetis [14]. Despite some improvements, the speedups of both mt-metis
and Mt-KaHyPar typically plateau at 8 to 16 CPU threads [1, 2].

Figure 0.1: The left two boxes show full graph (a) and hypergraph (b) parti-
tioning, where the input is partitioned from scratch. The right two boxes show
incremental graph (c) and hypergraph (d) partitioning, where the structure is
first incrementally modified and then refined, saving significant runtime by avoid-
ing repartitioning from scratch. In the graph partitioners, black lines represent
edges connecting pairs of vertices. In the hypergraph partitioners, black boxes
denote hyperedges, with their connected vertices enclosed inside the box.

To address this limitation, this thesis introduces two GPU-accelerated
full partitioning algorithms that leverage the massive parallelism of mod-
ern GPUs to achieve acceleration beyond what is attainable with tradi-
tional CPU-parallel approaches. Figure 0.1 illustrates the workflows of
(a) G-kway, a full graph partitioner, and (b) HyperG, a full hypergraph
partitioner. Both algorithms partition the input from scratch and achieve
significant speedups over widely used CPU-parallel graph and hypergraph
partitioners. G-kway features a union find-based coarsening algorithm
that merges many vertices simultaneously, and a novel independent-set-
based refinement algorithm that refines thousands of vertices in parallel.
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By exploiting massive parallelism in both coarsening and refinement, G-
kway achieves significant speedup over CPU-parallel mt-metis [1] without
compromising partitioning quality. On the other hand, HyperG redesigns
both coarsening and refinement to handle the complex multi-pin rela-
tionships in hypergraphs by introducing a balanced group coarsening
method and a sequence-based refinement algorithm, achieving substan-
tial speedups over CPU-parallel Mt-KaHyPar [2] while preserving high
partitioning quality.

While G-kway and HyperG achieve new performance milestones in
graph and hypergraph partitioning by leveraging the massive parallelism
of the GPU, they are limited to full partitioning, where the entire graph
or hypergraph is partitioned from scratch. However, in many CAD appli-
cations that integrate partitioning into iterative optimization workflows,
incremental partitioning can offer greater efficiency than full partitioning.
For example, a timing optimizer may repeatedly adjust cell placements
to meet timing goals [11], and logic synthesis tools may incrementally
restructure logic cones to improve design quality [15]. In these iterative
workflows, each time the circuit is incrementally modified, incremental
partitioning can quickly refine the existing partitioning result to main-
tain reasonable turnaround times across thousands or even millions of
incremental iterations. Without incremental partitioning, the overhead of
repetitive full partitioning can accumulate significantly, and the benefits
of partitioning cannot be fully exploited.

To overcome this limitation by adding support for incrementality, this
thesis also presents two GPU-parallel incremental partitioning algorithms.
Figure 0.1 illustrates the workflows of (c) iG-kway, a GPU-parallel incre-
mental graph partitioner, and (d) iHyperG, a GPU-parallel incremental
hypergraph partitioner. Both algorithms efficiently update the modified
structure directly on the GPU and selectively refine only the vertices that
require refinement in parallel, significantly reducing runtime by avoiding
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repartitioning from scratch. iG-kway features a bucket-list data struc-
ture that dynamically updates the graph directly on the GPU, along with
a refinement kernel that refine many affected vertices in parallel. This
design achieves significant speedup over the state-of-the-art GPU-based
full graph partitioner, G-kway. On the other hand, iHyperG introduces a
scalable delta-based data structure to address the high memory demands
imposed by complex multi-pin relationships in hypergraphs. In addition,
it employs a refinement strategy for hypergraphs that efficiently iden-
tifies cut-critical vertices within modified hyperedges and refines them
in parallel, achieving substantial speedup over the existing GPU-based
full hypergraph partitioner, HyperG, without compromising partitioning
quality.

In the next four chapters, we provide an in-depth explanation of our
GPU-accelerated partitioning algorithms: G-kway, HyperG, iG-kway, and
iHyperG, respectively.
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1 g-kway: multilevel gpu-accelerated k-way
graph partitioner

Graph partitioning is important for the design of many CAD algorithms.
However, as the graph size continues to grow, graph partitioning becomes
increasingly time-consuming. Recent research has introduced parallel
graph partitioners using either multi-core CPUs or GPUs. However, the
speedup of existing CPU graph partitioners is typically limited to a few
cores, while the performance of GPU-based solutions is algorithmically
limited by available GPU memory. To overcome these challenges, we
propose G-kway, an efficient multilevel GPU-accelerated k-way graph par-
titioner. G-kway introduces an effective union find-based coarsening and
a novel independent set-based refinement algorithm to significantly accel-
erate both the coarsening and uncoarsening stages. Furthermore, when
kernel launch overhead becomes substantial in the refinement algorithm,
G-kway employs CUDA Graph-based uncoarsening to reduce the over-
head and improve performance. Experimental results have shown that
G-kway outperforms both the state-of-the-art CPU-based and GPU-based
parallel partitioners with an average speedup of 8.6× and 3.8×, respec-
tively, while achieving comparable partitioning quality. Additionally, G-
kway with CUDA Graph-based uncoarsening can further accelerate graph
partitioning, achieving up to 1.93× speedup over the default G-kway.

1.1 Introduction
Graph partitioning is important for the design of efficient computer-aided
design (CAD) algorithms because it allows an algorithm to break down a
problem into smaller and manageable pieces. Among various partition-
ing frameworks, multilevel partitioning is the most popular for large-scale
graphs due to its high partitioning quality and fast runtime. A typical



2

multilevel partitioner iteratively coarsens the original graph into a smaller
representation. When the graph becomes small enough, the partitioner
iteratively restores the graph back to a larger one, followed by a refinement
algorithm.

However, as the size of circuit graphs continues to increase, graph
partitioning becomes time-consuming. To alleviate the long runtime, ex-
isting partitioners [1] have leveraged multi-core CPUs to parallelize the
partitioning algorithm. Despite some runtime improvements, the speedup
is typically limited to only 8–16 CPU threads [1]. On the other hand,
modern GPUs offer a massive amount of parallelism and memory band-
width that present an opportunity to accelerate graph partitioning to a
new performance degree. For instance, [16] proposes a CPU-GPU-hybrid
multilevel graph partitioner that dynamically performs the work on ei-
ther the GPU or CPU. However, their approach requires frequent data
transfers between CPU and GPU, resulting in significant runtime over-
head. To address this problem, GKSG [17] performs the entire graph
partitioning on a GPU. However, their performance is far from optimal
due to limited parallelism. Specifically, GKSG’s refinement algorithm can
only move a few vertices (e.g., 8) in parallel due to limited GPU memory,
as it counts on an exponential enumeration to find a valid refinement.
Furthermore, GKSG’s coarsening algorithm requires many sequential
matching iterations, largely underutilizing the massive parallelism in GPU.
As a consequence, GKSG reported only an average 1.9× speedup over a
CPU-parallel partitioner [17].

To overcome these problems, we propose G-kway [18], a new GPU-
accelerated k-way graph partitioner. We summarize three key contribu-
tions of G-kway below:

• G-kway introduces a union find-based coarsening algorithm that
can coarsen many vertices simultaneously to substantially reduce
the number of levels while keeping good partitioning quality. Specif-
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ically, at each level, our union find-based coarsening joins multiple
connected vertices into the same subset and coarsens them into a sin-
gle coarse vertex to construct a coarser graph, significantly reducing
the graph size.

• G-kway introduces an independent set-based refinement that can
refine many vertices in parallel, largely reducing the number of re-
finement iterations. Specifically, in each refinement iteration, our
independent set-based refinement identifies thousands of indepen-
dent vertices with positive gains and relocates them in parallel to
improve partitioning quality.

• G-kway introduces CUDA Graph-based uncoarsening for graphs
with significant kernel launch overhead, utilizing CUDA Graph and
conditional nodes to reduce overhead and minimize CPU interven-
tion, thereby enhancing performance. Specifically, CUDA Graph
reduces the overhead of frequent kernel launches by encapsulating
the entire computation workflow into a predefined execution graph,
allowing the CPU to launch it with a single host call.

We have evaluated the performance of G-kway on industrial circuit
graphs and compared our results with two state-of-the-art parallel graph
partitioners, CPU-based mt-metis [1] and GPU-based GKSG [17]. On
average, experimental results have shown that G-kway outperforms 32-
threaded mt-metis and GKSG by 8.6× and 3.8× faster, respectively, with
comparable cut sizes.

1.2 Problem Definition and Notation
Given an undirected graph, G = (V ,E), where V is a set of vertices, and
E is a set of edges. Each element in E is of the form e = (u, v) which
represents the connection between u and v in V . For a vertex v ∈ V , we
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denote the weight of v by Wv, while for an edge e ∈ E, we denote the
weight of e by We. For a vertex v ∈ V , its adjacent vertex set is denoted
as adj(v). Given k, if P = {p1,p2, . . . ,pk} is a disjoint partition of V , we
call P a k-way partition. For v ∈ V , we define P(v) = i if v ∈ pi. We
define the cut size as ∑e=(u,v)∈E,P(u)̸=P(v) We. Cut size is widely used for
evaluating the quality of a partition since it represents the interconnect
complexity among partitions. The partition weight of pi is defined as
Wpi

=
∑

v∈pi
Wv. The goal of the graph partition problem is to find a

k-way partition that satisfies the balance constraint while minimizing
the cut size. The balance constraint limits the maximum weight of pi as
Wpi

⩽ (1 + ϵ)
∑

v∈V Wv

k
, where 0 < ϵ ≪ 1 and ϵ is the imbalance ratio

given by applications.

1.3 GPU Multilevel k-way Partitioner
Figure 1.1 shows the overview of G-kway that consists of three main stages:
coarsening, initial partition, and uncoarsening.

• Coarsening. The goal is to coarsen the graph into a smaller representation
level by level while preserving the original graph’s structure. The coars-
ening level continues until the graph size becomes smaller than a certain
threshold (typically |V |

20×(log2(k))
). We develop a union find-based coars-

ening that substantially reduces the number of coarsening levels while
still maintaining a good representation of the original graph structure.

• Initial partition. The goal is to create an initial partition from the coarsest
graph. We utilize single-threaded Metis [10] for the initial partition.
Since the coarsest graph is much smaller than the original graph, the ini-
tial partition stage is very fast and does not benefit much from CPU/GPU
parallelism.
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• Uncoarsening. The goal is to iteratively restore the coarsened graph back
to its previous graph and reduce the cut size of a coarsened graph by
moving each vertex to a partition (i.e., refinement). The uncoarsening
level continues until the graph size is the same as the original graph.
We develop an efficient independent set-based refinement algorithm that
reduces the cut size by moving many vertices among partitions in paral-
lel.

Multilevel graph partitioning requires many iterative control-flow op-
erations performed on the CPU to determine termination. Such frequent
CPU-GPU data transfers can result in significant runtime overhead. To
address this issue, G-kway utilizes CUDA pinned memory for control-flow
data to avoid swapping out memory to disk by the operating system. In
both coarsening and uncoarsening stages, we utilize modern warp-level
primitives for our GPU kernels to further optimize the performance. In
terms of graph storage, G-kway utilizes the commonly used compressed
sparse row (CSR) data structure [17] for efficient GPU computing.

Figure 1.1: Overview of G-kway that consists of three main stages: coarsening,
initial partition, and uncoarsening.
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Union Find-based Coarsening with Scoring

Most existing parallel multilevel graph partitioners such as GKSG [17]
implement a parallel Heavy Edge Matching (HEM) algorithm that finds
matching pairs to coarsen the original graph. Specifically, each vertex
searches for a neighbor with the heaviest edge to form a matching pair and
coarsen the two vertices into a coarsened vertex. However, this matching
algorithm requires both vertices to choose each other. If both vertices have
many neighbors connected with the same heaviest edges, they may choose
different neighbors for matching, preventing the formation of matching
pairs and leaving many vertices unable to match. The unmatched vertices
continue to search with their remaining neighbors in the next matching
iteration. Such an iterative algorithm largely underutilizes the massive
parallelism in GPU. Furthermore, GKSG can only coarsen two vertices
per matching pair, thus requiring many coarsening levels until the size of
the coarsened graph is smaller than the threshold. Figure 1.2 shows the
comparison between GKSG’s coarsening algorithm and ours. As shown
in (a), GKSG can only match v1 and v2 in the first iteration, leaving the
unmatched vertices v3 and v4 for the next matching iteration.

Figure 1.2: Examples of three coarsening methods for one iteration, including
(a) Heavy Edge Matching (HEM) by GKSG, (b) Union find-based coarsening
without scoring, and (c) Union find-based coarsening with scoring. Each vertex
has a red arrow pointing to its selected neighbor. Vertices circled in the same
color are coarsened into a coarsened vertex.

To address these issues, our initial solution is to merge vertices into
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subsets and coarsen all vertices in the same subset into a coarsened vertex.
Each vertex finds a neighbor with the heaviest edge. If that neighbor
belongs to another subset, we merge the vertex into the same subset. This
union find-based strategy eliminates the need for iteratively searching
neighbors to match, ensuring each vertex can find a neighbor to merge in
only one iteration. Also, since we merge multiple vertices per subset, it
requires much fewer coarsening levels than GKSG. However, this strategy
can cause highly imbalanced subsets that largely impact refinement quality
in the next stage since many vertices may all be merged into the same
subset. As shown in 1.2 (b), v1 and v3 choose v2, v2 chooses v1, and v4
chooses v3. While the solution allows each vertex to find a neighbor in one
iteration, all vertices are eventually merged together.

To this end, we propose a union find-based coarsening with scoring.
Each vertex calculates the score for each connected edge and selects a
neighbor with the highest score to form a subset. Specifically, when a
vertex u has multiple neighbors with the same heaviest edge, we prioritize
the neighbor of u with the lower degree by assigning a higher score to
the edge connected to this neighbor. Figure 1.2 (c) shows our union find-
based coarsening with scoring. v3 selects v4 instead of v2 since v4 has
lower degree than v2, resulting in two balanced subsets. Our coarsening
algorithm consists of two steps: select neighbors and perform union find.

Select Neighbors

We first find a neighbor connected by the edge with the highest score for
each vertex. Given a source vertex u, we define the score of its edge (u, v)
as s(u, v) = c ×W(u,v) − degree(v), where degree(v) is the number of
neighbors of v, c is a constant no less than the maximum degree of the
graph, and W(u,v) is the edge weight of e = (u, v). Algorithm 1 shows our
neighbor selection algorithm which leverages an efficient Warp segmenta-
tion technique [19]. We assign 32 consecutive vertices and their edges to
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each GPU warp. Each GPU thread then processes an edge (u, v) by finding
the source vertex (line 5) and calculating the edge score (line 6). Next,
threads whose assigned edges belong to the same source vertex perform
parallel reduction to identify the edge with the highest score (line 8). Dur-
ing reduction, we employ CUDA warp-level primitives, __shfl_up_sync,
to efficiently exchange scores among threads in the same warp. Using
the warp-level primitive allows threads in the same warp to share data
through registers, which is much faster than through GPU global or share
memory [19]. Finally, we map each thread to a vertex, and each thread is
responsible for writing a vertex’s neighbor connected by the highest-score
edge to the array selected_nbr in the GPU’s global memory (line 10).

Perform Union Find

After selecting the highest score neighbor for each vertex, we perform
union_find to merge vertices into a subset. We maintain an additional
array, d_subset_ID, to record each vertex’s subset ID, where each vertex’s
subset ID is initialized to its vertex ID. We assign each vertex vi to a
GPU thread; then, each thread gets its assigned vertex’s selected neighbor
from the previous step stored in selected_nbr (line 15), and its vertex
and selected neighbor’s subset IDs from d_set_ID (lines 16-17). Each
thread then merges vertices by comparing its assigned vertex and the
selected neighbor’s subset ID and changing the larger ID to the smaller
one (lines 18-21). At the end of each iteration, we employ CUDA warp-
level voting primitives, __any_sync, to efficiently check if any thread in
the warp updates the subset ID (line 23). We then repeat this process
until no vertex’s subset ID is updated. Finally, we coarsen vertices with
the same subset ID into a coarsened vertex to derive the coarsened graph.
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Algorithm 1: Union Find-based Coarsening with Scoring
1: /* select neighbors: assign 32 vertices and their edges to a GPU warp */
2: parallel for each thread in a warp {
3: while (there are more edges to process) {
4: get an edge ei = (u, v) to process
5: find the assigned edge’s source vertex u

6: s(u, v)← c ×W(u,v) - degree(v)
7: /* using __shfl_up_sync */
8: reduce on the scores with threads have the same source vertex
9: }

10: write a vertex u’s selected neighbor to selected_nbr array
11: }
12: /* union find: assign each vertex vi to a GPU thread Ti */
13: while (any threads is still updating) {
14: parallel for each thread in a warp {
15: nbr← selected_nbr[vi]
16: vi_subset_ID← d_subset_ID[vi]
17: nbr_subset_ID← d_subset_ID[nbr]
18: if (vi_subset_ID > nbr_subset_ID) then
19: atomicMin(&d_subset_ID[vi], nbr_subset_ID)
20: else if (vi_subset_ID < nbr_subset_ID) then
21: atomicMin(&d_subset_ID[nbr], vi_subset_ID)
22: /* using __any_sync */
23: check if any thread in a warp updates subset_IDs
24: }
25: }

Independent Set-based Refinement

The goal of the refinement algorithm is to reduce the cut size by mov-
ing a vertex to a partition, seeking the maximum gain in cut size reduc-
tion. We define the gain of a vertex u for a partition pi as gain(u,pi) =

ed(u,pi) − id(u), where u /∈ pi. id(u) represents the internal degree of
u, which is the sum of the weights of each edge (u, v) such that u and v

are in the same partition. ed(u,pi) represents the external degree of u to
partition pi, which is the sum of the weights of each edge (u, v) such that
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v is in partition pi. In refinement, we only consider moving a vertex at
the partition boundary (i.e., one of its neighbors is located in a different
partition). Moving vertices not at the partition boundary cannot have
positive gain, as ed(u,pi) is always zero.

To move multiple vertices in parallel while ensuring that the move
results in the largest gain, GKSG’s refinement algorithm enumerates all
possible moves [17]. Each move represents a combination of vertices,
where each vertex either moves to its destination partition or not. For
example, to move eight vertices in parallel, GKSG will launch a GPU
kernel with 28 × 32 threads to calculate 28 possible moves, where each
move is verified by a GPU warp of 32 threads. This exponential enumeration
algorithm limits the number of vertices that can be moved in parallel due
to the limited GPU memory.

To overcome this problem, we propose an independent set-based re-
finement algorithm that can move many vertices in parallel. Our algorithm
does not exponentially enumerate all possible moves, thus enabling much
more parallelism without being constrained by GPU memory limitations.
Algorithm 2 shows our refinement algorithm, which contains three steps:
find an independent set of vertex moves, calculate delta partition weights, and
select vertex moves. We iteratively perform our refinement algorithm until
no vertex with positive gain can be moved.

Find an Independent Set of Vertex Moves

Moving multiple vertices in parallel is challenging. Even though each
vertex has a positive gain, the overall cut size after all moves can remain
or even increase due to interconnections among vertices. Furthermore,
moving connected (i.e., adjacent) vertices in parallel requires expensive
synchronization to keep updating gains. To address these issues, we find
an independent set of vertices to move in parallel. We define each vertex
move as msrc,dst

u , a struct that consists of a vertex ID (u), its source partition
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ID (src), its destination partition ID (dst), and the gain. We then use a
move buffer to store vertex moves.

Algorithm 2 presents our independent set-based refinement algorithm.
To find an independent set of vertex moves, we distribute each vertex in
the graph to a GPU thread, where each GPU thread determines whether
its vertex is at the partition boundary. If the vertex is at the boundary, the
GPU thread finds a legal destination partition for that vertex (line 7).

We say a vertex has a legal destination partition if there exists one
destination partition such that moving the vertex to that partition has a
positive gain without violating the balance constraint. If a vertex has a legal
destination partition, the GPU thread checks if any of its neighbors also
have a legal destination partition (line 9). If no such neighbor exists, the
GPU thread creates a vertex move for the vertex and inserts it into the move
buffer (lines 10-12). Otherwise, we compare that vertex with its neighbors’
IDs. We then only create a vertex move for the vertex with the smallest ID
and insert it into the move buffer (lines 13-16). This organization ensures
that no adjacent vertices are inserted into the move buffer.

After finding an independent set of vertex moves, we need to select
a subset of them such that applying those vertex moves still satisfies the
balance constraint. However, finding the best subset still encounters the
exponential enumeration problem (i.e., to select or not to select per vertex
move). To address this challenge, we design a sequence-based strategy
that first sorts each vertex move by gain to form a sequence and selects the
longest sub-sequence of vertex moves that satisfies the balance constraint.
While this strategy may not be the absolute best subset, selecting vertex
moves from the largest gain ensures we prioritize the vertex moves that
make a substantial contribution to overall cut size improvement. In the
following sections, we present how to find that sub-sequence of vertex
moves.
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Algorithm 2: Independent Set-based Refinement
1: while (true) {
2: /* find an independent set of vertex moves */
3: /* assign each vertex vi to a GPU thread Ti */
4: parallel for each thread {
5: if vi is not at a partition boundary then
6: return
7: dst← find a legal destination partition with the largest gain
8: if (dst exists) then
9: nbors← nbr in adj(vi) has a legal destination partition

10: if (nbors is empty) then
11: create a vertex move for vi
12: insert the vertex move to the move buffer
13: else
14: if (vi.ID < each nbr.ID in nbors) then
15: create a vertex move for vi
16: insert the vertex move to the move buffer
17: }
18: if (the move buffer is empty) then
19: return
20: calculate delta partition weights /* Section 3.2.2 */
21: select vertex moves /* Section 3.2.3 */
22: }
23: return

Calculate delta partition weights

In this step, we sort each vertex move by gain in descending order and
calculate the delta partition weight of each vertex move to check the balance
constraint. We define the delta partition weight of a vertex move msrc,dst

u

for a partition pi as follows:

δi(m
src,dst
u ) =


Wu, i = dst

−Wu, i = src

0, otherwise

We maintain a k-segment array, del_p_wgt, where each segment initially
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stores the delta partition weight of each vertex move for a partition. The
segment size is the minimum of the total number of vertex moves and 1024.
Since most modern GPUs have 1024 threads per GPU block, calculating
more than 1024 vertex moves needs multiple blocks for each segment,
which requires expensive synchronization across multiple blocks.

Figure 1.3 shows an example of our algorithm for six vertex moves
with k = 2. Each element in del_p_wgt records the delta partition weight
of each of the six vertex moves, where the first six elements (i.e., segment
0) and the last six elements (i.e., segment 1) are for partitions p0 and p1,
respectively. We then perform a parallel scan on del_p_wgt to accumulate
delta partition weights for each partition. Specifically, after applying the
parallel scan, the jth element in segment s stores the accumulated delta
partition weight from the first to the jth vertex moves for partition s (i.e.,
a sub-sequence from the first to the jth vertex moves). This accumulation
allows us to quickly access each partition’s accumulated delta partition
weight if we apply all vertex moves in a sub-sequence of vertex moves.
We then use these accumulated results to find the longest sub-sequence of
vertex moves in the next step.

Algorithm 3 presents the calculation of delta partition weights. We
first sort vertex moves in the move buffer by gain in descending order in
parallel using a parallel sorting algorithm (line 1). We assign each vertex
move, msrc,dst

u , to a GPU thread, Ti based on its gid. Each GPU thread
first gets the index of a vertex move’s source (src_p_idx) and destination
partition (des_p_idx) in delta_p_wgt (lines 6-7). Each GPU thread then
writes the corresponding delta partition weights to del_p_wgt (lines 8-9).

Finally, we apply our parallel scan kernel on each segment to obtain
the accumulated delta partition weights per partition (lines 13-18). We
launch our parallel scan kernel with the number of GPU blocks equal to
k (i.e., number of partitions), where each GPU block conducts a parallel
scan simultaneously for its assigned segment (line 15). To further improve
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Figure 1.3: Illustration of the process to construct del_p_wgt and bal_seq with
k = 2 under six vertex moves. Assuming current partition weights are 13 and 10
for p0 and p1, respectively, with a balance constraint of 14.

performance, we utilize a CUDA warp-level primitive, __shfl_up_sync,
for our parallel scan kernel.

Select Vertex Moves

In this step, we select the longest sub-sequence of vertex moves while
ensuring that applying those vertex moves satisfies the balance constraint.
This selection is based on our accumulated delta partition weights.

As shown in Figure 1.3, we maintain a bal_seq array to record the
balanced condition for a sub-sequence of vertex moves. The value stored
at index j in bal_seq indicates whether applying the sub-sequence of
vertex moves from the first to the jth results in a balanced partition. We
then select the longest sub-sequence of vertex moves by finding the largest
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Algorithm 3: Calculate Delta Partition Weights
1: parallel sort the move buffer in descending order by gain
2: seg_size←min(#vertex_moves, 1024)
3: gid← thread’s global ID
4: /*assign a vertex move mdst

u to a GPU thread Ti based on its gid*/
5: parallel for each thread {
6: src_p_idx←msrc,dst

u .src × seg_size+ gid

7: dst_p_idx←msrc,dst
u .dst × seg_size+ gid

8: del_p_wgt[src_p_idx]← -Wu

9: del_p_wgt[dst_p_idx]←Wu

10: return
11: }
12: /*assign segment segi of del_p_wgt to a GPU block bi*/
13: parallel for each block {
14: segi_start← bi.ID × seg_size
15: segi_end← segi_start + seg_size
16: parallel scan on segi /* __shfl_up_sync */
17: return
18: }

index j such that bal_seq[j] = B (balanced). Finally, we apply all vertex
moves in the longest sub-sequence of vertex moves.

In the example shown in Figure 1.3, each GPU thread checks if a sub-
sequence of vertex moves results in a balanced partition and writes the
result to the bal_seq array. Specifically, the first thread (T0) checks the
balanced result for the sub-sequence of vertex moves of the first vertex
move, the second thread (T1) checks for the sub-sequence of vertex moves
from the first to the second vertex moves, and so on. Each thread fetches the
accumulated delta partition weight for each partition from each segment
in del_p_wgt, and checks whether every partition’s current weight plus
its accumulated delta partition weight satisfies the balance constraint. For
example, assuming the balance constraint is 14, T0 fetches del_p_wgt[0]
and del_p_wgt[6] for p0 and p1, and checks if both Wp0 + ∆0 ⩽ 14 and
Wp1 + ∆6 ⩽ 14. If one of the partitions does not satisfy the balance
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constraint, the thread writes ’IB’ (imbalanced); otherwise, ’B’ (balanced)
to its corresponding index in bal_seq.

After each thread finalizes bal_seq, we can observe that applying only
the first vertex move results in an imbalanced partition (bal_seq[0] = IB).
However, applying the first five vertex moves helps to restore the partition
result back to balance (bal_seq[4] = B). In the example shown in Fig-
ure 1.3, the longest sub-sequence is from the first to the fifth vertex moves.
Since the sequence of vertex moves is sorted by gain in descending order,
we can prioritize those vertex moves that make a substantial contribution
to the overall improvement in cut size. Finally, we apply all vertex moves
in the longest sub-sequence of vertex moves in parallel.

Accelerating the Uncoarsening Stage Using CUDA Graph

In this section, we discuss how CUDA Graphs can be beneficial for the
uncoarsening stage. In the uncoarsening stage, the refinement algorithm
iteratively applies vertex moves to improve the partitioning result and
terminates when no more vertex moves can be applied. For large bench-
marks, the number of refinement iterations can be substantial (e.g., 2,000),
leading to significant kernel launch overhead and degraded performance.
To mitigate this overhead, we encapsulate all GPU operations within a
CUDA Graph. The CPU (i.e. host) can then launch the CUDA Graph to
perform each uncoarsening level with a single call. This approach signifi-
cantly reduces kernel launch overhead and minimizes CPU intervention,
accelerating the uncoarsening stage. Figure 1.4 illustrates the time spent
on kernel execution with and without a CUDA Graph. Without CUDA
Graphs, the host needs to launch each kernel individually, and each ker-
nel launch incurs overhead. When the number of iterations is large, the
accumulated overhead can become a bottleneck. In contrast, using CUDA
Graphs significantly reduces kernel launch overhead by allowing the host
to launch all GPU kernels with a single host call. In this section, we first
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introduce the CUDA Graph execution model and discuss the recently
added feature, the CUDA Graph conditional node. Finally, we describe
the implementation details of our CUDA Graph-based uncoarsening.

CUDA Graph-based Execution Model

Figure 1.4: The time spent on kernel execution with and without CUDA Graphs.
Each gray box represents a GPU task, while the blue box indicates a CPU op-
eration. The top graph shows the traditional approach without using CUDA
Graphs, where each kernel launch incurs significant overhead. The bottom graph
shows the approach using CUDA Graphs, which reduces launch overhead by
encapsulating kernel executions into a single graph, leading to an overall speedup
in execution time.

In CUDA, each time the host launches a GPU kernel, a small overhead
incurs. When a large number of kernels are launched, this overhead can
accumulate and become significant, degrading overall performance. To
address this issue, the CUDA Graph execution model was introduced
to enable more efficient execution of GPU kernels [20]. CUDA Graph
allows users to encapsulate all GPU kernels within a graph, so the host can
execute them with a single call (i.e. graph launch), significantly reducing
kernel launch overhead. Additionally, encapsulating GPU kernels into a
CUDA Graph allows the CUDA driver to optimize the entire graph as a
whole, further enhancing performance [21, 22, 23, 24]. Fig 1.5 presents
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the CUDA Graph execution model, which consists of graph definition,
executable instantiation, graph launch (run), and graph update. Users
first define a CUDA Graph by creating nodes and edges to describe GPU
tasks and their dependencies. Users then instantiate an executable graph
from a defined graph and offload that executable graph to a GPU using
a single host call. Between successive launches, users can update the
execution parameters of a GPU task or a node in the graph with a small
cost.
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Figure 1.5: Execution model of CUDA Graph consists of four major steps, graph
definition, executable graph instantiation, graph launch (run), and graph param-
eter updates.

CUDA Graph with Conditional Node

While CUDA Graphs offer significant performance benefits, constructing
one requires users to know the graph’s topology at compile time. If a
graph involves dynamic control flow, where certain node launches depend
on a control variable, users must isolate those nodes into a separate CUDA
Graph. The host then evaluates the control variable to determine whether
to launch the separate graph. This approach limits CUDA’s ability to
optimize all GPU kernels as a single CUDA Graph, ties up CPU resources,
and introduces additional overhead from setting up multiple graphs.

To address this issue, CUDA recently introduced conditional nodes in
CUDA Graph, enabling conditional or repeated launch of graph nodes
without returning to the host. Each conditional node contains a body
graph, whose execution depends on a control variable. At runtime, the
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conditional node evaluates the control variable and determines whether to
launch its body graph, allowing dynamic control flow directly on the GPU.
There are two types of conditional nodes: an if node and a while node.
The body graph of an if node will be executed once if the condition is met,
while the body graph of a while node will be executed repeatedly as long
as the condition is true. Using conditional nodes helps minimize CPU
intervention and allows more complex workflows to be represented within
a CUDA Graph, eliminating the overhead of creating multiple graphs and
reducing the number of graph launches required. Figure 1.6 illustrates the
workflow of a sequence of GPU tasks involving a while dynamic control
flow, without and with a conditional node. In Figure 1.6 (a), the absence
of a conditional node requires separating the GPU tasks into two CUDA
Graphs, with GPU tasks involving dynamic control flow isolated into a
second graph. After the host launches the first CUDA Graph, it must
iteratively evaluate the condition and launch the second CUDA Graph,
introducing significant graph launch overhead. In contrast, in Figure 1.6
(b) with a conditional node, all GPU tasks can be defined within a CUDA
Graph. The host can then launch the defined graph with a single call,
greatly reducing the overhead associated with iterative graph launches.
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Figure 1.6: An example of the workflow of a sequence of GPU tasks involving
a while dynamic control flow. In Figure (a), the workflow is shown without a
CUDA conditional node, and in Figure (b), the workflow is shown with a CUDA
conditional node. Each gray box represents a graph node that contains a GPU
task, while a blue box represents a CPU operation. The black box represents a
CUDA conditional node. Graph nodes belonging to the same graph are grouped
using a black dashed line.

CUDA Graph for Uncoarsening Stage

In G-kway, both the uncoarsening and coarsening stages involve a se-
quence of kernel launches. However, the number of kernel launches in
the coarsening stage is typically small. Therefore, using CUDA Graph
does not accelerate the coarsening stage, as its setup overhead outweighs
its performance gains. In contrast, during the uncoarsening stage, the
refinement algorithm iteratively moves vertices to refine the partitioning
result, often requiring a large number of iterations (e.g., 2,000). Each iter-
ation involves multiple GPU kernel launches, accumulating to significant
kernel launch overhead. To mitigate this, we encapsulate all GPU kernels
used in the uncoarsening algorithm into a CUDA Graph. This approach
allows the host to launch all GPU operations with a single call, improving
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Figure 1.7: The CUDA Graph encapsulates all GPU kernels used for uncoarsening.
Within the graph, a CUDA conditional node iteratively evaluates the number of
vertex moves to manage dynamic control flow on the GPU.

performance by minimizing host intervention and reducing the number of
host calls. Additionally, the CUDA driver can optimize the CUDA Graph,
further enhancing performance.

To create the uncoarsening CUDA Graph, we use a while conditional
node to manage the iterative control flow in the refinement algorithm.
This conditional node then evaluates the number of vertex moves applied
in the previous iteration and repeats the refinement process as long as the
number of vertex moves remains greater than zero. Figure 1.7 illustrates
the topology of our uncoarsening CUDA Graph. In the graph, the first
node is responsible for executing the GPU kernel restores to previous graph.
Then, the while conditional node is executed. The body graph of this
conditional node contains three GPU tasks: find an independent set of vertex
moves, calculate delta partition weights, and select vertex moves.

Algorithm 4 outlines the process of creating an uncoarsening CUDA
Graph. We first create the graph using cudaGraphCreate (line 2). Next,
we define a graph node to execute restore to previous graph kernel (line
3) and specify this node’s parameters by setting the grid and block di-
mensions and kernel arguments in a cudaKernelNodeParams structure
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Algorithm 4: Create Uncoarsening CUDA Graph
1: Initialize a CUDA Graph: graph
2: cudaGraphCreate(&graph, 0)

/* Create a node for restore to previous graph kernel and add it to the
CUDA Graph */

3: Initialize a CUDA Graph node: restore_graph_node
4: kernel_params← { 0 }
5: set_kernel_params(kernel_params)
6: cudaGraphAddKernelNode(&restore_graph_node, graph, NULL, 0,

kernel_params)
/* Create a CUDA condition node and add it to the graph */

7: Initialize a CUDA Graph conditional handle: handle
8: cudaGraphConditionalHandleCreate(&handle, graph, 1,

cudaGraphCondAssignDefault)
9: while_params← { cudaGraphNodeTypeConditional }

10: while_params.conditional.handle← handle

11: while_params.conditional.type← cudaGraphCondTypeWhile
12: while_params.conditional.size← 1
13: Initialize a CUDA Graph conditional node: while_cond_node
14: cudaGraphAddKernelNode(&while_cond_node, graph,

&restore_graph_node, 1, while_params)
15: while_body_graph← while_params.conditional.phGraph_out[0]

/* Populate the condition node’s body graph */
16: Initialize a CUDA Graph node: find_independent_node
17: set_kernel_params(kernel_params)
18: cudaGraphAddKernelNode(&find_independent_node,

while_body_graph, NULL, 0, kernel_params)
/* ... Add other nodes using similar method */

19: return graph
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named kernel_params (line 5). We then add this node to the CUDA
graph, graph (line 6). To manage the control flow in the refinement al-
gorithm, we first create a CUDA conditional node by defining a CUDA
Graph conditional handle [20] and attaching it to graph (lines 7-8). Next,
we define a cudaGraphNodeParams structure named while_params to store
the necessary information for this conditional node. In while_params, we
specify that this conditional node is a while node and provide its size
and handle (lines 9-12). We then add this conditional node to graph

(lines 13-14) and set its dependency so that it runs after the graph node,
restore_graph_node. When the conditional node is created, its body graph
is also created. We retrieve the body graph from while_params (line 15)
and populate it by creating nodes for each kernel used in the refinement
algorithm and adding them to the body graph using a similar method
(lines 16-19).

Algorithm 5: Uncoarsening stage with CUDA Graph
1: graph← creat_uncoarsening_cuda_graph()
2: initialize graph_exec and stream

3: cudaGraphInstantiate (&graph_exec, graph, NULL, NULL, 0)
4: for each uncoarsening level {
5: update_graph_paramaters() ▷ update the graph nodes’ parameters
6: cudaGraphLaunch(graph_exec, stream) ▷ launch the executable graph
7: }
8: cudaGraphDestroy(graph)

Once the CUDA Graph for the uncoarsening algorithm is created,
the host can launch it with a single call at each uncoarsening level, sig-
nificantly reducing kernel launch overhead and minimizing CPU inter-
vention. Algorithm 5 outlines our CUDA Graph-based uncoarsening.
Before starting the uncoarsening stage, the CPU host first calls the func-
tion create_uncoarsening_cuda_graph (as illustrated in Algorithm 4 ) to
obtain the uncoarsening CUDA Graph (line 1). Next, the host instanti-
ates the graph into an executable using cudaGraphInstantiate (line 3).
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Finally, the host begins the uncoarsening stage by iteratively uncoarsening
the graph level by level. At each uncoarsening level, the host first updates
the CUDA Graph’s node parameters (line 5) and then uses a single call to
launch the executable graph with the updated parameters (line 6).

1.4 Computational Complexity of Partitioning
Algorithms

In the previous section, we discussed G-kway’s innovative union find-
based coarsening and independent set-based refinement for accelerating
the coarsening and uncoarsening stages. Building on this discussion,
we now evaluate the efficiency of these algorithms by comparing the
time complexity of G-kway’s coarsening and uncoarsening stages with
two state-of-the-art parallel partitioners: mt-metis [1] (CPU-based) and
GKSG [17] (GPU-based). Table 1.1 summarizes the time complexity of the
coarsening and uncoarsening stages for mt-metis, GKSG, and G-kway. In
the following sections, we first analyze and compare the time complexity of
the coarsening stage among the three partitioners, followed by a discussion
of the uncoarsening stage.

Table 1.1: Time complexity analysis of the coarsening and uncoarsening stages
for three parallel graph partitioners: mt-metis (CPU-based), GKSG (GPU-based),
and G-kway. The number of vertices is denoted as |V |, and B is the buffer size.
The parameters Tmt, lmt, and npmt denote the number of available threads,
levels, and refinement passes for mt-metis, respectively. Similarly, TGKSG, lGKSG,
itGKSG and Tgk, lgk, itgk represent the corresponding values for GKSG and
G-kway, with it indicating refinement iterations.

Partitioner Coarsening Stage Uncoarsening Stage
mt-metis O(lmt × |V |

Tmt
) O(lmt × npmt × k× |V |

Tmt
)

GKSG O(lGKSG × |V |
TGKSG

) O(lGKSG × itGKSG × (k× |V |
TGKSG

+
B×log(B)

TGKSG
))

G-kway O(lgk × |V |
Tgk

) O(lgk × itgk × (k× |V |
Tgk

+
B×log(B)

Tgk
))
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Coarsening Stage Comparison

During the coarsening stage, the coarsening algorithm reduces the graph
size level by level until it falls below the coarsening threshold, γ. In the
coarsening algorithm of mt-metis, vertices are distributed among CPU
threads, with each thread responsible for finding a matched neighbor for
its assigned vertex. Thus, the time complexity of this coarsening algorithm
is |V |

Tmt
, where |V | is the number of vertices in the graph and Tmt is the

number of CPU threads. However, since the coarsening algorithm is
applied at each level, the time complexity of mt-metis’s coarsening stage is

O(lmt ×
|V |

Tmt

)

, where lmt represents the number of levels required for mt-metis to
coarsen the graph below γ.

For GKSG, the time complexity of the coarsening stage is similar to that
of mt-metis, as it assigns 32 vertices to a GPU warp (32 threads). Thus,
the time complexity of GKSG’s coarsening algorithm is given by:

O(lGKSG ×
|V |

TGKSG

)

, where lGKSG denotes the number of levels required by GKSG, and TGKSG

is the total number of available GPU threads. However, since GKSG utilizes
significantly more GPU threads compared to the CPU threads in mt-metis,

|V |

TGKSG
is much smaller than |V |

Tmt
, leading to a reduction in the coarsening

time.
For G-kway, its coarsening algorithm has a similar time complexity

to that of GKSG, as both assign a GPU warp to cooperatively process 32
vertices. However, unlike GKSG and mt-metis, which only allow two
vertices to be coarsened into a single coarsened vertex, G-kway’s union
find-based algorithm groups multiple vertices into the same subset and
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coarsens them together in parallel. This approach significantly reduces the
number of required levels, lgk (i.e. lgk ≪ lGKSG ≈ lmt) by substantially
decreasing the graph size at each level, thereby improving the efficiency
of the coarsening stage.

Uncoarsening Stage Comparison

During the uncoarsening stage, the refinement algorithm is applied at
each level to improve the partitioning result. In mt-metis, the refinement
algorithm consists of multiple passes, where in each pass vertices are
distributed among CPU threads. Each thread determines the destination
partition of its assigned vertices by calculating the gain for each boundary
partition, resulting in up to k gain calculations. Thus, the time complexity
of mt-metis’s refinement algorithm is given by npmt × k× |V |

Tmt
, where k

denotes the number of partitions, npmt represents the number of passes,
and Tmt is the number of available CPU threads. Additionally, since the
refinement algorithm is executed at each level, the total time complexity
of mt-metis’s uncoarsening stage is

O(lmt × npmt × k× |V |

Tmt

).

In GKSG, the refinement algorithm assigns each GPU thread to a vertex,
determines its destination partition, and inserts vertices with positive
gains into the buffer. The time complexity of this process is k × |V |

TGKSG
.

However, to identify the vertices with the highest gains, GKSG requires an
additional step to sort the buffer. This sorting step has a time complexity
of B×log(B)

TGKSG
, where B represents the buffer size. At each uncoarsening level,

GKSG iteratively executes its refinement algorithm until no further vertex
movements improve the partitioning. Therefore, the total time complexity
is

O(lGKSG × itGKSG × (k× |V |

TGKSG

+
B× log(B)

TGKSG

))
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, where itGKSG is the number of refinement iterations. Since TGKSG is
much larger than Tmt, GKSG’s refinement algorithm processes vertices
in parallel more efficiently than mt-metis, resulting in a faster runtime
despite the additional sorting cost.

For G-kway, the refinement algorithm has a similar time complexity
to that of GKSG, as it also uses a buffer to store and identify the vertices
with the highest gains. However, unlike GKSG, which can move only 8–16
vertices per refinement iteration due to memory limitations imposed by
its exponential enumeration algorithm, G-kway can move thousands of
vertices simultaneously in parallel. As a result, the number of refinement
iterations in GKSG is significantly smaller than in GKSG (i.e., itgk ≪
itGKSG), leading to a substantial speedup in the uncoarsening stage.

1.5 Experimental Evaluation
We evaluated the performance of G-kway on six industrial circuit graphs
generated by [25], where regular graphs are used to represent timing
graphs. Additionally, we tested G-kway’s performance on four large non-
circuit graphs (ldoor, NLR, delaunay, asia.osm) from the DIMACS Graph
Partitioning Challenge to demonstrate our applicability beyond CAD al-
gorithms. We implemented G-kway using C++17 and CUDA 12.0 and
compiled it with nvcc on a host compiler of GCC-8 with -O3 enabled. We
ran experiments on a 64-bit Linux machine with 40 Intel Xeon Gold 6138
CPU cores at 2.00 GHz and 256 GB RAM. Our GPU is A6000 with 48 GB
global memory.

Baselines

We consider mt-metis v0.7.2 [1] and GKSG [17] as baseline partitioners.
Mt-metis is a state-of-the-art CPU-parallel graph partitioner that renovates
the sequential Metis algorithm [10] to a parallel target using OpenMP.
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GKSG is a state-of-the-art GPU-accelerated graph partitioner. Since GKSG
is not open-source, we implemented its algorithm on our GPU except for
the initial partitioning. Because the coarsest graph is typically very small,
we do not observe any advantage in using GPU. In all experiments, we
set the imbalance ratio to 3% and the coarsening threshold to |V |

20×(log2(k))
.

These settings are the same as the default values of mt-metis [1] and
GKSG [17] that can produce the best results. All data is an average of ten
runs.

Overall Performance Comparison

Table 1.2 compares the overall runtime and cut size results among G-
kway, GKSG, and mt-metis at k = 2. We ran mt-metis using 32 threads
to achieve the best performance on our machine. In terms of runtime, G-
kway outperforms GKSG and mt-metis across all graphs, with an average
speedup of 3.8× and 8.6×, respectively. The largest speedups we observe
are 9.1× over GKSG in asia.osm and 14.3× over mt-metis in wb_dma.
The significant improvement on runtime demonstrates the promise of
our union find-based coarsening and independent set-based refinement
algorithms. For the smallest graph, ldoor, G-kway still achieves 6.5× and
1.6× over GKSG and mt-metis. We attribute this significant speedup to our
efficient coarsening algorithm that efficiently coarsens many vertices per
subset, thus largely reducing the number of coarsening levels. Regarding
cut size, G-kway outperforms mt-metis and GKSG on nearly all graphs.
For instance, on vga_lcd, our cut size is 3.6× better than mt-metis. We
attribute this improvement to our coarsening algorithm, which results
in better-coarsened graphs. Similar improvements can be found when
comparing G-kway with GKSG.
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Figure 1.8: The speedup of G-kway over mt-metis (top) and GKSG (bottom) at
different k.

Runtime Analysis

Figure 1.8 shows the speedup of G-kway over mt-metis (32 threads) and
GKSG with different k on two circuit graphs (wb_dma, tv80) and two
non-circuit graphs (delaunay, ldoor). Regardless of k, G-kway is always
faster than mt-metis and GKSG. Compared to mt-metis, G-kway achieves
over 6× and 10× for more than 80% and 40% of the partitioning problem
instances, respectively. For large graphs, such as wb_dma, our speedups
are remarkable. The proposed GPU-accelerated coarsening and refine-
ment algorithms bring significant performance benefits to parallel graph
partitioning. Similar speedup values can also be observed in the com-
parison with GKSG. For instance, G-kway is 7× faster than GKSG on the
wb_dma with k = 32.

Cut Size Analysis

Figure 1.9 shows the cut size improvement ratio of G-kway over mt-metis
and GKSG at k = {2, 4, 8, 16, 32}. In general, G-kway can produce parti-
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Figure 1.9: The cut size improvement ratio of G-kway over mt-metis (top) and
GKSG (bottom) at different k.

tions with comparable quality to mt-metis and GKSG. Compared to GKSG,
G-kway finds partitions with significantly less cut size for delaunay. We
attribute this to our refinement algorithm. GKSG can only move a few ver-
tices (e.g., eight) at one refinement iteration due to the memory limitation
of its exponential enumeration algorithm. On the other hand, our refine-
ment algorithm identifies a sequence of vertices through independent set
finding and identifies the longest sub-sequence that satisfies the balance
constraint. This approach allows G-kway to discover more valid moves
in one iteration that can lead to a better cut size. However, moving too
many vertices simultaneously can sometimes trap us in a local minima that
produces a worse cut size than GKSG, such as tv80 at k = 32. Compared
to other graphs, tv80 has longer path connectivity among vertices which
can benefit from more fine-grained refinement as GKSG.
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Figure 1.11: The speedup of G-kway over mt-metis at varying graph sizes modi-
fied from usb at k = 2 and k = 32.

Absolute Efficiency over mt-metis

Figure 1.10 shows the speedup of G-kway over mt-metis using the different
number of CPU threads at k = 32. Regardless of the thread count, G-kway
is always faster. For example, G-kway is 172× and 16× faster than mt-metis
using one and 32 threads. We observe that the performance of mt-metis
begins to saturate at about 32 threads and becomes worse beyond. For
instance, using 40 threads is 20% slower than using 32 threads in mt-
metis. We believe this problem comes from both the internal threading
overhead of mt-metis and the limitation of CPU parallelism on throughput
optimization when processing large graph data. Figure 1.11 illustrates the
speedup of G-kway over mt-metis (32 threads) on partitioning varying
circuit sizes at two extreme k, 2 and 32. We randomly remove the vertices
and edges of usb to generate different graph sizes from 400K to 15.6M.
Below 400K, we do not see much runtime difference between mt-metis
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and G-kway. However, as the graph size becomes larger than 1M vertices,
we can see the absolute efficiency of GPU acceleration over CPU-based
mt-metis. The speedup of G-kway continues to enlarge as we increase the
graph size.

Analysis of Coarsening with and without Scoring

Table 1.3 compares the cut size between G-kway with scoring (G-kway)
and G-kway without scoring (G-kway−s) to study the effectiveness of
the proposed scoring-based coarsening. Compared to G-kway−s, G-kway
achieves better cut size at all k. G-kway−s fails to find a solution that meets
the balance constraint for the highly connected ldoor at k = 8 and k = 32.
Without scoring, G-kway−s groups many vertices into the same subset,
resulting in a highly imbalanced coarsened graph. Such an imbalance
greatly impacts the partition results at later initial partition and refinement
stages.

Table 1.3: Cut size comparison in terms of reduction (↓) between G-kway with
scoring (G-kway) and G-kway without scoring (G-kway−s) for ldoor and delau-
nay at k= {2, 8, 32}.

ldoor delaunay
k G-kway−s G-kway G-kway−s G-kway
2 44,064 25,578 (↓72%) 10,381 8,463 (↓23%)
8 ✗ 101,639 38,799 33,673 (↓15%)

32 ✗ 290,225 96,274 80,609 (↓19%)

Analysis of Coarsening Threshold on Partitioning
Performance

Table 1.4 compares the cut size and runtime achieved by G-kway when
partitioning two circuit graphs (pci_bridge and tv80) and two non-circuit
graphs (NLR and delaunay) at two extreme k values, 2 and 32, with three
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coarsening thresholds (γ): k, 160×k, and |V |

20×log2(k)
. All data is an average

of ten runs.
When γ is set to k, G-kway fails to produce a balanced partition for

the NLR and delaunay graphs at k = 2 and for all graphs at k = 32. Set-
ting γ to a very small value (e.g., k) requires many levels to sufficiently
reduce the graph size. At later levels, vertex connections become denser
as vertices are coarsened. This increase in density causes G-kway’s union
find-based algorithm to coarsen many vertices together, leading to im-
balances in coarsened vertex sizes that make the later initial partitioning
and uncoarsening stages struggle to find a balanced partition. On the
other hand, setting γ to 160× k and |V |

20×log2(k)
produces a similar cut size.

However, setting γ = |V |

20×log2(k)
increases the overall partitioning time, as

γ depends on the input graph size. For large graphs, γ can become signif-
icantly large, making the initial partitioning computationally expensive.
To achieve the best performance, we set γ to 160 × k for the rest of our
experiments.

Performance Enhancement Due to CUDA Graph

To evaluate CUDA Graph’s effectiveness in accelerating the uncoarsening
stage, we selected six benchmarks with different numbers of refinement
iterations. Table 1.5 lists the size and maximum number of refinement
iterations for the six benchmarks used to evaluate G-kway with CUDA
Graph-based uncoarsening (G-kwayg). Additionally, to demonstrate the
importance of accelerating the uncoarsening stage, we analyzed the time
distribution across the three partitioning stages—coarsening, initial par-
titioning, and uncoarsening—using the three largest circuit graphs. Fig-
ure 1.12 shows the time distribution for partitioning vga_lcd, wb_dma,
and aes_core at k = 2 and k = 32. We observe that for large circuit graphs,
uncoarsening can account for more than 80% of the total partitioning
time due to the large number of refinement iterations. The iterative ker-
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nel launches for refining vertices introduce substantial overhead, making
CUDA Graph particularly effective in reducing this overhead and improv-
ing performance.

Figure 1.13 shows the speedup of G-kwayg over the default G-kway
during the uncoarsening stage for k = {2, 8, 16, 32, 64}. On average, G-
kwayg achieves a 1.27× speedup over G-kway, regardless of the value of
k. The largest speedup we observed is 1.93× for NLR at k = 64. However,
for the benchmark asia.osm, which has a small number of refinement
iterations, G-kwayg has a longer runtime than G-kway. This is because the
accumulated kernel launch overhead in asia.osm is relatively small, and the
overhead of setting up the CUDA Graph outweighs its benefits. Conversely,
once the number of refinement iterations exceeds 20, the accumulated
kernel launch overhead becomes significant, and using CUDA Graph
consistently speeds up the uncoarsening stage.

Table 1.5: A list of the number of vertices, edges, and the maximum number of
refinement iterations for six selected benchmarks used to analyze CUDA Graph ac-
celeration. The maximum number of refinement iterations is the highest observed
across ten runs for each value of k = {2, 8, 16, 32, 64}

.

Benchmark # Vertices # Edges Maximum # Refinement Iterations
NLR 4,163,763 12,487,976 32

AS365 3,799,275 11,368,076 35
wb_dma 131,240 275,936 1,899
vga_lcd 795,612 1,302,327 6,698
aes_core 200,253 322,340 2,052
asia.osm 1,1950,757 12,711,603 15
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Figure 1.13: The speedup of G-kway with CUDA Graph-based uncoarsening,
G-kwayg, over the default G-kway during the uncoarsening stage at k = {2, 8, 16,
32, 64}.

CUDA Graph Time Breakdown

Figure 1.14 illustrates the breakdown of time spent on three graph op-
erations—graph creation & update, graph launch, and graph instanti-
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ation—for the benchmark with the largest number of refinmenet itera-
tions, vga_lcd. Among the three operations, graph launch is the most
time-consuming operation. Furthermore, because this operation is called
multiple times, the cumulative time spent on graph launches accounts for
the majority (87%) of the total execution time. Graph instantiation is the
second most expensive operation; even though G-kwayg only instantiates
the graph once, this operation contributes 12% to the total graph execution
time. On the other hand, the cost associated with creating and updat-
ing the CUDA Graph is minimal, accounting for just 1% of the overall
execution time.

!"
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Figure 1.14: The breakdown of total graph execution time spent on each operation,
including creation & update, launch, and instantiation, for vga_lcd in G-kwayg.

Analysis of CUDA Graph with and without CUDA Graph
Conditional Nodes

Table 1.6 compares the number of host calls for graph creation, instantia-
tion, and launch between G-kwayg, which employs a CUDA Graph with
a conditional node, and G-kwayg,−cond, which employs a CUDA Graph
without a conditional node. All data is an average of ten runs. With a con-
ditional node, G-kwayg enables the GPU to manage the iterative control
flow of the refinement algorithm, encapsulating all GPU kernels within a
single CUDA Graph. As a result, only one graph creation and instantiation
call is needed, and each uncoarsening level requires just a single host call
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to launch the uncoarsening graph. This approach minimizes the number
of host calls, leading to a more efficient execution of the uncoarsening
stage. In contrast, without a conditional node, G-kwayg,−cond requires
the host to manage the iterative control flow by isolating the GPU kernels
that involve control flow into a separate CUDA Graph. Consequently,
for all benchmarks, G-kwayg,−cond needs twice as many graph creation
and instantiation calls as G-kwayg, introducing additional overhead in
setting up the CUDA Graphs. Furthermore, for each iteration, the host
must iteratively evaluate the control flow condition and launch the graph
involved in the control flow. As a result, G-kwayg,−cond invokes graph
launches numerous times, leading to substantial overhead due to frequent
host intervention and graph launches.

Table 1.7: Cut size and runtime (in seconds) comparisons with varying imbalance
ratio (ϵ) of 0.03 and 0.3, when partitioning graphs at two extreme k values: 2 and
32.

Benchmark
k = 2 k = 32

ϵ = 0.03 ϵ = 0.3 ϵ = 0.03 ϵ = 0.3
Cut Size Time Cut Size Time Cut Size Time Cut Size Time

pci_bridge 4,188 0.14 4,001 0.14 61,612 0.32 8,618 0.17
tv80 2,422 0.15 2,302 0.15 8,141 0.17 5,353 0.16
NLR 4,519 0.14 4,477 0.14 43,592 0.15 43,101 0.15

delaunay 9,664 0.21 9,194 0.21 83,053 0.23 80,673 0.23

Impact of Imbalance Ratio on Partitioning Performance

Table 1.7 compares the cut size and runtime of G-kway when partitioning
two circuit graphs (pci_bridge and tv80) and two non-circuit graphs (NLR
and Delaunay) at two extreme values of k (2 and 32), with two imbalance
ratios ϵ: 0.03 and 0.3. All data is an average of ten runs. Regardless
of the k value, a higher imbalance ratio enables G-kway to consistently
achieve a better cut size by allowing more vertices to move across partitions,
thereby improving partition quality. However, while a larger imbalance
ratio allows G-kway to move more vertices to enhance partition quality,
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it does not increase partitioning time. We attribute this efficiency to G-
kway’s independent set-based refinement, which can simultaneously move
thousands of vertices.

1.6 Conclusion
In this chapter, we have introduced G-kway, an efficient GPU-accelerated
multilevel k-way graph partitioner. G-kway features a union find-based
coarsening algorithm that significantly reduces the number of levels and an
independent set-based refinement algorithm that can move many vertices
in parallel. For graphs with significant kernel launch overhead, G-kway
leverages CUDA Graph-based coarsening to reduce the overhead and fur-
ther enhance performance. Experimental results have shown that G-kway
outperforms the state-of-the-art CPU-based and GPU-based parallel parti-
tioners by 8.6× and 3.8× faster while achieving comparable partitioning
quality. Additionally, G-kway with CUDA Graph-based uncoarsening can
further accelerate graph partitioning, achieving up to 1.93× speedup over
the default G-kway.

In this work, Wan Luan Lee was the primary contributor, responsible
for the majority of the research and development efforts. Tsung-Wei Huang
supervised the research, providing guidance and over- sight throughout
the project. All authors contributed to the preparation and review of the
final manuscript.
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2 hyperg: multilevel gpu-accelerated k-way
hypergraph partitioner

Hypergraph partitioning plays a critical role in computer-aided design
(CAD) because it allows us to break down a large circuit into several man-
ageable pieces that facilitate efficient CAD algorithm designs. However, as
circuit designs continue to grow in size, hypergraph partitioning becomes
increasingly time-consuming. Recent research has introduced parallel hy-
pergraph partitioners using multi-core CPUs to reduce the long runtime.
However, the speedup of existing CPU parallel hypergraph partitioners is
typically limited to a few cores. To overcome these challenges, we propose
HyperG, a GPU-accelerated multilevel k-way hypergraph partitioning
algorithm. HyperG introduces an innovative balanced group coarsening
and a sequence-based refinement algorithm to accelerate both the coars-
ening and uncoarsening stages. Experimental results show that HyperG
outperforms both the state-of-the-art sequential and CPU-based parallel
partitioners with an average speedup of 133× and 4.1×while achieving
comparable partitioning quality.

2.1 Introduction
Hypergraph partitioning plays a critical role in various stages of circuit
design, including placement, routing, timing analysis, and logic simula-
tion. For instance, hypergraph partitioning helps optimize component
placement on a chip by dividing the circuit into smaller, more manageable
blocks while minimizing interconnections among them [4]. Given that
hypergraph partitioning is NP-hard [2, 4], many heuristics have been de-
veloped [9, 7, 8]. Among these heuristics, multilevel partitioning stands out
as the most popular for large-scale circuit graphs due to its high-quality
partitioning results and fast runtime [14, 2, 26, 27, 5]. A typical multilevel
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hypergraph partitioner iteratively coarsens the original hypergraph into
a smaller representation. When the hypergraph becomes small enough,
the partitioner uses a fast algorithm to generate an initial balanced parti-
tion. Finally, the partitioner iteratively restores the graph to the previous
level, followed by a refinement algorithm to improve the partition solu-
tion. Among all stages, coarsening and refinement stages are the most
time-consuming and account for 90% of the total runtime [17].

As the circuit size continues to grow, multilevel hypergraph partition-
ing becomes increasingly time-consuming. For example, the sequential
hypergraph partitioner hMetis can take four minutes to partition a five-
million-gate circuit [14]. Since hypergraph partitioning can be performed
multiple times during a CAD algorithm (e.g., incremental timing [11],
RTL simulation [12]), the cumulative partitioning time can extend to
several hours. To reduce the long runtime, existing partitioners [2, 26]
have utilized multi-core CPUs to parallelize the partitioning. Among
many parallel graph partitioners, Mt-KaHyPar [2] is the state-of-the-art
CPU-based parallel hypergraph partitioner designed to parallelize the se-
quential k-way Fiduccia-Mattheyses algorithm [13]. Despite some runtime
improvements, the speedup typically plateaus at 8–16 CPU threads [2].
On the other hand, modern GPUs provide a massive amount of parallelism
and higher memory bandwidth than CPUs, offering a new opportunity to
accelerate hypergraph partitioning.

However, existing CPU parallel hypergraph partitioning algorithms
cannot be directly applied to a GPU. The distinct performance charac-
teristics between CPU and GPU require very different designs of data
layouts to make the most of GPU computing. Furthermore, applying CPU-
parallel algorithms to a GPU can result in underutilized GPU threads,
load imbalance, and expensive synchronization overhead. For example,
Mt-KaHyPar’s coarsening algorithm requires frequent synchronization,
which is costly on the GPU and becomes a large performance bottleneck.
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Recent research, such as G-kway [18] and GKSG [17], has investi-
gated the use of a GPU to accelerate non-hypergraph partitioning (i.e.,
exactly two vertices per edge). To apply G-kway or GKSG to hypergraph
partitioning, one potential solution is to transform a hypergraph into a
non-hypergraph [28]. However, this transformation often results in poor
partitioning quality, as the transformed non-hypergraph fails to accurately
represent the original hypergraph [14, 29]. Another possible solution is to
extend G-kway’s non-hypergraph partitioning algorithm to hypergraphs.
However, due to the inherent differences between nonhypergraphs and
hypergraphs, this approach can result in extremely low parallelism. For
example, G-kway identifies an independent set of vertices to refine in
parallel. Since a hyperedge can easily link to many vertices, the size of an
independent set in a hypergraph is typically small. This situation becomes
even more challenging with modern circuits, as a net typically connects to
numerous pins. Given these challenges and the importance of a fast hypergraph
partitioner, there is a need for a new GPU-accelerated hypergraph partitoning
algorithm.

Consequently, we present HyperG, a GPU-accelerated hypergraph par-
titioning algorithm. While the previous work [30] has attempted to accel-
erate the uncoarsening stage using GPUs, to the best of our knowledge,
HyperG is among the earliest attempts to parallelize both coarsening and
uncoarsening stages on a GPU. The three key contributions of HyperG are
summarized below:

• We introduce a balanced group coarsening algorithm that groups
many vertices into balanced subgroups to ensure high partitioning
quality at later initial partitioning stage.

• We introduce a sequence-based refinement algorithm that simultane-
ously identifies and moves the best subsequence of vertices to largely
improve the partition solution.
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• We develop our GPU kernel using modern CUDA warp-level primi-
tives to achieve fine-grained synchronization and efficient communi-
cation during both the coarsening and refinement stages.

We evaluated the performance of HyperG on industrial circuit graphs
and compared our results with two state-of-the-art hypergraph partition-
ers, sequential partitioner hMetis [14] and CPU-based parallel partitioner
Mt-KaHyPar [2]. On average, experimental results show that HyperG out-
performs hMetis and 16-threaded Mt-KaHyPar by 133× and 4.1× faster,
respectively, with comparable cut sizes.

2.2 Problem Definition and Notation
Given a hypergraph H = (V ,E), where V is a set of vertices and E is a set of
hyperedges, each element e in E is a subset of the vertex set V representing
multi-vertex relationships. The vertices that belong to a hyperedge are
referred to as that hyperedge’s pins. We donate the size of e as |e|, which is
equal to the number of pins belonging to e. For a vertex v, we denote the
weight of v ∈ V by Wv, while for a hyperedge e ∈ E, we denote the weight
of e by We. Vertices u and v are neighbors if there exists a hyperedge e ∈ E

such that u ∈ e and v ∈ e.
Given an integer k, the goal of the hypergraph partitioning problem is

to partition V into k disjoint subsets p1,p2, . . . ,pk of approximately equal
sizes, while minimizing the cut size. The cut size is a commonly used
metric to measure the interconnection among partitions and is defined
as the sum of the weights of all cut hyperedges. A cut hyperedge is a
hyperedge that contains pins belonging to more than one partition. For
a vertex u, we define P(u) = i if v ∈ pi. The weight of the partition pi

is defined as Wpi
=

∑
v∈pi

Wv. To ensure that each partition has roughly
equal sizes, a balance constraint is imposed, limiting the maximum size of
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each partition pi as Wpi
⩽ (1 + ϵ)

∑
v∈V Wv

k
, where 0 < ϵ≪ 1 and ϵ is the

imbalance ratio given by applications.

2.3 GPU Multilevel Hypergraph Partitioner

Figure 2.1: Overview of HyperG that consists of three main stages: coarsening,
initial partitioning, and uncoarsening.

Following the multilevel heuristic, HyperG consists of three main
stages: coarsening, initial partitioning, and uncoarsening. Figure 2.1 shows
an overview of HyperG.

• Coarsening. The goal is to coarsen the hypergraph into a smaller rep-
resentation level by level while preserving the original hypergraph’s
structure. The coarsening process continues until the hypergraph has
fewer than 160× k vertices or until less than 95% of the vertices can be
coarsened in the previous level. We develop a balanced group coarsening
algorithm that can coarsen many vertices simultaneously while ensuring
that the coarsened vertices are balanced in size. This balance in vertex
sizes is crucial for achieving a balanced initial partition in the initial
partitioning stage.
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• Initial partitioning. The goal is to create an initial partition from the
coarsest hypergraph. We utilize the CPU-based parallel hypergraph
partitioner Mt-KaHyPar [2] for the initial partitioning. Since the coarsest
hypergraph is much smaller than the original hypergraph, the initial
partitioning stage is very fast and does not benefit much from GPU
parallelism.

• Uncoarsening. The goal is to iteratively restore the coarsened hypergraph
back to the previous level and refine the partitioning result by moving
vertices among partitions (i.e., refinement). The uncoarsening process
continues until the hypergraph size is the same as the original hyper-
graph. We develop an efficient sequence-based refinement algorithm that
finds the best subsequence of vertices to move in parallel, significantly
improving the cut size while reducing the refinement time.

In terms of graph storage, HyperG maintains two arrays in the commonly
used compressed sparse row (CSR) data structure to store vertices and
their connected edges, as well as hyperedges and their connected vertices,
for efficient GPU computing.

Balanced Group Coarsening

State-of-the-art CPU-parallel coarsening methods adopt rating function
coarsening [2, 31, 5]. Each vertex initially starts in its own group. Each
thread then visits a vertex, finds the neighbor with the highest score, and
joins the vertex to that neighbor’s group. Finally, all vertices in the same
group will coarsen into a coarsened vertex. To prevent a group from be-
coming too large and causing an imbalanced initial partition at a later
stage, Mt-KaHyPar imposes a maximum size on each group and prevents
vertices from joining a group that exceeds the maximum size. Conse-
quently, frequent checks (i.e., synchronization) are required to ensure that
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vertices do not join oversized groups. Such synchronization can intro-
duce significant overhead for GPU, as each GPU thread involves frequent
waiting for another GPU thread to update the correct group size, which
reduces the parallel efficiency of GPU.

Furthermore, Mt-KaHyPar assigns each vertex an atomic variable to
track each vertex’s status. To ensure correct group sizes and group as-
signments, Mt-KaHyPar uses compare-and-swap (CAS) instructions to
prevent any thread from joining a group that is currently being updated
by another thread. If a thread decides to assign a vertex to a neighbor’s
group that is currently being joined by another thread, it enters a busy-
waiting loop until the other thread finishes updating its status. Such a
busy-waiting loop mechanism can significantly hamper GPU performance
due to two reasons: First, busy-waiting loops reduce the number of active
GPU threads performing useful computations. This can significantly hurt
GPU performance since GPU relies on massive parallelism to achieve high
performance. Furthermore, GPU executes threads in groups called warps.
If some threads in a warp are busy-waiting while others are not, it can lead
to some threads in a warp are stalled, further degrading performance.

To overcome these challenges, we propose balanced group coarsening.
Each vertex selects the neighbor with the highest score to group. Each GPU
thread then groups the vertices together simultaneously. Our algorithm
does not limit the group size while joining vertices. Instead, We break
down all groups into subgroups of similar sizes in parallel after all the
vertices have joined groups. Furthermore, each GPU thread updates a
vertex’s group using a single atomicMax operation, without requiring
threads to wait. Our coarsening algorithm consists of three steps: Neighbor
Selection , Vertex Grouping , and Balanced Subgroup Breakdown.



49

Neighbor Selection

We develop an efficient GPU kernel using a highly optimized CUDA warp-
level primitive, __reduce_max_sync, to find the neighbor with the highest
score. Inspired by [2], we define the rating function for each vertex u and
its neighbor v as follows:

score(u, v) = C×
∑

e∈E:v∈e∩u∈e

We

|e|
.

To find the neighbor with the highest score, we assign each vertex to a GPU
warp (i.e., a group of 32 consecutive threads), with each thread in the
warp fetching one of the vertex’s neighbors and calculating its score. We
then employ __reduce_max_sync to perform a reduction operation across
all threads in a warp to find the neighbor with the highest score. Since the
built-in __reduce_max_sync only supports integer types, we multiply the
rating function by a large constant C (i.e., 1,000). This strategy converts
a float to an integer by scaling it up to a significant value, preserving the
relative magnitude and precision of the original floating-point number.

Vertex Grouping

After selecting the neighbor with the highest score for each vertex, we
perform the vertex grouping algorithm to join vertices into groups in
parallel and coarsen all vertices in the same group together. Our vertex
grouping algorithm is inspired by [32], where each vertex’s group ID
is iteratively updated to a larger value until all vertices with connected
selected neighbors share the same group ID. However, after grouping,
some groups are significantly larger than others, making it difficult to
achieve a balanced partition at the later initial partitioning stage. One
solution is to randomly divide each large group into smaller subgroups.
However, this approach can lead to poor partition quality because vertices



50

that are far apart may end up in the same subgroup. Coarsening these
distant vertices together can distort the original graph structure. Figure
2.2 (a) shows an example of breaking down a large group into subgroups
of size two randomly. This method places two nonadjacent vertices, v1 and
v2, into the same subgroup, which distorts the original graph structure by
coarsening them together.

To address these issues, we create a group combination for each vertex,
ensuring that vertices closer to each other have closer group combinations.
We then divide the vertices with closer group combinations into the same
subgroups. In our algorithm, each vertex’s group combination is an eight-
byte data type, where the first four bytes store the vertex’s group ID, and
the last four bytes indicate the iteration during which this vertex joins
the group. This setup allows us to update the group combination with
a single atomicMax operation. Specifically, vertices closer to the group
leader (i.e., the vertex with the largest vertex ID in the group) will join the
group leader’s group faster and adopt the smaller group combinations,
while more distant vertices will join the group later and have larger group
combinations. Figure 2.2 (b) shows an example of breaking down a large
group into subgroups of size two by group combinations. This method
places adjacent vertices into the same subgroups, which better preserves
the original graph structure than method (a).

Algorithm 6 presents our vertex grouping algorithm. We use an array
group_comb to store each vertex’s group combination. Initially, each
vertex is in its own group, and we initialize its corresponding value in
group_comb such that the first four bytes equal this vertex’s vertex ID and
the last four bytes are set to 0. We utilize a boolean variable joining to track
if there are any vertices still joining other groups. While joining is true, we
assign each vertex to a GPU thread. Each thread is responsible for updating
the group combinations of its assigned vertex and its selected neighbor by
first comparing their group IDs and finding the larger one (line 10 or 14).
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Figure 2.2: Examples of two methods to break down a large group into subgroups
of size two. Vertices in the same box are placed into the same subgroup. Vi → Vj

indicates Vi selects to join Vj’s group. In (b), (n1,n2) represents a vertex’s group
combination, where n1 indicates the group ID and n2 is the iteration number.

Algorithm 6: Vertex Grouping
1 it← 1
2 joining← true
3 while (joining)
4 joining← false
5 parallel for each GPU thread
6 gid← GPU thread’s global ID
7 nbr← selected_neighbor[gid]
8 nbr_group_ID← get_group_ID(group_comb[nbr])
9 cur_group_ID← get_group_ID(group_comb[gid])

10 if cur_group_ID > nbr_group_ID then
11 max_group_comb← get_group_comb(cur_group_ID, it)
12 atomicMax(&group_comb[nbr], max_group_comb)
13 joining← true
14 else if cur_group_ID < nbr_group_ID then
15 max_group_comb← get_group_comb(nbr_group_ID, it)
16 atomicMax(&group_comb[gid], max_group_comb)
17 joining← true
18 it++

The thread then creates a new group combination using the larger group ID
and the iteration number (line 11 or 15) and uses atomicMax to update the
group combination of either its vertex or its selected neighbor, whichever
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is smaller (line 12 or 16). Since multiple threads may attempt to update the
same vertex’s group combination concurrently, we use atomicMax to ensure
these updates are performed atomically. Finally, threads that update the
group combination sets joining to true (line 13 or 17), indicating that there
are still vertices joining other groups and that threads need to continue
updating group combinations. Once all vertices have finished joining
groups and group combinations no longer change, all vertices in the same
group will have group IDs equal to the vertex ID of their group leader.

Figure 2.2 shows an example of our grouping algorithm converging in
3 iterations. In this example, v4 is the group leader since it has the largest
vertex ID. v3 is closest to the group leader, resulting in a smaller group ID
compared to v1 and v2, which are farther away from the group leader.

Algorithm 7 shows our grouping algorithm. Initially, each vertex is
in its own group. We assign each vertex to a GPU thread, with each
thread responsible for updating the group ID of its assigned vertex and its
selected neighbor to the largest group ID between them. Since multiple
threads may attempt to update the same vertex’s group ID concurrently,
we use atomicMax to ensure these updates are performed atomically. This
grouping algorithm is performed iteratively until all vertices’ group IDs
converge, meaning no vertex has changed its group ID in the previous
iteration. Once it converges, all vertices in the same group will have a
group ID equal to the highest vertex ID (i.e., group leader) within that
group.

After grouping vertices, some groups become significantly larger than
others, making it difficult to achieve a balanced partition at a later initial
partitioning stage. One simple solution is to randomly divide each large
group into smaller subgroups, with each subgroup having a maximum
size of s. However, this approach can lead to poor partition quality because
vertices that are far apart may end up in the same subgroup. Coarsening
these distant vertices together can distort the original graph structure.
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To address this issue, our algorithm ensures that vertices closer to
the group leader have smaller group IDs. Specifically, vertices closer to
the group leader will converge faster and adopt the smallest group ID,
while more distant vertices will take longer to converge and will have
larger group IDs. Figure 2.2 shows an example of our grouping algorithm
converging in 3 iterations. In this example, v4 is the group leader since it
has the largest vertex ID. v3 is closest to the group leader, resulting in a
smaller group ID compared to v1 and v2, which are farther away from the
group leader. In our algorithm, each vertex’s group ID is an eight-byte
data type, where the first four bytes store the vertex’s group ID, and the
last four bytes indicate the iteration during which the group ID was last
updated. This setup allows us to update the group ID with a single atomic
operation.

Algorithm 7: Balanced Subgroup Breakdown
1 parallel for each group
2 gid← GPU thread’s global ID
3 ith← the ith vertex in the group ▷ position within the group
4 sub_group_start← floor(ith / s)
5 sub_group_id← v_id[sub_group_start × s]
6 group_id[gid]← sub_group_id

Balanced Subgroup Breakdown

After computing the group combinations, we sort the vertices in ascending
order based on their group combinations, so that vertices belonging to
the same group are placed together. Within each group, vertices are
ordered according to their distance from the group leader (i.e., vertices
farther from the group leader have larger group IDs). We then divide
the vertices into subgroups based on their position within the group,
with each subgroup having a maximum size of s. We maintain an array
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v_id to record each vertex’s vertex ID in the same order as they appear
in group_comb. Algorithm 7 shows our balanced subgroup breakdown
algorithm. For each group, we assign each vertex in the group to a GPU
thread. The thread first identifies the index of its vertex within the group
(line 3). The thread then computes the subgroup for the vertex by dividing
the index by s (line 4). To assign the subgroup a new group ID and ensure
that no two subgroups share the same ID, the thread locates the first vertex
within its subgroup and uses this vertex’s vertex ID as the subgroup ID
(line 5). Finally, the thread updates the group ID accordingly (line 6).

Sequence-based Refinement

The goal of a refinement algorithm is to minimize the number of cut
hyperedges by reducing the number of hyperedges that span multiple
partitions. This is achieved by moving vertices among different partitions.
We define a vertex_move as mpcur,pdst

u that represents moving the vertex u

from the current partition pcur to the destination partition pdst. We then
define the gain, gain(u,pdst), of a vertex move mpcur,pdst

u as follows:∑
e∈E:u∈e

We × {δ(num_pins(e,pcur) = 1) − δ(num_pins(e,pdst) = 0)},

where δ(condition) is an indicator function that returns 1 if the condition
is true and 0 otherwise. The function num_pins(e,pi) returns the number
of pins of edge e that are located in partition pi. The gain is computed by
summing all hyperedges e incident to u. For each e:

• The first term δ(num_pins(e,pcur) = 1) checks if e has only one pin
left in pcur. If the condition is true, then moving u from pcur will
result in a positive contribution to the gain, as it reduces the number
of partitions e spans.



55

• The second term δ(num_pins(e,pdst) = 0) checks if e has no pins
in pdst. If the condition is true, then moving u to pdst will result
in a negative contribution to the gain, as it increases the number of
partitions e spans.

Parallel refinement can make each vertex’s gain inconsistent due to the
concurrent movement of adjacent vertices [18]. To ensure correct gains,
G-kway [18] identifies an independent set of vertices to move in parallel.
However, such a strategy largely reduces the available parallelism for
hypergraphs. Since a hyperedge can connect to many vertices, the size
of an independent set in a hypergraph is often small. To address this
problem, we propose a sequence-based refinement algorithm. We first
find a sequence of vertex moves with positive gain in the descending order.
Next, we update the gain of each vertex move in the sequence by assuming
previous vertex moves are already applied. This strategy allows us to
update the gain of a vertex move based on its neighbors’ latest partition
locations, eliminating the need for an independent set. Since a vertex
move may have negative gains after updating, we accumulate the gains to
identify the best subsequence of vertex moves that yields the largest gain
while maintaining balanced partitions.

Our sequence-based refinement algorithm consists of two steps: Se-
quence of vertex moves finding and Best subsequence selection.

Sequence of Vertex Moves Finding

In this step, our goal is to find vertices with positive gains and store
them in a sequence of vertex moves seq_vertex_moves. To avoid redundant
gain computations, we record the adjacent partitions of each vertex u

(i.e., partitions where u has neighbors) using a 64-bit data type adj_par.
In adj_par, each bit represents a partition and its value is either 1 or 0.
Specifically, if pi is adjacent to u, the value of the ith bit in u’s adj_par is 1;
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Algorithm 8: Sequence of Vertex Moves Finding
1 parallel for each GPU warp
2 warp_id← GPU warp’s global ID
3 lane_id← GPU thread’s ID within a warp
4 v_start← warp_id * 32
5 v_end← v_start + 32
6 for each v ∈ {v_start … v_end}
7 pcur← u’s current partition
8 max_gain← 0
9 max_gain_p← ∅

10 for each p ∈ v’s adj_par
11 e_id← lane_idth e ∈ u

12 e_gain←We × {δ(num_pins(e, pcur) = 1) - δ(num_pins(e, p)
= 0) }

13 sum_gain← __reduce_add_sync(0xffffffff, e_gain)
14 if lane_id == 0 && sum_gain > max_gain then
15 max_gain← sum_gain
16 max_gain_p← p
17 __syncwarp()
18 if lane_id == 0 && max_gain > 0 then
19 pos← atomicAdd(seq_size, 1)
20 seq_vertex_moves[pos]←m

pcur,max_gain_p
v

21 __syncwarp()

otherwise, it is set to 0. This information is updated as vertices are moved.
We only calculate gains for the adjacent partitions of u since moving a
vertex to a non-adjacent partition will not result in a positive gain. This
strategy largely reduces unnecessary gain calculations.

To find vertices with positive gains, we assign each GPU warp 32
consecutive vertices. All threads in a warp calculate the gain of a vertex
u for one of its adjacent partitions at a time. Since each vertex can have
a different number of adjacent partitions and hyperedges, the time for
computing a vertex’s gain is different. In our kernel, if a warp finishes
processing a vertex quickly, it can immediately proceed to the next one.
This approach increases warp occupancy, ensuring enough active warps to
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keep the GPU cores busy. Algorithm 8 shows our sequence of vertex moves
finding algorithm. In each warp, all threads first fetch 32 consecutive
vertices (lines 4-5), and they calculate the gain of a vertex v to one of
its adjacent partitions P at a time. Specifically, each thread fetches one
of u’s hyperedges e and calculates the gain for e (lines 11-12). We use
__reduce_add_sync to efficiently sum up the gain of each e computed by
each thread (line 13). After obtaining the total gain, the first thread in
the warp (i.e., lane ID equals 0) checks if the total gain is greater than
the current maximal gain (line 14). If it is true, the thread updates the
current maximal gain and the associated partition (lines 15-16). Then, all
threads continue processing v’s next adjacent partition. Once threads have
processed all of v’s adjacent partitions, the first thread checks if v has a
maximal gain greater than zero (line 18). If it does, the thread atomically
increments a variable indicating the current sequence size seq_size to get a
position in seq_vertex_moves and inserts the vertex move into the sequence
(lines 19-20).

After finalizing the sequence of vertex moves, we need to select a sub-
sequence of them such that applying those vertex moves yields the largest
gain while still satisfying the balance constraint. However, finding the
optimal subsequence encounters the problem of exponential enumeration,
as each vertex move must be considered for selection or not. Specifically,
identifying a subsequence of size k requires evaluating 2k possible combi-
nations. To address this problem, we sort each vertex move by gain and
select vertex moves in descending order. This selection allows us to move
vertices with larger gains first, thus maximizing the improvement in cut
size.

Best Subsequence Selection

The goal of this step is to select the best subsequence of vertex moves
to move. We first update the gain of each vertex move by assuming that
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Algorithm 9: Gain Updating
1 assign a m

pcur,pdst
u to a GPU warp

2 parallel for each GPU warp
3 lane_id← GPU thread’s ID within a warp
4 u_move_order← move_order[u]
5 gain← 0
6 foreach u’s hyperedge e
7 pin_id← lane_idth pin in e
8 pin_move_order← move_order[pin_id]
9 pin_par← pin_move_order < u_move_order ? seq_vertex_moves

[pin_move_order].dst : seq_vertex_moves [pin_move_order].cur
10 num_pins_cur← number of pin_pars are m

pcur,pdst
u .cur

11 num_pins_dst← number of pin_pars are m
pcur,pdst
u .dst

12 if lane_id == 0 && num_pins_dst == 0 then
13 gain − =We

14 if lane_id == 0 && num_pins_cur == 1 then
15 gain + =We

16 __syncwarp()
17 if lane_id == 0 then
18 seq_vertex_moves[u_move_order] .gain← gain

previous vertex moves are all applied. The gain of a vertex move is updated
by computing its neighbors’ current partitions based on their order in
the sequence of vertex moves. To allow each thread to quickly access a
vertex move’s order without searching the entire sequence, we maintain
a move_order array of length |V |, where the index of vertex u records u’s
order in the sequence. Algorithm 9 presents our parallel gain updating
algorithm. We assign each vertex move mpcur,pdst

u to a GPU warp, where
all threads in the warp update the gain of gain(u,pdst), by computing the
gain of each hyperedge e of u at a time. Each thread first fetches one of e’s
pins pin and its order pin_move_order from move_order to a thread-local
variable (lines 7-8). Each thread then finds pin’s current partition pin_par
by comparing the order of pin and u (line 9). If pin’s order is less than
u’s, meaning pin moves before u, then by the time we are moving u, pin
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should already be in its destination partition. Conversely, if pin’s order
is greater than u’s, meaning pin moves after u, then by the time we are
moving u, pin should still be in its current partition. Based on the order
of pin, each thread determines its pin’s current partition and counts the
number of pins in mpcur,pdst

u ’s current partition pcur (line 10). To efficiently
calculate the number of pins in the pcur, we use __ballot_sync to identify
threads whose pin_par matches pcur and __popc to count those threads.
The number of pins in the destination partition is computed similarly
(line 11). Finally, the first thread in the warp checks if e has no pins in
pdst. If this condition is met, e results in a negative gain, and the thread
decrements the gain by We (lines 12-13). Additionally, the thread checks
if e has only one pin left in pcur. If this condition is met, e results in a
positive gain, and the thread increments the gain by We (lines 14-15).

After updating the gain of each vertex move, some vertex moves may
have negative gains. To find a subsequence with the largest total gain, we
employ a GPU scan algorithm to accumulate the gains of the sequence
of vertex moves and store them in the array accum_gains. This allows us
to calculate the total gains that we can obtain if we apply all the vertex
moves in the subsequence. For example, the jth element in accum_gains
stores the total gain obtained by applying the vertex moves from the first
to the jth (i.e., a subsequence from the first to the jth vertex move). We
can then find the subsequence with the largest gain.

Next, we use the same strategy to compute the partition balance result.
We maintain k different del_wgti arrays for k partitions, each with a size
equal to the number of vertex moves in the sequence. Each element in
del_wgti records the weight change of the ith partition after applying a
vertex move. Specifically, the value in del_wgt1[0] records the first parti-
tion’s weight change after applying the first vertex move. We then use a
GPU scan on each del_wgti to get the total partition weight change for
each partition. After scans, the jth element in del_wgti stores the total
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partition weight change for partition i from applying the first to the jth

vertex moves. Based on the total partition weight changes, we can com-
pute if the partition will be balanced after applying vertex moves in the
subsequence. Using the accumulated gains accum_gains and the result of
each del_wgti, we can find the longest subsequence where the total gain
is maximized and the resulting partition remains balanced. We then apply
all vertex moves in this subsequence in parallel.

2.4 Experimental Evaluation
We evaluated the performance of HyperG on 18 industrial circuit graphs
derived from the ISPD98 VLSI Circuit Benchmark Suite [33]. Since the
original graphs are small (a few thousand vertices), we expanded the
circuit graphs 100–1000 times larger with random vertex and edge inser-
tions to demonstrate the advantage of GPU parallelism. We implemented
HyperG using C++17 and CUDA 12.0 and compiled it with nvcc on a
host compiler of GCC-8 with -O3 enabled. We ran experiments on a 64-bit
Linux machine with 16 Intel i7-11700 CPU cores at 2.50 GHz and 128 GB
RAM. Our GPU is A6000 with 48 GB global memory.

Baselines

We consider two state-of-the-art hypergraph partitioners as our baseline,
hMetis [14] (sequential) and Mt-KaHyPar [2] (multithreaded). For all
experiments, we set the imbalance ratio to 3%. In the coarsening stage,
we set the maximum size of each subgroup to four and terminate the
coarsening algorithm when the number of vertices drops below 160× k or
less than 95% of the vertices can be coarsened in the previous coarsening
level. We use the default settings for both hMetis and Mt-KaHyPar.
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Overall Performance Comparison

Table 2.1 compares the overall runtime and cut size results among hMetis,
Mt-KaHyPar, and HyperG at k = 2. On our machine, Mt-KaHyPar satu-
rates at about 10–16 threads. Hence, we report its results under 16 threads.
In terms of runtime, HyperG outperforms hMetis and Mt-KaHyPar across
nearly all circuit graphs, with an average speedup of 133× and 4.1×, re-
spectively. The largest speedups we observe are 177× over hMetis and
6× over Mt-KaHyPar. For the smallest graph (circuit08), the runtime of
HyperG is slightly slower than Mt-KaHyPar (0.9×), which is due to the
limited data parallelism exhibited by this graph. For the largest graph
(circuit17), hMetis failed to finish due to a memory error. Regarding cut
size, HyperG always achieves comparable values with both hMetis and
My-KaHyPar.

We attribute this promising performance to our efficient balanced
group coarsening algorithm, which groups vertices into subgroups of
similar sizes and coarsens all vertices within these subgroups. This al-
gorithm largely reduces the number of coarsening levels by efficiently
coarsening many vertices at each level while ensuring that the resulting
coarsened vertices have similar sizes. This balance in vertex weights helps
the initial partitioning stage find a good initial solution. Additionally, our
sequence-based refinement algorithm correctly computes the gains for
a sequence of vertex moves. This strategy allows us to identify the best
subsequence of vertex moves to apply in parallel, reducing the number of
refinement steps while ensuring high partitioning quality.

Runtime Analysis

Figure 2.3 shows the speedup of HyperG over Mt-KaHypar (16 threads)
and hMetis at k = {2, 4, 8, 16, 32, 64} on four circuit graphs, circuit01, cir-
cuit02, circuit06, and circuit09. We chose these four circuit graphs because
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Figure 2.3: The speedup of HyperG over Mt-KaHyPar (top) and hMetis (bottom)
at different k. In cases where hmetis fails to partition the circuit graph, the results
are left blank.

hMetis can finish the partitioning in most k during our settings.
Regardless of k, HyperG is always faster than hMetis and Mt-KaHyPar.

For example, with k = 2, HyperG achieves up to 5.5× and 380× speedup
over Mt-KaHyPar and hMetis, respectively; With k = 64, HyperG is up to
4× faster than My-KaHyPar, whereas hMetis fails to finish due to a memory
error. We attribute this to our balanced group coarsening, where we largely
reduce the number of vertices at each coarsening level. Moreover, our
sequence-based refinement algorithm can move many vertices in parallel,
thus significantly reducing the time spent in the refinement stage.

We also observe the impact of k on the performance of HyperG com-
pared with hMetis and Mt-KaHyPar. As k increases, the runtime of all
partitioners increases. However, the runtime of hMetis increases much
faster than HyperG and Mt-KaHyPar. For example, on circuit09, when
k goes from 2 to 4, HyperG and My-KaHyPar become 8.92% and 3.64%
slower, respectively, while hMetis becomes 128.5% slower.



63

circuit01 circuit02 circuit06 circuit090
0.5

1
1.5

2

Cu
tsi

ze
Ra

tio
HyperG vs Mt-KaHyPar (top) and hmetis (bottom)

k = 2 k = 4 k = 8 k = 16 k = 32 k = 64

circuit01 circuit02 circuit06 circuit090
0.5

1
1.5

2

Cu
tsi

ze
Ra

tio

Figure 2.4: The cut size ratio of HyperG over Mt-KaHyPar (top) and hMetis
(bottom) at different k. In cases where hmetis fails to partition the circuit graph,
the results are left blank.

Cut Size Analysis

Figure 2.4 shows the cut size improvement ratio of HyperG over Mt-
KaHyPar (16 threads) and hMetis at k = {2, 4, 8, 16, 32, 64} on four cir-
cuit graphs, circuit01, circuit02, circuit06, and circuit09. For most circuit
graphs, HyperG can produce partitions with comparable quality to hMetis
and Mt-KaHyPar. Compared to mt-KaHyPar, HyperG can partition all
graphs with ⩽ 5% cut size differences. We attribute this to our balanced
group coarsening algorithm, which leads to a good initial partition. Addi-
tionally, our sequence-based refinement algorithm can correctly compute
the improvement in cut size for a sequence of vertex moves and select the
best subsequence of them to move. However, this selection can sometimes
trap us in local minima. Therefore, in sequential partitioning, hMetis,
which iteratively finds the best vertex to move, can result in a more refined
and optimized partition. Yet, HyperG can still find partitions with less
than 5% difference in quality from hMetis for 60% of the instances.

In terms of the impact of k on partition quality, regardless of k, HyperG
always finds a very similar cut size as Mt-KaHyPar. Compared to hMetis,
when k is small (e.g., 2 and 4), HyperG can achieve similar cut size quality
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in nearly all graphs. However, as k increases, hMetis can sometimes find
a better cut size. Yet, for larger k values (e.g., 32 and 64), hMetis fails to
partition circuit graphs due to memory issues.

Scalability Analysis
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Figure 2.5: The speedup of HyperG over Mt-KaHyPar (top) and hMetis (bottom)
for varying circuit graph sizes modified from ibm01 at k = 2 and k = 4. hmetis
fails to partition the circuit graph with size larger than 18M.

Figure 2.5 shows the speedup of HyperG over Mt-KaHyPar and hMetis
when partitioning circuit graphs of varying sizes at k = 2 and k = 4. We
choose only these two k values because hMetis fails to partition the graphs
at larger k values. We generate different circuit graph sizes (|V |+ |E|) by
randomly inserting vertices and edges to enlarge ibm01 [33] from 27K to
34M. When the graph size is small, the speedup is subtle. For example, at
27K, the speedup of HyperG over Mt-KaHyPar and hMetis is only 1.2×
and 10×, respectively. However, as the graph size goes beyond 3M vertices,
HyperG shows a significant performance advantage over the CPU-based
parallel Mt-KaHyPar and sequential hMetis. Moreover, hMetis fails to
partition graphs beyond 18M. For example, for the largest graph (34M),
HyperG achieves an 11× speedup over Mt-KaHyPar, while hMetis fails
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to partition the graph. The speedup of HyperG continues to increase as
the graph turns larger, showing the advantage of GPU acceleration for
large-scale graph partitioning.

Table 2.2: Comparison between two GPU-accelerated partitioners, HyperG (hy-
pergraph) and G-kway (non-hypergraph) at k = 2. G-kway requires an extra
transformation step.

Benchmark HyperG G-kway
Cut size Part. time (s) Cut size Trans. time (s) Part. time (s)

circuit01 1,498 0.770 3,533 7.152 0.125
circuit02 1,572 1.692 3,493 20.310 0.372
circuit03 1,665 0.908 3,549 8.180 0.165
circuit04 1,699 1.567 3,038 7.63 0.145

Comparison with Graph Partitioners

Table 2.2 compares the cut size and runtime results between two
GPU-accelerated partitioners, HyperG (hypergraph) and G-kway (non-
hypergraph) [18] at k = 2. Since G-kway is a non-hypergraph partitioner,
it requires an extra transformation of hypergraphs into non-hypergraphs.
To transform a hypergraph to a non-hypergraph, we use a classical clique-
expansion method where each hyperedge is replaced with a clique [14, 28].
In all benchmarks, HyperG consistently produces better cut sizes than
G-kway. This is because HyperG can work directly on the hypergraph,
preserving the original multi-vertex relationships and effectively mini-
mizing the cut size. However, G-kway introduces many more edges by
transforming the hypergraph into a non-hypergraph, which leads to an
increased edge count and a loss of the original hypergraph structure.

2.5 Conclusion
In this chapter, we have introduced HyperG, a GPU-accelerated hyper-
graph partitioner to achieve significant runtime improvement that was
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previously out of reach with a CPU. HyperG introduces an innovative
balanced group coarsening and a sequence-based refinement algorithm
to accelerate both the coarsening and uncoarsening stages. Experimental
results have shown the promising performance of HyperG over state-of-
the-art CPU-parallel hypergraph partitioners on large industrial circuits.

In this work, Wan Luan Lee was the primary contrib- utor, responsible
for the majority of the research and development efforts. Tsung-Wei Huang
supervised the research, providing guidance and over- sight throughout
the project. All authors contributed to the preparation and review of the
final manuscript.
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3 ig-kway: incremental k-way graph partitioning
on gpu

Recently, researchers have leveraged the GPU to accelerate graph partition-
ing to a new performance milestone. However, existing GPU-accelerated
graph partitioners are limited to full graph partitioning and do not antic-
ipate incremental updates. Incremental partitioning is integral to many
optimization-driven CAD applications, where a circuit graph is reparti-
tioned iteratively as it undergoes incremental modifications during the
evaluation of optimization transforms. To unlock the full potential of
GPU-accelerated graph partitioning, we introduce iG-kway, an incremental
k-way graph partitioner on GPU. iG-kway introduces an incrementality-
aware data structure to support graph modifications directly on the GPU.
Atop this data structure, iG-kway introduces an incremental refinement
kernel that can efficiently refine affected vertices after the graph is incre-
mentally modified, with minimal impact on partitioning quality. Exper-
imental results show that iG-kway achieves an average speedup of 84×
over the state-of-the-art G-kway, with comparable cut sizes.

3.1 Introduction
Graph partitioning is important for the design of efficient computer-aided
design (CAD) algorithms because it allows an algorithm to break down
a circuit graph into smaller and manageable pieces. However, as circuit
graphs continue to grow in size, graph partitioning becomes increasingly
time-consuming. For example, the sequential graph partitioner, metis [10],
can take several minutes to partition just one million-node graph [34], and
the runtime keeps increasing as the graph size becomes larger. To reduce
the runtime, researchers have proposed various parallel graph partitioning
algorithms [35, 1, 36, 37, 38, 39, 40, 41, 42, 7]. For example, mt-metis [1]
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parallelized multi-level graph partitioning using multi-core CPUs, but
the speedup is limited to only 8–16 CPU threads [18]. More recently, G-
kway [18], Jet [34], and GKSG [17, 43] explored data parallelism from
different stages of graph partitioning and offloaded time-consuming tasks
(e.g., coarsening, refinement) to the GPU, achieving significant speedup
for large graphs.

In addition to partitioning an input graph once, which we refer to as
full graph partitioning (FGP), incremental graph partitioning (IGP) is a critical
enabler for many CAD applications that incorporate graph partitioning in
a loop. For instance, the multi-input RTL simulator [12, 44] counts on iter-
ative IGP to discover an optimal task graph for heterogeneous scheduling;
Similarly, a timing-driven optimizer also relies on iterative IGP to enhance
the runtime performance of a timing analyzer [11]. In these applications,
when the graph is incrementally modified, the partitioner must quickly
refine the partitioning result to maintain a reasonable turnaround time
across thousands or even millions of incremental iterations. As shown in
Figure 3.1, IGP can save a significant amount of time compared to FGP.
Without IGP, we cannot fully unlock the benefit of graph partitioning.

IGP has been studied in prior works [45, 46, 47, 48, 49], with a core focus
on refining small subgraph regions affected by graph modifications, rather
than performing a full re-partitioning from scratch. However, these works
are largely limited to CPU architectures and can become inefficient when
handling large graphs or when the affected regions are large. Inspired by
the recent success of GPU-accelerated FGP [18], we believe that a GPU
can also enhance the performance of IGP due to the large amount of data
parallelism exhibited by graph partitioning. More importantly, as more
CAD applications begin leveraging GPU acceleration [50, 51, 52, 12, 44, 53,
54, 55, 56? , 57, 58, 59, 60, 61, 62, 63], there is an increasing need to re-target
time-consuming CPU tasks to GPU. For instance, a GPU-accelerated IGP
will further speed up the incremental task graph optimization process
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of [12] (which takes several hours) while reducing the cost of moving and
converting graph data between CPU and GPU during iterative IGP.

Figure 3.1: Incremental graph partitioning (IGP) and its runtime advantage over
full graph partitioning (FGP).

However, designing a GPU-parallel incremental graph partitioner is
very challenging. First, existing GPU partitioners [18, 17, 34] count on static
1D arrays, such as the compressed sparse row (CSR), to store graphs on
the GPU. These static data structures make it very challenging to update
graphs without rebuilding the entire arrays. Second, graph modifiers
can affect vertices in different subgraph regions of different sizes. This
varying number of affected vertices needs a clever strategy to balance
workloads across GPU threads during incremental partitioning. Third,
graph modifiers can potentially disrupt the balance of existing partitions.
We need an effective GPU kernel algorithm to quickly restore partition
balance while maintaining a satisfactory cut size.

While parallel IGP has been previously studied [48, 49], these efforts
focused on CPU architectures. Due to the distinct performance models
and memory hierarchies between CPU and GPU, we cannot directly apply
these methods to GPU. For example, IOGP [48] introduced an online
graph partitioning algorithm for distributed graph databases. However,
IOGP focuses on optimizing data locality to minimize communication
overhead in a distributed computing environment, which differs from our
application focus. On the other hand, [49] formulated IGP into a two-layer
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linear programming (LP) proxy problem and solved it using multiple
CPU threads. However, their methods require iteratively re-formulating
the proxy LP problem, which is inherently sequential and cannot scale to
large IGP problems.

To overcome these challenges, we introduce iG-kway, a GPU-parallel
k-way graph partitioner that efficiently supports incrementality. To the
best of our knowledge, this chapter presents one of the earliest research on
GPU-parallel IGP, aiming to unlock the full potential of GPU-accelerated
graph partitioning. We summarize our key contributions as follows:

• We introduce a GPU-aware bucket-list graph representation that can
efficiently handle graph modifiers without requiring any data structure
rebuilds.

• We aggregate the affected vertices in a centralized buffer and dynami-
cally assign GPU threads to process them, ensuring balanced workloads
across the GPU threads.

• We design a GPU-parallel refinement kernel algorithm that efficiently
rebalances partitions by moving affected vertices to a pseudo-partition
and performing incremental refinement.

We have evaluated the performance of iG-kway on industrial circuit
graphs and compared our results with the state-of-the-art GPU-accelerated
graph partitioner, G-kway [18]. Experimental results show that iG-kway
achieves an average speedup of 84× over G-kway, with comparable cut
sizes.

3.2 Problem Definition and Notation
Given an undirected graph, G = (V ,E), where V is a set of vertices, and
E is a set of edges. Each element in E is of the form e = (u, v) which
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represents the connection between u and v in V . For a vertex v ∈ V , we
denote the weight of v by Wv, while for an edge e ∈ E, we denote the
weight of e by We. For a vertex v ∈ V , its adjacent vertex set is denoted as
adj(v). Given k, if P = {p1,p2, . . . ,pk} is a disjoint partition of V , we call P
a k-way partition. For v ∈ V , we define P(v) = i if v ∈ pi, and its external
neighbors as adjext(v) = {u ∈ adj(v) | P(u) ̸= P(v)}, and its internal
neighbor as adjint(v) = {u ∈ adj(v) | P(u) = P(v)}. We define the cut
size as ∑e=(u,v)∈E,P(u)̸=P(v) We. Cut size is widely used for evaluating the
quality of a partition since it represents the interconnect complexity among
partitions. The partition weight of pi is defined as Wpi

=
∑

v∈pi
Wv.

The goal of FGP is to find a k-way partition from scratch that satis-
fies the balance constraint while minimizing the cut size. The balance
constraint limits the maximum weight of pi as

Wpi
⩽ Wpmax = (1 + ϵ)

∑
v∈V Wv

k
, 0 < ϵ≪ 1

where Wpmax
is the maximum allowable partition weight and ϵ is the

imbalance ratio given by applications. Given a partitioned graph, the
first goal of IGP is to apply a sequence of graph modifiers to the graph.
Each modifier corresponds to a vertex insertion (M+

u), a vertex deletion
(M−

u), an edge insertion (M+
(u,v)), or an edge deletion (M−

(u,v)). In most
IGP applications [11, 64, 12], the number of modifiers is smaller than the
graph size. The next goal of IGP is to efficiently refine the modified graph
without starting from scratch while minimizing the cut size.

3.3 Overview of iG-kway
Figure 3.2 shows the overview of our GPU-parallel incremental k-way
graph partitioner, iG-kway, which consists of two main stages: full parti-
tioning (Section 3.4) and incremental partitioning (Section 3.5). The goal of
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Figure 3.2: Overview of the proposed incremental graph partitioner, iG-kway.

the full partitioning is to derive a high-quality partition from the original
graph, which provides a foundation for the incremental partitioner to
optimize subsequently modified graphs. We utilize G-kway [18] with a
new constrained coarsening strategy to achieve a high-quality partition-
ing result. On the other hand, the goal of incremental partitioning is to
update and refine the modified graph without starting from scratch. Our
incremental graph partitioning has two main stages, incremental graph
modification and incremental refinement, where (1) the former introduces
a bucket-list data structure that stores the input graph and supports di-
rect modification on the GPU, and (2) the latter introduces a GPU kernel
algorithm that balances and refines the partition after the graph is incre-
mentally modified.

3.4 Full Partitioning with Constrained
Coarsening

We use the state-of-the-art GPU-accelerated multilevel graph partitioner,
G-kway [18], to perform full partitioning due to its high partitioning qual-
ity and fast runtime. G-kway employs a multilevel approach, iteratively
coarsening the graph into a smaller representation until it reaches a man-
ageable size, at which point the partitioning stage begins. To accelerate
the coarsening process, G-kway employs a union-find-based coarsening
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that merges many vertices simultaneously to reduce the graph size per
iteration. Here, G-kway introduces a parallel union-find algorithm to iter-
atively group vertices into subsets. Despite parallelism, this approach may
result in imbalances in coarsened vertex weights, as each subset contains
a varying number of vertices. This imbalance makes it challenging for the
subsequent partitioning stage to achieve a balanced partition. Figure 3.3
(a) shows an example of G-kway’s union-find-based coarsening, where
G-kway groups vertices into two imbalanced subsets.
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Figure 3.3: Examples of two coarsening methods, including (a) G-kway’s union-
find based coarsening and (b) our constrained coarsening. Each vertex has an
arrow pointing to its selected neighbor, and its label n or n indicates the iteration
when it was grouped into the subset. Vertices circled in the red dashed line will
be coarsened into a coarsened vertex.

To address this issue, we divide the vertices in each subset into small,
fixed-size groups of size s and merge the vertices within each group into
a single coarsened vertex in parallel. This strategy reduces the graph size
in each iteration by merging multiple vertices simultaneously while main-
taining balanced coarsened vertex weights. To this end, a straightforward
solution is randomly selecting s vertices to form smaller groups. However,
this approach may result in poor partitioning quality, as vertices that are
far apart could end up in the same group and be merged into a single
coarsened vertex, distorting the original graph structure. For instance, in
Figure 3.3 (a), randomly dividing vertices in subset 1 can result in placing
distant vertices, v2 and v4, in the same group.

To address this problem, we modify G-kway’s union-find-based coars-
ening algorithm by labeling each vertex with the iteration in which it joins
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a subset. Since vertices that are farther apart are merged into the subset in
later iterations, we can sort the vertices based on their labels and divide
them into groups, ensuring that vertices that are closer together are placed
in the same group. Figure 3.3 (b) shows our constrained coarsening strategy,
where vertices are first sorted by iteration number in ascending order
within groups, and large subsets are divided into smaller groups of size
two. In this approach, groups of similar size merge into a single coarsened
vertex, producing more balanced coarsened vertex weights.

3.5 Incremental Partitioning

Bucket-list Graph Representation

Existing GPU graph partitioners [18, 17, 34] count on CSR to store graphs
on a GPU. In CSR, all vertices’ neighbors are concatenated into an adja-
cency list of size |E|, with an adjacency pointer recording each vertex’s
neighbor position. However, this statically packed data structure makes
modifying the graph very challenging without rebuilding the structure.
For instance, inserting an edge in the CSR data structure requires shifting
all elements in the adjacency list and updating their adjacency pointers.
Furthermore, updating the CSR is typically done on the CPU, which intro-
duces additional data movement and conversion overhead between the
CPU and GPU.

To overcome this challenge, we propose a bucket-list data structure
that supports efficient graph modifications directly on the GPU by storing
each vertex’s neighbors in pre-allocated buckets. We design the buckets
with 32 slots to align with the GPU warp size (32 threads), reducing
thread divergence and enabling efficient intra-warp communication using
CUDA warp-level primitives [65]. To avoid rebuilding the bucket-list data
structure, we allocate extra buckets for each vertex to accommodate future
edge insertions. The number of buckets for vertex u is determined by the
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following formula: ⌈
D(u)

32

⌉
+ γ

where D(u) is the degree of u (i.e., the number of neighbors of u) and
γ is the number of extra buckets per vertex (by default, iG-kway sets γ to
one). To accommodate bigger graph modifications, applications can set a
higher γ. Figure 3.4 shows an example of our bucket-list data structure,
where each bucket contains four slots. All buckets are concatenated into a
bucket-list, with a bucket pointer recording each vertex’s bucket position
within the list. To avoid reallocating memory when more buckets are
required (e.g., due to vertex insertion), we pre-allocate a large block of
memory for the bucket-list and use a pointer to track the current number
of buckets.

Figure 3.4: An example of our bucket-list data structure, where each vertex has
a bucket, and each bucket contains four slots. Empty slots are denoted by ∅.
Figures (a) and (b) show the graph before and after applying the following
graph modifiers: M−

v2 , M+
v4 , M−

(v2,v1)
, M−

(v1,v2)
, M+

(v4,v3)
, and M+

(v3,v4)
.
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Algorithm 10: Edge Insertion
Input: bucket_list, bucket_ptr, M+

(u,v), thread index in a GPU warp lane_id
1 parallel for each thread in a GPU warp
2 slot← -1
3 bucket_cnt← 0
4 bucket_start← bucket_ptr[u]
5 num_bucket← bucket_ptr[u + 1] - bucket_start
6 while slot == -1 && bucket_cnt < num_bucket
7 nbr← bucket_list[bucket_start + bucket_cnt × 32 + lane_id]
8 if_empty← __ballot_sync(FULL, nbr == ∅)
9 slot← __ffs(if_empty) - 1

// empty slot found
10 if slot ̸= -1
11 bucket_list[bucket_start + bucket_cnt × 32 + slot]← v
12 return
13 bucket_cnt++

Incremental Graph Modification

Edge Modifiers

To efficiently handle M+
(u,v) (insert an edge (u, v)), we use a GPU warp to

locate an empty slot in vertex u’s buckets through fast intra-warp commu-
nication and insert vertex v to the first empty slot. Algorithm 10 presents
our edge insertion algorithm. All threads in the warp first fetch the num-
ber of buckets allocated to u and the start position of its buckets from
bucket_ptr (lines 4-5). Threads then process one bucket at a time until
an empty slot is found or all buckets are checked (line 6). To efficiently
locate an empty slot, each thread fetches a slot value in the bucket and uses
the warp-level primitive [65], __ballot_sync, to simultaneously evaluate
whether its slot is empty, storing the results in a bitmask (lines 7-8). If an
empty slot is found, __ffs returns the first empty slot (line 9), and threads
insert the edge into this slot and then terminate. (lines 10-12). If no slot is
empty, each thread increments the bucket counter and continues looking
for an empty slot in the next bucket (line 13).

We handle M−
(u,v) using the same strategy as Algorithm 10 except
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that instead of locating an empty slot, threads within the warp work
simultaneously to find v in u’s buckets and mark v as empty.

Algorithm 11: Vertex Insertion / Deletion
Input: bucket_list, bucket_ptr, vertex_status, M+

u or M−
u , lane_id

1 parallel for each thread in a GPU warp
2 bucket_cnt← 0
3 bucket_start← bucket_ptr[u]
4 if M−

u

5 vertex_status[u]← deleted
6 num_bucket← bucket_ptr[u + 1] - bucket_start
7 else if M+

u

8 vertex_status[u]← active
9 num_bucket← 1

10 bucket_ptr[u + 1]← bucket_start + num_bucket
11 while bucket_cnt < num_bucket
12 bucket_list[bucket_start + bucket_cnt × 32 + lane_id]← ∅
13 bucket_cnt++

Vertex Modifiers

To delete a vertex u, a straightforward approach is to remove its buck-
ets from the bucket-list. However, this approach can incur significant
overhead, as it needs to recalculate the bucket pointer and rebuild the
bucket-list. To address this problem, we use a vertex status array to track
each vertex’s current status (deleted or active) without removing its buck-
ets from the bucket-list. Algorithm 11 presents our approach for handling
the vertex modifier (M+

u and M−
u) using a GPU warp. To handle M−

u ,
threads within the same warp first mark u as deleted in the vertex status
array (line 5) and cooperatively remove all of u’s neighbors by marking all
slots in its buckets as empty (lines 11-13). Similarly, to handle M+

u , threads
within the same warp first mark u as active in the vertex status array (line
8). Then, they assign u a single bucket and add the bucket to the end of
the bucket-list by updating the bucket pointers accordingly (lines 9-10).
Finally, threads initialize all slots in u’s buckets as empty (lines 11-13).
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Incremental Refinement

Once the graph is incrementally modified, the existing partitioning result
may become invalid due to the change in the graph structure and the
balance condition. For example, adding too many vertices can cause
the partition to violate the balance constraint, while inserting edges may
require relocating vertices to reduce the cut size. To refine a modified
graph without starting from scratch, one possible approach is to use the
independent-set-based refinement algorithm in G-kway [18]. However,
G-kway’s refinement algorithm does not account for potential imbalances
that may occur after applying graph modifiers. Additionally, because it
lacks IGP support, G-kway refines all vertices on the partition boundary
(i.e., vertices with adjext ̸= 0), which is unnecessary when only local
subgraph regions are affected. To address this problem, we propose an
efficient incremental refinement algorithm that restores partition balance
and refines only the vertices affected by graph modifiers. Our algorithm
consists of two steps, partition balancing and parallel refinement, explained
below:

Partition Balancing

Incremental graph modifications can cause the partition to become imbal-
anced. To address this issue, we temporarily move newly added vertices
to a pseudo-partition to prevent them from increasing the current partition
weights. Additionally, to maintain the balance constraint after removing
vertices, we also move the affected vertices to the pseudo-partition to
reduce partition weights.

A vertex is considered affected by graph modifiers if: (1) it has been
directly modified (e.g., its edges have been deleted or inserted), or (2) its
neighbors have been modified, as changes in their surrounding structure
may require refinement. However, not all affected vertices require refine-
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Algorithm 12: Partition Balancing
Input: bucket_ptr, bucket_list, partition, vertex_in_pseudo, vertex_in_pseudo_size
Input: affected_vertex initialize to false
// assign a graph modifier to a GPU warp

1 parallel for each thread in the GPU warp
2 if vertex_insertion M+

u

3 partition[u]← pseudo
4 pos← atomicAdd(vertex_in_pseudo_size, 1)
5 vertex_in_pseudo[pos] = u
6 else if edge_insertion M+

(u,v) or edge_deletion M−
(u,v)

7 affected_vertex[u]← true ; affected_vertex[v]← true
// assign each u in affected_vertex to a GPU warp

8 parallel for each thread in the GPU warp
9 if partition[u] == pseudo

10 return
11 lane_id← thread index in the GPU warp
12 bucket_cnt← 0
13 bucket_start← bucket_ptr[u]
14 num_bucket← bucket_ptr[u + 1] - bucket_start
15 cur_par← partition[u]
16 while bucket_cnt < num_bucket
17 nbr← bucket_list[bucket_start + bucket_cnt × 32 + lane_id]
18 nbr_par← nbr == ∅? ∅ : partition[nbr]
19 adjext += __popc(__ballot_sync(FULL, nbr_part != cur_par && nbr !=

∅))
20 adjint += __popc(__ballot_sync(FULL, nbr_part == cur_par))
21 bucket_cnt++
22 if adjext > adjint && lane_id == 0
23 pos← atomicAdd(vertex_in_pseudo_size, 1)
24 vertex_in_pseudo[pos] = u

// assign u in vertex_in_pseudo to a GPU thread
25 parallel for each GPU thread
26 partition[u]← pseudo

ment. If a vertex has as many or more adjint than adjext, moving it to
another partition will not reduce the cut size and may even increase it. To
avoid this, we filter out such vertices and do not move them to the pseudo-
partition. We use a centralized buffer, vertex_in_pseudo, to store vertices
in the pseudo-partition, as they are often scattered across different parts
of the graph, making it challenging to balance the workload across GPU
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threads. By aggregating these vertices to the buffer, we can dynamically
assign GPU threads to handle them, ensuring balanced workloads and
significantly increasing GPU performance.

Algorithm 12 presents our partition balancing algorithm. We use an
array, affected_vertex, of size |V | to record whether a vertex is affected.
We assign each graph modifier to a GPU warp to mark directly modi-
fied vertices as affected. Threads assigned to M+

u move the vertex to the
pseudo-partition immediately by changing its partition in partition ar-
ray, which records the partition assignment of each vertex, and insert it to
vertex_in_pseudo (lines 2-5). On the other hand, threads handlingM+

(u,v)
or M−

(u,v) mark u and v as affected (lines 6-7). Then, we check if they can be
filtered out. To do this, we assign each vertex in affected_vertex to a GPU
warp. Threads assigned to vertices already in the pseudo-partition termi-
nate early (lines 9-10), while the remaining threads process one bucket
at a time, with each thread fetching a neighbor and its corresponding
partition (lines 17-18). Threads efficiently calculate external and internal
neighbors using the warp-level primitive __ballot_sync to evaluate each
neighbor’s partition, storing the results in a bitmask and counting them
with the warp-level primitive __popc (lines 19-20). They then continue
processing the next bucket until all are completed. Next, the first thread in
the warp checks if the vertex has fewer adjint than adjext (line 22). If so,
it adds the vertex to vertex_in_pseudo, without immediately updating
its partition in the partition array (lines 23-24).

The proposed strategy in Algorithm 12 prevents data races by defer-
ring partition updates until threads in other warps have completed their
calculations. Once all affected vertices have been processed, we launch an-
other GPU kernel to update the partitions of vertices in vertex_in_pseudo.
We then move vertices with affected neighbors by assigning each vertex
u in the pseudo-partition to a GPU warp. Threads in the same warp
mark all neighbors of u as affected, using the same approach to filter out
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Algorithm 13: Parallel Refinement
Input: bucket_list, bucket_ptr, partition
Input: vertex_moves, vertex_moves_size initialized to zero
Shared memory :max_nbr_p, max_nbr initialized to zero
// assign a vertex u in vertex_in_pseudo to a GPU warp

1 parallel for each thread in the GPU warp
2 lane_id← thread index in the GPU warp
3 bucket_start← bucket_ptr[u]
4 num_bucket← bucket_ptr[u + 1] - bucket_start
5 while bucket_cnt < num_bucket
6 nbr← bucket_list[bucket_start + bucket_cnt × 32 + lane_id]
7 nbr_par← nbr == ∅? ∅ : partition[nbr]
8 if_adj_move = __any_sync(FULL, nbr_par == pseudo && nbr < u)
9 if if_adj_move ̸= 0

10 return
11 bucket_cnt++
12 for p ∈ {1 . . .k} where Wp < Wpmax
13 bucket_cnt← 0
14 num_nbr_in_p← 0
15 while bucket_cnt < num_bucket
16 nbr← bucket_list[bucket_start + bucket_cnt × 32 + lane_id]
17 nbr_par← nbr == ∅? ∅ : partition[nbr]
18 num_nbr_in_p += __popc(__ballot_sync(FULL, nbr_part == p))
19 bucket_cnt++
20 cmp and update max_nbr and max_nbr_p in shared memory
21 if lane_id == 0
22 pos← atomicAdd(vertex_moves_size, 1)
23 vertex_moves[pos]←mpar,#nbr

u

24 find the longest subsequence in parallel (Figure 3.5)

the neighbors whose adjext is less than adjint and move the rest to the
pseudo-partition.

Parallel Refinement

Once the partition is balanced and affected vertices are in the pseudo-
partition, we refine them by moving each vertex to its most suitable par-
tition in parallel. We define the most suitable partition for a vertex u as
the partition to which moving u from the pseudo-partition introduces
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Figure 3.5: Illustration of constructing del_p_wgt to calculate the accumulated
delta partition weights for two partitions, p1 and p2, across two vertex moves
using segmented scan. All vertices have a weight equal to one.

the smallest cut size (i.e., the partition with most of u’s neighbors), while
maintaining the balanced partition. However, moving adjacent vertices
in parallel requires costly synchronization to determine the most suitable
partition accurately [18]. For example, in Figure 3.5, if vertices v1 and v2
move concurrently from the pseudo-partition to other partitions, v1 may
initially select either p1 or p2 as its most suitable partition. However, if v2
moves to p1, v1 should update its choice to p1. Without synchronization
between v1 and v2, v1 can select the most suitable partition incorrectly. To
overcome this synchronization challenge, we move non-adjacent vertices
from vertex_in_pseudo in parallel. For each non-adjacent vertex u, we
create a vertex move mpar,#nbr

u , where par is u’s most suitable partition,
and #nbr is the number of neighbors in par, and insert the vertex move to
the vertex_moves buffer to form a sequence of vertex moves.

Algorithm 13 presents our parallel refinement algorithm. To find
non-adjacent vertices from vertex_in_pseudo, we assign each vertex u

in vertex_in_pseudo to a GPU warp. Threads in the warp cooperatively
process the bucket of u one at a time, with each thread fetching a neighbor
and its partition (lines 6-7). Threads then efficiently check if any thread
has a neighbor in the pseudo-partition with a vertex ID less than u’s vertex
ID using __any_sync (line 8). If such a neighbor exists, threads terminate
early, as u is not selected to move because its neighbor is being moved in
this iteration (lines 9-10). Threads that do not find such neighbors then



84

continue to check neighbors stored in other buckets. Next, threads with a
vertex selected to move cooperatively identify the most suitable partition
for u by counting u’s neighbors in each partition p with a weight that
does not exceed Wpmax

. To accomplish this, each thread fetches a neighbor
stored in a bucket along with its partition and uses the same strategy (i.e.,
warp-level primitive) as in Algorithm 12 to efficiently count neighbors
belonging to p (lines 15-19). After processing all buckets, the threads
update max_nbr and max_nbr_p, stored in shared memory, if either 1)
the number of neighbors in partition p exceeds the current maximum
max_nbr, or 2) p has the same number of neighbors as max_nbr but a
lower partition weight (line 20). Finally, the first thread in the warp creates
a vertex move and inserts it to the vertex_moves (lines 21-23).

After finding a sequence of vertex moves, we need to select a subse-
quence that, when applied, satisfies the balance constraint while intro-
ducing minimal cut size. To achieve this, we first sort the vertex moves in
descending order by #nbr, prioritizing vertices with strong connections
with their most suitable partition. To find a subsequence that satisfies the
balance constraint, we create a delta_p_wgt array with j segments, each
corresponding to a partition and with a length equal to the number of ver-
tex moves, to record changes in partition weights if those vertex moves are
applied. Each element in delta_p_wgt records the delta partition weight
of a vertex move for a partition. We define the delta partition weight of a
vertex move, mpar,#nbr for a partition par as follows:

δi(m
par,#nbr
u ) =

{
Wu, i = par

0, otherwise

We then perform a parallel segmented scan on delta_p_wgt to accumulate
these changes for each partition.

Figure 3.5 illustrates the calculation of accumulated delta partition
weights for two partitions, performed using a parallel segmented scan
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with two vertex moves. Each element in delta_p_wgt records the delta
partition weight for a partition after applying a vertex move. The first
two elements (i.e., segment 1) correspond to partition p1, while the last
two elements (i.e., segment 2) correspond to partition p2. For example,
delta_p_wgt[0] records the partition weight change for the first vertex
move in partition p1. We then perform a parallel segmented scan on
delta_p_wgt to accumulate these changes for each partition. After the
scan, the sth element in each segment holds the accumulated change in
partition weight from the first to the sth vertex move in each partition,
representing the accumulated weight change over this subsequence. We
then identify the longest subsequence of vertex moves that satisfies the
balance constraint to apply as many vertex moves as possible in parallel.
In this example, both vertex moves can be applied, as neither p1’s partition
weight plus delta_p_wgt[1] nor p2’s plus delta_p_wgt[3] exceeds Wpmax.
We then repeat the same process until all vertices are moved from the
pseudo-partition.

3.6 Experimental Evaluation
We evaluated the performance of iG-kway using seven industrial circuit
graphs generated by [11, 18]. Additionally, we tested iG-kway on three
large non-circuit graphs (coAuthorsCiteseer, adaptive, and NLR) from
the DIMACS Graph Partitioning Challenge [66] to demonstrate its ap-
plicability beyond CAD algorithms. In our experiment, we applied 100
incremental iterations based on the setting of the TAU 2015 Incremental
Timing Contest [64], where each iteration involves tens to hundreds of de-
sign modifiers that randomly remove/insert vertices and edges from/into
the graph.

We consider G-kway [18], a state-of-the-art GPU-accelerated k-way
graph partitioner, as our baseline. To have a fair comparison with G-kway
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and focus on incrementality, we replace its coarsening algorithm with
our constrained coarsening to achieve better performance. Furthermore,
since G-kway counts on the CPU to generate a graph CSR on the GPU, we
modify the graph and regenerate its CSR for each incremental iteration,
then apply G-kway to partition the modified graph. Hereafter, we refer to
this baseline as G-kway†.

We implemented iG-kway and G-kway† using C++17 and CUDA 12.0
and compiled them with nvcc on a host compiler of GCC-8 with -O3
enabled. We ran experiments on a 64-bit Linux machine with 16 Intel
i7-11700 CPU cores at 2.50 GHz and 128 GB RAM. Our GPU was an A6000
with 48 GB memory. In all experiments, we set the imbalance ratio (ϵ) to
3%, the group size (s) to six, and terminated the coarsening algorithm
when the number of vertices dropped below 35× k or when fewer than
90% of the vertices could be coarsened. All results are averaged over 10
runs.

Overall Performance Comparison

Table 3.1 compares the runtime and cut size between iG-kway and G-
kway† at k = 2. To highlight the advantages of iG-kway, we break down
the runtime into graph modification and partitioning. Since G-kway†

does not support dynamic updates of CSR on GPU, iG-kway is always
faster than G-kway† in graph modification. We attribute this runtime
advantage to iG-kway’s GPU-aware data structure, which stores each
vertex’s neighbors in buckets to rapidly respond to graph modifiers. In
contrast, G-kway†’s CSR data structure is relatively static, requiring a
complete rebuild to modify the graph at each iteration. Consequently,
for large graphs (e.g., mem_ctrl), modification can become a significant
bottleneck for G-kway†, whereas iG-kway’s modification time remains
consistently small, regardless of graph size.

In terms of partitioning time, iG-kway outperforms G-kway† across all
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graphs with an average speedup of 84×. This speedup is due to iG-kway’s
incremental refinement algorithm, which identifies and refines only the
vertices affected by graph modifiers, eliminating the need for repartition-
ing required by G-kway†. Regarding the cut size, iG-kway finds a cut size
comparable to G-kway† for all graphs. We attribute this to the effectiveness
of our incremental refinement algorithm, which first moves vertices to a
pseudo-partition to restore balance, and then moves them again to reduce
the cut size. In some cases, iG-kway’s incremental refinement can find a
slightly better cut size than G-kway†, such as tv80, wb_dma, adaptive, and
des_perf. We believe in such cases, IGP can better exploit local improve-
ment to balance the load and minimize cuts among partitions, while FGP
may be more prone to global, less granular adjustments that may overlook
small local improvements.
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Figure 3.6: Speedup (left) and cut size improvement (right) of iG-kway over
G-kway† for the usb circuit over 100 incremental iterations.

Figure 3.6 details the comparison of partitioning time and cut size
over 100 incremental iterations for the circuit usb under two different
values of k. At the first iteration, we do not observe a significant runtime
difference between iG-kway and G-kway† since both are FGP. However,
as the number of incremental iterations increases, iG-kway’s runtime
advantage over G-kway† becomes more pronounced. The speedup of
iG-kway grows proportionally with the number of incremental iterations
for both k values. In terms of cut size, iG-kway achieves a comparable
value to G-kway† across all iterations (within ±3%).
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Runtime and Cut Size Analysis under Varying k
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Figure 3.7: The speedup (top) and cut size improvement (bottom) of iG-kway
over G-kway† at different k values. A cut size improvement above one indicates
that iG-kway can find a better cut size.

Figure 3.7 shows the speedup and cut size improvement of iG-kway
over G-kway† at k = {2, 4, 8, 16, 32} on three circuit graphs (wb_dma,
mem_ctrl, and tv80) and a large non-circuit graph (adaptive). Regardless
of k, iG-kway is consistently faster than G-kway†. iG-kway achieves up
to a 98× speedup over G-kway† at k = 2. However, as k increases, the
speedup decreases because iG-kway needs to examine more partitions
to determine a suitable partition for each affected vertex. Despite this,
iG-kway still achieves up to a 62× speedup at k = 32. Regarding the cut
size, iG-kway achieves a comparable result with G-kway† on different k.
These results highlight the effectiveness and efficiency of iG-kway over
G-kway† in incremental graph partitioning.

Incrementality Analysis

Figure 3.8 shows the speedup (left) and cut size improvement (right)
achieved by iG-kway over G-kway† for the circuit usb across 100 incremen-
tal iterations each with varying numbers of graph modifiers (ranging from
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Figure 3.8: The speedup (left) and cut size improvement (right) of iG-kway over
G-kway† for the usb circuit across 100 incremental iterations each with varying
numbers of graph modifiers (50–5K).

50 to 5K) per iteration. When the number of graph modifiers per iteration
is small, the advantage of iG-kway is more remarkable. For instance, with
50 graph modifiers, iG-kway is up to 80× faster than G-kway† while ob-
taining a comparable cut size. However, as the number of graph modifiers
per iteration increases, the speedup decreases due to the growing number
of affected vertices. More affected vertices require iG-kway to spend more
time refining the partition. When the number of graph modifiers exceeds
5K per iteration, iG-kway struggles to find a partition with a decent cut
size. This happens because after applying many graph modifiers (e.g.,
5K×100 in this case), the graph becomes very different from its original
form. This large difference makes it difficult for iG-kway to effectively opti-
mize the graph, as its incremental refinement strategy relies on local graph
structure. In such cases, applications can resort to FGP using G-kway†,
especially when the number of graph modifiers reaches 50% of the graph’s
size. A similar strategy has been applied in GPU-accelerated incremental
timing analysis [52], where a full timing update is issued after observing
a big difference between the modified graph and its original form.
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Analysis of our constrained coarsening

Table 3.2: Comparison of cut size between G-kway and G-kway† at k= {2, 4, 8,
16, 32}. An imbalanced partition result is marked as ✗.

vga_lcd coAuthorsCiteseer
k G-kway† G-kway G-kway† G-kway
2 496 556 (↓12.1%) 25537 25097 (↑1.7%)
4 757 835 (↓10.3%) 42111 41354 (↑1.8%)
8 946 969 (↓2.4%) 59379 58036 (↑2.3%)

16 1033 1035 (↓0.2%) 69711 ✗

32 258904 ✗ 78003 ✗

Table 3.2 compares the cut size of G-kway† and the original G-kway to
evaluate the effectiveness of the proposed constrained coarsening strategy.
G-kway† consistently achieves comparable or better cut sizes than G-kway
while ensuring balanced partitions across all k values. For instance, G-
kway† improves the cut size by up to 12% for vga_lcd. In contrast, G-kway
struggles to find balanced partitions when k is large. Without constrained
coarsening, G-kway’s coarsening algorithm may merge too many vertices
together, creating oversized vertices that make it difficult to find balanced
partitions during the later initial and uncoarsening stages. However, the
proposed constrained coarsening strategy adjusts coarsening granularity
by breaking down large coarsened vertices into smaller, predefined sizes.
This adjustment allows G-kway† to more effectively achieve and optimize
balanced partitions.

3.7 Conclusion
In this chapter, we have introduced iG-kway, a GPU-parallel incremental k-
way graph partitioner. iG-kway introduces an incrementality-aware data
structure to support graph modifications directly on GPU. Atop this data
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structure, iG-kway introduces a GPU kernel algorithm that can efficiently
refine affected vertices after the graph is incrementally modified, with
minimal impact on partitioning quality. Experimental results show that
iG-kway achieves an average speedup of 84× over the state-of-the-art
G-kway, with comparable cut sizes.

In this work, Wan Luan Lee was the primary contributor, responsible
for the majority of the research and development efforts. Tsung-Wei Huang
supervised the research, providing guidance and over- sight throughout
the project. All authors contributed to the preparation and review of the
final manuscript.
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4 ihyperg: incremental hypergraph partitioning
on gpu

Recent advances in GPU-accelerated hypergraph partitioning have
achieved substantial performance gains but remain limited to full par-
titioning. In particular, the lack of support for incrementality is a critical
limitation for many CAD applications, where circuit hypergraphs itera-
tively undergo incremental modifications as part of optimization loops.
To overcome this limitation, we present iHyperG, the first GPU-parallel
incremental k-way hypergraph partitioner. iHyperG introduces a scalable
delta-based hypergraph data structure for efficient incremental modifica-
tions on a GPU, along with an effective incremental partitioning algorithm
that rebalances partitions in a single pass and refines only cut-critical ver-
tices. Experimental results show that iHyperG achieves average speedups
of 190× for modification and 83× for partitioning over the state-of-the-art
GPU partitioner, while maintaining comparable partitioning quality.

4.1 Introduction
Hypergraph partitioning plays a key role in various stages of computer-
aided design (CAD), including placement, routing, timing analysis, and
logic simulation. For example, it helps optimize component placement
by dividing the circuit into smaller, more manageable blocks while mini-
mizing interconnections among them [4]. However, as modern circuits
continue to grow in size and complexity, hypergraph partitioning has
become increasingly time-consuming. For instance, the widely used se-
quential partitioner hMetis can take several minutes to process a circuit
with only five million gates [14].

To mitigate this runtime bottleneck, several parallel partitioning strate-
gies have been developed. Among them, Mt-KaHyPar [2] is a CPU-based
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hypergraph partitioner that exploits multithreading to parallelize the
coarsening and refinement stages, achieving significant speedups over
the sequential hMetis. More recently, HyperG [67] leverages the massive
parallelism of a GPU to accelerate the partitioning process even further,
reporting up to a 4× speedup over Mt-KaHyPar. Despite these runtime
improvements, existing works focus only on full hypergraph partitioning
(FHP), where the entire hypergraph is partitioned from scratch.

While FHP remains the dominant approach, many CAD applications
benefit more from incremental hypergraph partitioning (IHP) where partition-
ing is integrated into iterative optimization loops. For example, a timing
optimizer may repeatedly adjust cell placements to meet timing goals [11],
while logic synthesis tools incrementally restructure logic cones to improve
design quality [15]. In these iterative optimization workloads, each time
the circuit is incrementally modified, the partitioner must rapidly refine
the partitioning result to maintain a reasonable turnaround time across
thousands or even millions of incremental iterations. Without IHP, the
overhead of repetitive FHP can accumulate significantly, and the benefits
of hypergraph partitioning cannot be fully exploited.

While incremental graph partitioning has been studied on both CPU
and GPU architectures [68, 45, 46, 47, 48, 49], IHP remains largely un-
explored. However, inspired by the success of the GPU-accelerated in-
cremental graph partitioner iG-kway [68], which refines affected ver-
tices in parallel to achieve significant runtime improvements, we believe
that a GPU can similarly benefit IHP due to the substantial data paral-
lelism inherent in hypergraph workloads. Moreover, as CAD applications
increasingly adopt GPU acceleration [50, 51, 52, 12, 44, 53, 54, 55, 56?
, 57, 58, 59, 60, 61, 62, 63, 18, 69, 70, 71], there is a growing need to re-
target compute-intensive, CPU-bound tasks to a GPU. For example, in
a timing optimization flow that performs incremental placement across
iterations to meet timing goals [11], a GPU-based IHP framework could
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significantly reduce overall runtime while minimizing the overhead of
frequent CPU–GPU data transfers during iterative optimization.

Although iG-kway [68] has demonstrated its effectiveness in support-
ing incremental graph partitioning on a GPU, its strategy cannot be directly
applied to hypergraphs due to fundamental structural differences between
graphs and hypergraphs. For instance, to efficiently modify graphs on a
GPU, iG-kway employs a bucket-list data structure that trades higher mem-
ory usage for efficient handling of dynamic updates. However, adopting
this data structure to hypergraphs results in excessive memory overhead
and poor GPU scalability, as hyperedges require substantially more mem-
ory to represent complex multi-pin relationships. In addition to data
structure limitations, hypergraphs also require a fundamentally different
refinement strategy than graphs. For example, iG-kway refines all vertices
whose incident edges have been modified, which is effective for graphs
where each edge connects only two vertices. However, in hypergraphs,
each hyperedge can connect many vertices and span multiple partitions.
Refining all vertices that are incident to modified hyperedges can be ineffi-
cient. Therefore, we need a hypergraph refinement strategy that identifies
vertices requiring updates, reducing redundant computation while pre-
serving partition quality.

To overcome these challenges, we introduce iHyperG, a GPU-based
k-way hypergraph partitioner that efficiently supports incrementality. To
the best of our knowledge, this work represents one of the earliest ef-
forts toward GPU-parallel IHP, aiming to fully leverage the computational
power of a GPU for large-scale hypergraphs with frequent incremental
modifications. We summarize our key contributions as follows:

• We introduce a delta-based hypergraph data structure that efficiently
supports incremental modifications and scales to large hypergraphs.

• We propose an efficient incremental refinement strategy for hypergraphs
that identifies and refines cut-critical vertices within modified hyper-
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edges, reducing redundant computation while preserving partition
quality.

• We implement a single-pass rebalancing algorithm that effectively re-
stores partition balance in one pass while minimizing the increase in
cut size.

• We design GPU kernels using CUDA warp-level primitives for efficient
intra-warp communication, achieving high-performance incremental
hypergraph modification and partitioning.

We evaluated the performance of iHyperG on industrial circuit de-
signs and compared it against the state-of-the-art GPU-accelerated hyper-
graph partitioner, HyperG [67]. Experimental results show that iHyperG
achieves 190× and 83× speedups in modification and partitioning, respec-
tively, while maintaining comparable cut sizes.

4.2 Problem Definition and Notation
Given a hypergraph H = (V ,E), where V is a set of vertices and E is a set of
hyperedges, each element e ∈ E is a subset of V representing a multi-vertex
relationship. A vertex v ∈ V is said to be incident to a hyperedge e ∈ E

if v ∈ e; likewise, e is incident to v. This vertex–hyperedge relationship
is called incidence. For clarity, we refer to the set of hyperedges incident
to a vertex as the vertex’s incidence, and the set of vertices incident to a
hyperedge (also called pins) as the hyperedge’s incidence. For a vertex v, we
denote its weight as Wv, while for a hyperedge e, we denote its weight as
We. Vertices u and v are neighbors if there exists a hyperedge e ∈ E such
that u ∈ e and v ∈ e. Given k, if P = {p1,p2, . . . ,pk} is a disjoint partition
of V , we call P a k-way partition. For a hyperedge e, its connectivity λ(e)

is the number of partitions it spans (i.e., partitions containing at least one
pin of e). A hyperedge introduces a cut if λ(e) ⩾ 2, and the cut size is the
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total weight of all cut hyperedges, defined as cut(P) = ∑
e∈E: λ(e)⩾2 We.

For a vertex v, we define P(v) = i if v ∈ pi. The weight of the partition pi

is defined as Wpi
=

∑
v∈V :P(v)=iWv.

The goal of FHP is to find a k-way partition from scratch that satisfies
the balance constraint while minimizing cut(P). The balance constraint
limits the maximum weight of pi as

Wpi
⩽ Wpmax = (1 + ϵ)

∑
v∈V Wv

k
, 0 < ϵ≪ 1

where Wpmax is the maximum allowable partition weight and ϵ is the
imbalance ratio given by applications. Given a partitioned hypergraph
H, the first goal of IHP is to apply a sequence of modifiers to H. Each
modifier is an operation on both the vertex’s and hyperedge’s incidence.
Specifically, an insertion modifier M+

(v,e) inserts vertex v into hyperedge e’s
incidence and e into v’s incidence, while a deletion modifierM−

(v,e) removes
v from e’s incidence and e from v’s incidence. In typical applications, the
number of modifiers is small relative to |V | and |E|. IHP then refines the
partition on the modified hypergraph without restarting from scratch,
while maintaining balance and minimizing cut(P).

4.3 Overview of iHyperG

Figure 4.1: Overview of our incremental hypergraph partitioner.
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Figure 4.1 shows the overview of our GPU-parallel incremental k-way
hypergraph partitioner, iHyperG, which consists of two main stages: full
hypergraph partitioning (FHP) and incremental hypergraph partitioning (IHP).
The goal of the FHP is to derive a high-quality partition from the input
hypergraph, providing a foundation for the incremental partitioner to
optimize subsequently modified hypergraphs. We use HyperG [67], a
state-of-the-art GPU-accelerated hypergraph partitioner, to achieve high-
quality partitions.

On the other hand, the goal of IHP is to efficiently update and refine the
partition of a modified hypergraph without starting from scratch. Our IHP
has two main stages, incremental hypergraph modification (Section 4.4) and
IHP (Section 4.5). During the incremental hypergraph modification stage,
iHyperG employs a scalable delta-based hypergraph data structure to
record updated incidences of modified vertices and hyperedges, avoiding
a full rebuild of the hypergraph Compressed Sparse Row (CSR) data
structure. During the IHP stage, iHyperG efficiently restores balance
using a single-pass rebalancing algorithm and refines only cut-critical
vertices, avoiding the need to repartition the hypergraph.

4.4 Incremental Hypergraph Modification

Delta-based Hypergraph Data Structure

Existing GPU hypergraph partitioners [67, 72] store hypergraphs on the
GPU using a bidirectional CSR data structure with (i) a vertex to hyperedge
incidence array V2E and (ii) a hyperedge to vertex incidence array E2V. In
V2E, each vertex’s incident hyperedges are stored contiguously, and the
pointer array V2EP records the start index of each vertex’s segment in V2E.
Similarly, E2V stores each hyperedge’s incident vertices (pins), with E2VP
recording the start index of each hyperedge’s segment in E2V. While this
statically packed data structure is well-suited for a GPU, it makes modifying
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the hypergraph difficult without fully rebuilding the data structure. For
example, inserting a new pin into E2V requires shifting pins in E2V and
updating all affected values in E2VP.

To address this challenge, one possible approach is to adopt iG-
kway’s [68] bucket-list data structure, which stores each vertex’s incident
edges in pre-allocated buckets to enable efficient graph modification on
a GPU without rebuilding the entire CSR. However, this approach does
not extend well to hypergraphs. Hypergraphs require maintaining both
V2E and E2V, and replacing them with bucket list data structures would
significantly increase memory usage and limit the size of hypergraphs that
can fit on a single GPU. As a result, we introduce a scalable delta-based
hypergraph data structure that efficiently supports dynamic modifications
without requiring a rebuild of the original CSR structure. Our data struc-
ture consists of two components: the base hypergraph H, which stores
the original incidences of vertices and hyperedges in V2E and E2V, and the
delta hypergraph δH, which records the updated incidences of modified
vertices and hyperedges in δV2E and δE2V.

Figure 4.2: An example of our delta-based hypergraph data structure with modi-
fiers M+

(v5,e1)
, M−

(v1,e1)
, and M−

(v3,e1)
, where (a) is the base hypergraph H and (b)

is the delta hypergraph δH.

Figure 4.2 shows our delta-based hypergraph data structure, where
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(a) is the base hypergraph H, and (b) is the delta hypergraph δH, which
records the updated incidences of modified vertices v1, v3, and v5, as well
as hyperedge e1, after applying modifiers M+

(v5,e1)
, M−

(v1,e1)
, and M−

(v3,e1)
.

Vertex v3 is disconnected from e1, and a new vertex v5 is inserted and
connected to e1, resulting in updated incidences {e2} for v3 and {e1} for v5.
Additionally, vertex v1 is disconnected from its only incident hyperedge,
yielding an empty incidence. The updated incidences of the modified
vertices are then recorded in δV2E, with δV2EP recording the start and
end indices of each vertex’s updated incidence within δV2E. Similarly, the
updated incidence {v2, v5} of hyperedge e1 is stored in δE2V. The array
δE2VP records the start and end indices of all updated hyperedges within
δE2V. For unmodified vertices and hyperedges, their start and end indices
in δV2EP and δE2VP are equal, indicating that no updated incidence is
recorded.

Delta-based Hypergraph Construction

Since the updated incidence of modified vertices in δV2E and modified
hyperedges in δE2V can be computed independently, we perform these
computations concurrently by assigning them to different CUDA streams.
A CUDA stream runs a sequence of GPU operations in first-in, first-out
order. Using multiple streams allows independent operations to execute
concurrently [73]. In the remaining sections, we focus on computing δV2E,
as the same method can be applied to compute δE2V.

To compute δV2E, we assign each modified vertex v to a GPU warp (32
threads). Each warp applies the modifiers involving v sequentially to up-
date its original incidence in V2E and writes the result to δV2E. Since both
V2E and δV2E reside in high-latency global memory, we use low-latency
shared memory to avoid frequent global memory accesses. Specifically,
we assign the warp a shared-memory segment whose capacity exceeds
the size of v’s original incidence to accommodate insertions, and initialize
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all entries in the segment to the empty entry ∅. The warp then loads
the original incidence of v into its designated shared-memory segment,
applies v’s associated modifiers to update its incidence in shared memory,
and writes the fully updated incidence back to δV2E. This design signifi-
cantly reduces memory latency, thereby improving kernel performance.
To further optimize our kernel efficiency, we leverage CUDA warp-level
primitives to efficiently handle deletion and insertion modifiers for each
warp.

Hyperedge Deletion

For the warp to apply a deletion modifier M−
(v,e) to v’s incidence in shared

Algorithm 14: Warp-level Deletion
Input :M−

(v,e), v’s incident hyperedges in shared memory, smem_e
1 parallel for each thread in a GPU warp
2 lane_id← thread index in the GPU warp
3 e_cnt← 0
4 for j← 0 to SHARE_SIZE/WARP_SIZE − 1 do
5 entry← smem_e[j× WARP_SIZE + lane_id]
6 all_empty← __all_sync(FULL, entry == ∅)
7 if all_empty > 0
8 return
9 active← __ballot_sync(FULL, entry ̸= ∅∧ entry ̸= e)

10 rank← __popc(active&((1u<< lane_id) − 1u))
11 if entry ̸= ∅∧ entry ̸= e
12 smem_e[e_cnt + rank]← entry
13 if lane_id == 0
14 e_cnt← e_cnt + = __popc(active)

memory, we invoke our warp-level deletion algorithm, where all threads
cooperatively identify and remove the incident hyperedge e, and shift
the remaining hyperedges to ensure that v’s incidence remains contigu-
ous using efficient CUDA warp primitives. Algorithm 14 presents our
warp-level deletion algorithm. The warp iterates over all entries in shared
memory, and in each iteration assigns one entry to each thread to process
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in parallel (lines 4-5). The threads then employ the CUDA warp-level
primitive __all_sync to cooperatively check, via fast intra-warp commu-
nication, whether all threads’ assigned entries are empty (line 6). If this
condition is met, it indicates that all incident hyperedges of v have been
processed, and the threads terminate early (lines 7-8). Otherwise, the
threads cooperatively filter out those whose assigned entries are either
empty or equal to the hyperedge e using __ballot_sync (line 9). The re-
maining threads then compute their compacted indices using __popc, and
store the content of their assigned entries to the corresponding compacted
locations in shared memory (lines 10-12). Finally, the first thread updates
the current hyperedge count by adding the number of remaining threads
(lines 13-14).

Hyperedge Insertion

For the warp to apply an insertion modifier M+
(v,e) to v’s incidence in

Algorithm 15: Warp-level Insertion
Input: M+(v, e), v’s incident hyperedges in shared memory, smem_e

1 parallel for each thread in a GPU warp
2 lane_id← thread index in the GPU warp
3 for j← 0 to SHARE_SIZE/WARP_SIZE − 1 do
4 entry← smem_e[j × WARP_SIZE + lane_id]
5 if_empty← __ballot_sync(FULL, entry == ∅)
6 first_empty_spot← __ffs(if_empty) - 1
7 if (first_empty_spot ̸= −1) ∧ (lane_id == first_empty_spot)
8 smem_e[j × WARP_SIZE + lane_id] = e
9 break

shared memory, we invoke our warp-level insertion algorithm, where
all threads cooperatively search for an empty entry in shared memory
and replace it with e. Algorithm 15 presents our warp-level insertion
algorithm. As in the deletion algorithm, the warp iterates over all entries
in shared memory by assigning one entry per thread (lines 3-4). All the
threads then cooperatively identify the first thread whose assigned entry is



103

empty using __ballot_sync and __ffs (lines 5-6). If such a thread exists,
that thread updates its assigned entry in shared memory with e and the
algorithm terminates early (lines 7-9). Otherwise, all threads move on to
the next iteration to continue looking for an empty entry.

4.5 Incremental Hypergraph Partitioning
Once the hypergraph is modified, the existing partitioning result may
become invalid due to changes in the hypergraph structure and balance
condition. For example, inserting or deleting vertices can violate the
balance constraint, while modifying hyperedges’ incident vertices may
require moving them to reduce the cut size. To refine the modified hyper-
edge, a straightforward approach is to apply HyperG [67] to repartition it
from scratch. However, this can incur significant overhead due to redun-
dant computations, as most of the existing partitioning remains valid after
small modifications. For instance, modifying the vertices incident to a
hyperedge e may not affect the cut size if e already spans many partitions
(i.e., has large λ(e)). Inserting or deleting a vertex from e’s incidence may
not change λ(e), and thus has no impact on the overall cut size.

To address this problem, we propose an efficient IHP approach that
quickly restores partition balance and refines only the vertices critical to
the cut size, thereby avoiding redundant computations. Our approach
consists of two steps: single-pass rebalancing and incremental hypergraph
refinement, described below.

Single-pass Rebalancing

The goal of this step is to restore partition balance after the hypergraph
has been modified. To do that, a common approach is to move vertices
from overweight partitions to underweight ones until all partitions satisfy
the balance constraint. However, concurrently moving vertices across
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Algorithm 16: Single-pass Rebalancing
Input: V2E, V2EP, δV2E, δV2EP

1 Sort vertices by partition ID
2 parallel for each thread in a GPU warp
3 if P(v) is not overweight
4 return
5 start← v is modified ? δV2EP[v] : V2EP[v]
6 end← v is modified ? δV2EP[v+1] : V2EP[v+1]
7 incidence← v is modified ? δV2E[start : end] : V2E[start : end]
8 foreach e ∈ incidence do
9 Threads cooperatively check if v is cut-critical to e and update its score

10 Segmented sort vertices by descending score using ModernGPU
11 Move top-scoring vertices from each overweight partition to Ppseudo

partitions may require many iterations to achieve balance, especially when
the number of partitions is large. For instance, if many vertices attempt to
move to the same underweight partition, some moves must be rejected
to prevent overloading that partition, and those vertices need to find
other partitions in subsequent iterations. This iterative process largely
underutilizes the massive parallelism available on a GPU.

To overcome this challenge, we introduce a single-pass rebalancing algo-
rithm that reduces the weight of overweight partitions to achieve balance
in just one iteration. Specifically, for each overweight partition, we move
the minimal number of vertices required to reduce its weight below Wpmax

simultaneously to a pseudo partition. Since these vertices are not moved
directly to underweight partitions, our approach avoids overloading any
partition and allows them to be moved in parallel. Moreover, to prioritize
moving vertices that may reduce the cut size, we assign a score to each
vertex in the overweight partition and prioritize those with higher scores.
The score of a vertex v is defined as s(v) = c(v) − n(v), where c(v) and
n(v) denote the number of incident hyperedges in which v is cut-critical
and non-cut-critical, respectively. A vertex v is considered cut-critical to
a hyperedge e if it is the only pin of e in its current partition, as moving
v can reduce the connectivity of e and potentially reduce the cut size.
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Otherwise, if v is not the only pin of e in its partition, it is considered
non-cut-critical. A higher score indicates that v is cut-critical to most of its
incident hyperedges and is more likely to reduce the cut size if moved.

Algorithm 16 presents our single-pass rebalancing algorithm. We first
sort the vertices based on their partition IDs and assign each vertex v to a
warp (lines 1-2). Each warp checks if v’s partition is overweight. If not,
the warp terminates early, as no rebalancing is needed for that partition
(lines 3-4). Otherwise, the warp fetches its incident hyperedges from δV2E
if v has been modified, or from V2E otherwise (lines 5-7). All threads in
the warp then cooperatively process v’s incident hyperedges one at a time
to determine whether v is cut-critical to each hyperedge and update its
score (lines 8-9). We then use ModernGPU [74]’s segmented sort to sort
vertices by descending score within each overweight partition (line 10).
Finally, we move the minimal number of top-scoring vertices needed to
restore balance to a pseudo partition in parallel (line 11).

Incremental Hypergraph Refinement

The goal of this step is to identify vertices that require refinement due to
hypergraph modifications. We then move these vertices to the pseudo
partition and refine all the vertices in the pseudo partition in parallel. To
do so, we first move newly inserted vertices to the pseudo partition, as
they do not have any partition assignment and must be assigned one. In
addition, since changes in the incidence of hyperedges can affect the cut
size, we examine each modified hyperedge e and place each of its incident
vertices v that is cut-critical to e into the pseudo partition, as moving v

can reduce the connectivity of e by relocating it to a partition where e

already has pins. Once the vertices are placed in the pseudo partition,
we refine them in parallel by moving each vertex to its most suitable
partition. The most suitable partition for a vertex v is the partition pi to
which v can be moved without violating the balance constraint and that
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Algorithm 17: Most Suitable Partition Computation
Input: V2E, V2EP, δV2E, δV2EP

1 parallel for each vertex v assigned to a GPU warp
2 start← v is modified? δV2EP[v] : V2EP[v]
3 end← v is modified? δV2EP[v+1] : V2EP[v+1]
4 num_e← end − start
5 incidence← v is modified? δV2E[start : end] : V2E[start : end]
6 pms ← 0
7 ∆λv→pms ← INT_MAX
8 foreach i ∈ [0,k−1] such thatWpi +Wv < Wpmax do
9 ∆λv→pi ← 0

10 for j← 0 to ⌈num_e/WARP_SIZE⌉− 1 do
11 e_idx←j× WARP_SIZE + lane_id
12 e← e_idx < num_e ? incidence[e_idx] : ∅
13 ∆λ(e)← (#pins of e in pi == 0) ? 1 : 0
14 sum← __reduce_add_sync(FULL, ∆λ(e))
15 if lane_id == 0
16 ∆λv→pi+ = sum
17 if ∆λv→pi < ∆λv→pms ∧ lane_id == 0
18 ∆λv→pms ← ∆λv→pi

19 pms ← pi

minimizes ∆λv→pi
. The term ∆λv→pi

represents the number of v’s incident
hyperedges whose connectivity would increase if v were moved to pi. By
selecting the partition with the smallest increase in connectivity, we give
cut-critical vertices a chance to reduce the cut size by moving them to a
partition where most of their incident hyperedges already have pins.

However, moving vertices in parallel can result in the incorrect selec-
tion of the most suitable partition when adjacent vertices (i.e., vertices that
share the same hyperedge) are moved simultaneously [67]. To address
this issue, we select non-adjacent vertices from the pseudo partition and
move them in parallel. Algorithm 17 presents our most suitable partition
computation algorithm, where each non-adjacent vertex v is assigned to a
GPU warp to compute its most suitable partition pms and the correspond-
ing ∆λv→pms . The warp first fetches v’s incidence information from δV2E
if v has been modified, or from V2E otherwise (lines 1-5). Next, the warp
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iterates over each partition pi that allows v to move without violating the
balance constraint, and computes the corresponding ∆λv→pi

(line 8). To
compute ∆λv→pi

, each thread examines one of v’s incident hyperedges e
to check whether e has any pins in pi. If not, the thread sets ∆λ(e) = 1,
indicating that moving v to pi would increase the connectivity of e by one
(lines 11-13). Threads then use __reduce_add_sync to efficiently compute
the sum of all threads’ ∆λ(e) values across the warp and increment ∆λv→pi

accordingly (lines 14-16). All threads then repeat this procedure for the
next 32 hyperedges, continuing until all of v’s incident hyperedges have
been examined. Finally, the first thread compares ∆λv→pi

with ∆λv→pms ,
and updates the most suitable partition pms to pi if it results in a smaller
increase in connectivity (lines 17-19).

After computing the most suitable partition for each non-adjacent ver-
tex, we sort them in ascending order of ∆λv→pms to prioritize moving ver-
tices with smaller increases in connectivity. We then adopt G-kway [18]’s
sequence-based strategy to determine the maximum number of vertices
that can be moved without violating the balance constraint and move all
non-adjacent vertices in parallel. We repeat this process until all vertices
in the pseudo partition have been moved to their most suitable partitions.

4.6 Experimental Evaluation
We evaluated the performance of iHyperG on 18 industrial circuit graphs
derived from the ISPD98 VLSI Circuit Benchmark Suite [33]. Since the
original circuits are small (a few thousand vertices), we expanded them
100–1000 times larger with random vertex and hyperedge insertions to
demonstrate the advantage of GPU parallelism. In our experiment, we ap-
plied 100 incremental iterations based on the setting of TAU 2015 Incremen-
tal Timing Contest [64] and iG-kway [68], where each iteration involves
tens to hundreds of hypergraph modifiers that randomly remove/insert
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vertices and hyperedges from/into the circuits.
We used HyperG [67], a state-of-the-art GPU-accelerated k-way hy-

pergraph partitioner, as our baseline. Since HyperG does not support
IHP, we rebuilt its hypergraph CSR on the GPU and repartitioned the
modified circuit from that CSR. While this rebuilding strategy may not be
optimal, it represented a straightforward extension of FHP to IHP. Further
optimization of this is beyond the scope of this work.

To highlight the advantages of iHyperG’s incremental approach in both
hypergraph modification and partitioning, we report modification and
partitioning time separately in the overall performance discussion. We
implemented iHyperG and HyperG using C++17 and CUDA 12.0 and
compiled them with nvcc on a host compiler of GCC-8 with -O3 enabled.
We ran experiments on a 64-bit Linux machine with 16 Intel i7-11700 CPU
cores at 2.50 GHz and 128 GB RAM. Our GPU was an A6000 with 48 GB
of memory. All results are averaged over 10 runs.

Overall Performance Comparison

Table 4.1 compares the runtime and cut size between iHyperG and Hy-
perG at k = 2 over 100 incremental iterations, each with 25 modifiers. A
cut size improvement greater than one indicates that iHyperG achieves a
smaller cut size than HyperG. To highlight the advantages of iHyperG, we
break down the runtime into hypergraph modification and hypergraph
partitioning. Since HyperG rebuilds the entire CSR at each iteration, iHy-
perG is consistently faster in the modification stage. Instead of rebuilding,
iHyperG maintains a delta-based hypergraph data structure that records
the updates to modified vertices and hyperedges. Moreover, to reparti-
tion from scratch, HyperG must rebuild an additional vertex–neighbor
structure. In contrast, iHyperG avoids full repartitioning and therefore
does not rebuild this structure, saving significant time in the modification
stage. As a result, iHyperG achieves an average speedup of 190× and up
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to 402× over HyperG in modification time.
For partitioning time, iHyperG outperforms HyperG on all circuits

with an average speedup of 83×. This speedup comes from iHyperG’s
incremental refinement, which efficiently identifies and refines only cut-
critical vertices at each iteration. In contrast, HyperG repartitions the entire
circuit every time, which quickly accumulates into substantial runtime
overhead. In terms of cut size, iHyperG finds nearly the same cut size
as HyperG (within ±2%). We attribute this to iHyperG’s effective incre-
mental refinement, which identifies cut-critical vertices within modified
hyperedges and places them in their most suitable partitions to improve
partitioning quality.

1 10 50 90 1000
50

100

Sp
ee

du
p

iHyperG vs HyperG

k = 2 k = 32

1 10 50 90 1000
0.5

1

Im
pr

.
iHyperG vs HyperG

Figure 4.3: The speedup (left) and cut size improvement (right) of iHyperG over
HyperG on Circuit05 over 100 incremental iterations, each with 25 modifiers.

Figure 4.3 shows the speedup of total partitioning time (modification
and partitioning) and cut size improvement over 100 incremental itera-
tions for Circuit05 at two extreme k values. At the first iteration, there is no
significant difference in total runtime between iHyperG and HyperG since
both are FHP. However, as the number of incremental iterations increases,
iHyperG’s runtime advantage over HyperG becomes more pronounced.
The speedup of iHyperG grows roughly in proportion to the number of
incremental iterations for both k values. This is because HyperG reparti-
tions the circuit from scratch at each iteration, whereas iHyperG refines
only the cut-critical vertices, saving substantial partitioning time per it-
eration. For cut size, iHyperG consistently matches HyperG across all
iterations. This matching in partitioning quality demonstrates that, under
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small modifications, incremental partitioning achieves comparable results
at a fraction of the runtime, making it a more efficient alternative to full
repartitioning.

Runtime and Cut Size Analysis under Varying k
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Figure 4.4: The speedup (top) and cut size improvement (bottom) of iHyperG
over HyperG at different k values after 100 incremental iterations, each with 25
modifiers.

Figure 4.4 shows the speedup of total partitioning time (modification
and partitioning) and cut size improvement of iHyperG over HyperG
at k = {2, 4, 8, 16, 32} on four circuits chosen to span a wide size range,
including the smallest (Circuit08) and the largest (Circuit17). Across all k
values, iHyperG achieves similar speedups on every circuit. As k increases,
both iHyperG and HyperG must evaluate more partition assignments to
refine vertices. Consequently, their runtimes grow similarly with k, and
the speedup remains nearly constant.

For the cut size, iHyperG consistently matches HyperG and achieves
better results on Circuit15 at k = 4 and Circuit17 at k = 8. We attribute this
to iHyperG’s incremental approach. With a small number of modifiers, the
current partition provides a strong starting point, and incremental refine-
ment preserves useful local connectivity, sometimes yielding a smaller cut
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size. In contrast, HyperG discards the current partition and repartitions
everything from scratch, which can sometimes make it harder to find a
high-quality partition that would otherwise be available through small
and local refinement. These high-quality results demonstrate iHyperG’s
effectiveness and efficiency for IHP.
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Figure 4.5: Speedup in hypergraph modification time (left) and hypergraph parti-
tioning time (right) for iHyperG over HyperG on Circuit05 after 100 incremental
iterations, with 10–1K modifiers per iteration.

Incrementality Analysis

Figure 4.5 shows the speedup in hypergraph modification and hypergraph
partitioning time for iHyperG over HyperG on Circuit05 after 100 incre-
mental iterations, with 10–1K modifiers per iteration. For hypergraph
modification, the speedup is similar for both k values. However, it de-
creases as the number of modifiers grows because iHyperG must update
larger delta structures with more modified vertices and hyperedges. On
the other hand, HyperG rebuilds the CSR every time, so its modification
time remains roughly constant even as the number of modifiers increases.

For hypergraph partitioning, we do not observe a strong dependence
on the number of modifiers or the value of k. This is because hyperedges
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typically contain many pins, so a single pin change often does not affect
whether the hyperedge is cut, leaving the overall cut size unchanged. Build-
ing on this insight, our incremental refinement refines only cut-critical
vertices, keeping the refinement workload relatively stable even as the
number of modifiers increases.

4.7 Conclusion
In this chapter, we present iHyperG, a GPU-parallel incremental k-way
hypergraph partitioner. iHyperG introduces a scalable delta-based data
structure for efficient hypergraph modifications on a GPU, along with an
incremental partitioning algorithm that effectively refines the partitioning
result. Experimental results show that iHyperG achieves average speedups
of 190× for modification and 83× for partitioning over the state-of-the-art
GPU-parallel full partitioner, HyperG [67], while maintaining comparable
partitioning quality.

In this work, Wan Luan Lee was the primary contributor, responsible
for the majority of the research and development efforts. Tsung-Wei Huang
supervised the research, providing guidance and over- sight throughout
the project. All authors contributed to the preparation and review of the
final manuscript.
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5 conclusion

This dissertation addresses the growing demand for scalable and efficient
graph and hypergraph partitioning algorithms in modern CAD workflows.
As circuit sizes continue to increase, traditional CPU-based partitioners
fall short of meeting the stringent runtime and scalability requirements of
industrial-scale VLSI designs. In addition to full partitioning, incremental
partitioning plays a critical role in many CAD algorithms, where it is
integrated into iterative optimization workflows. Without incremental
partitioning, the overhead of repetitive full partitioning can accumulate
significantly, and the benefits of hypergraph partitioning cannot be fully
exploited.

To overcome these limitations, this dissertation presents four comple-
mentary contributions. The first two are GPU-accelerated full partitioning
algorithms: G-kway for graphs and HyperG for hypergraphs. Both lever-
age the massive parallelism of a GPU to accelerate the partitioning beyond
what is achievable with traditional CPU-parallel approaches. The last two
are GPU-parallel incremental partitioning algorithms: iG-kway for graphs
and iHyperG for hypergraphs. Both design incrementality-aware data
structures that enable efficient graph and hypergraph modifications on
the GPU and selectively refine only the vertices requiring refinement. This
approach avoids the substantial overhead of repeatedly repartitioning the
entire graph or hypergraph during iterative optimization workflows.

In summary, this dissertation advances the state-of-the-art in scalable
and efficient partitioning algorithms for graph and hypergraph workloads
in modern CAD workflows. It demonstrates how GPU parallelism, com-
bined with incrementality-aware data structures and refinement strategies,
can be effectively leveraged to develop high-performance partitioners that
meet the stringent runtime and scalability demands of industrial-scale
VLSI systems.
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Inspired by a series of GPU-related research developed in our research
group [75, 76, 77, 68, 70, 24, 78, 79, 80, 67, 81, 82, 83, 84, 85, 86, 87, 88, 18, 89,
71, 90, 91, 92, 93, 94, 95, 96, 97, 98, 44, 99, 100, 53, 54, 101, 102, 103, 12, 104,
105, 106, 107, 22, 108, 109, 110, 55, 111, 112, 23, 56, 113, 114, 11, 115, 116,
117, 118, 119, 21, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132, 133], future work may extend the proposed frameworks to support
distributed multi-GPU platforms and multi-constraint partitioning, which
would further improve scalability and applicability to large design scenar-
ios. Another promising direction is the integration of machine learning
techniques to guide coarsening and refinement based on the structural
characteristics of graphs and hypergraphs. These enhancements could
enable more adaptive and intelligent partitioning workflows.
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