
c⃝ 2017 Tsung-Wei Huang

DISTRIBUTED TIMING ANALYSIS

BY

TSUNG-WEI HAUNG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

 Professor Martin D. F. Wong, Chair
 Professor Deming Chen
 Professor Rob A. Rutenbar
 Professor Wen-Mei Hwu

ABSTRACT

As design complexities continue to grow larger, the need to efficiently an-

alyze circuit timing with billions of transistors across multiple modes and

corners is quickly becoming the major bottleneck to the overall chip design

closure process. To alleviate the long runtimes, recent trends are driving the

need of distributed timing analysis (DTA) in electronic design automation

(EDA) tools. However, DTA has received little research attention so far and

remains a critical problem. In this thesis, we introduce several methods to

approach DTA problems. We present a near-optimal algorithm to speed up

the path-based timing analysis in Chapter 1. Path-based timing analysis

is a key step in the overall timing flow to reduce unwanted pessimism, for

example, common path pessimism removal (CPPR). In Chapter 2, we intro-

duce a MapReduce-based distributed Path-based timing analysis framework

that can scale up to hundreds of machines. In Chapter 3, we introduce

our standalone timer, OpenTimer, an open-source high-performance timing

analysis tool for very large scale integration (VLSI) systems. OpenTimer ef-

ficiently supports (1) both block-based and path-based timing propagations,

(2) CPPR, and (3) incremental timing. OpenTimer works on industry for-

mats (e.g., .v, .spef, .lib, .sdc) and is designed to be parallel and portable.

To further facilitate integration between timing and timing-driven optimiza-

tions, OpenTimer provides user-friendly application programming interface

(API) for inactive analysis. Experimental results on industry benchmarks re-

leased from TAU 2015 timing analysis contest have demonstrated remarkable

results achieved by OpenTimer, especially in its order-of-magnitude speedup

over existing timers.

In Chapter 4 we present a DTA framework built on top of our standalone

timer OpenTimer. We investigated into existing cluster computing frame-

works from big data community and demonstrated DTA is a difficult fit here

in terms of computation patterns and performance concern. Our specialized

ii

DTA framework supports (1) general design partitions (logical, physical, hi-

erarchical, etc.) stored in a distributed file system, (2) non-blocking IO

with event-driven programming for effective communication and computa-

tion overlap, and (3) an efficient messaging interface between application and

network layers. The effectiveness and scalability of our framework has been

evaluated on large hierarchical industry designs over a cluster with hundreds

of machines.

In Chapter 5, we present our system DtCraft, a distributed execution en-

gine for compute-intensive applications. Motivated by our DTA framework,

DtCraft introduces a high-level programming model that lets users without

detailed experience of distributed computing utilize the cluster resources.

The major goal is to simplify the coding efforts on building distributed ap-

plications based on our system. In contrast to existing data-parallel cluster

computing frameworks, DtCraft targets on high-performance or compute-

intensive applications including simulations, modeling, and most EDA ap-

plications. Users describe a program in terms of a sequential stream graph

associated with computation units and data streams. The DtCraft runtime

transparently deals with the concurrency controls including work distribu-

tion, process communication, and fault tolerance. We have evaluated DtCraft

on both micro-benchmarks and large-scale simulation and optimization prob-

lems, and showed the promising performance from single multi-core machines

to clusters of computers.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

I would like to express my special thanks to my adviser Prof. Martin D.

F. Wong, who has mentored me for years. I would like to thank you for

giving me a lot of insightful advice on my research and helping me to grow

as a research scientist. This dissertation would not be possible without your

advice and wisdom. I am also very thankful to all my doctoral committee,

Prof. Deming Chen, Prof. Wen-Mei Hwu, and Prof. Rob Rutenbar. Their

constructive comments and suggestions have proven to be extremely useful

for this thesis.

I am extremely grateful for all my colleague in UIUC, who have always

been supportive in both my research and my life. I want to thank Chun-

Xun Lin for excellent teamwork on our research project. I want to thank

Dr. Haitong Tian for sharing his career experience with me and Dr. Zigang

Xiao for instructing me on how to use commercial EDA tools. I want to

thank Dr. Li-Da Huang for giving insightful comments for several of my

research topics, and kindly accommodating me when I first arrived in the

United States. I want to thank visiting scholars, Prof. Fan Zhang, Prof.

Chun-Yao Wang, Prof. Hung-Ming Chen, Yen-Chen Lai, and Dr. Deojkin

Joo for helpful discussions on my research topics. Also, I want to thank

Dr. Pei-Ci Wu, Dr. Ting Yu, Leslie Hwang, Daifend Guo, Tin-Yin Lai, and

Iou-Jen Liu for making my PhD life colorful and enjoyable. I appreciate

my industry partners, Dr. P. V. Srinivas, Dr. Ismail Bustany, Dr. Shankar

Krishnamoorthy, Dr. Igor Keller, Dr. Sharad Mehrotra, Dr. Qiuyang Wu,

Dr. Natesan Venkateswaran, Dr. Kerim Kalafala, Dr. Debjit Sinha, Dr. Jin

Hu, and Dr. Myung-Chun Kim, for very helpful technical suggestions on my

research. Furthermore, I appreciate Marco and Dr. Daniele Paolo Scarpazza

at Citadel for broadening my vision to the research in the financial world.

I am extremely lucky for meeting lots of friends in UIUC. My room-

mate Jhih-Chian Wu has been extremely helpful during my ups and downs

v

throughout my PhD life. I also want to thank my friends, Yingyan Lin, Billy

Lee, Chen-Hsuan Lin, Chun-Yu Shao, Chichi Cheng, Hsien-Chih Chang, Yu-

guang Chen, Bei Yu, Xiaoqing Xu, Jong Bin Lim, Wei Zuo, Sitao Huang, Yi

Liang, Ashutosh Dhar, Yihao Zhang, Yuting Chen, Pratik Lahiri, Jiangxiong

Gao, Danny Kim, Xingkai Zhou, and many others.

Finally, I give my deepest gratitude to my parents and my little brother

who have been always supportive throughout my whole life. I also want to

thank my girlfriend for the great care in my life. I cannot express my love

and gratitude for them in words.

vi

TABLE OF CONTENTS

CHAPTER 1 COMMON PATH PESSIMISM REMOVAL 1
1.1 Introduction . 1
1.2 Static Timing Analysis . 3
1.3 Common Path Pessimism Removal 5
1.4 Prior Works . 6
1.5 Problem Formulation . 7
1.6 Algorithm . 7
1.7 Application to Multiple Tests 21
1.8 Implementation and Technical Details 24
1.9 Experimental Results . 26
1.10 Conclusion . 35

CHAPTER 2 OPENTIMER: A HIGH-PERFORMANCE TIM-
ING ANALYSIS TOOL . 36
2.1 Introduction . 36
2.2 Incremental Timing Analysis and CPPR 38
2.3 Tool Configuration . 39
2.4 Algorithm . 41
2.5 Experimental Results . 58
2.6 Conclusion . 61

CHAPTER 3 ACCELERATED PATH-BASED TIMING ANAL-
YSIS WITH MAPREDUCE . 62
3.1 Introduction . 62
3.2 Path-Based Timing Analysis 64
3.3 Problem Formulation . 64
3.4 MapReduce Framework . 65
3.5 Data Management . 72
3.6 Experimental Results . 74
3.7 Conclusion . 82

CHAPTER 4 A DISTRIBUTED TIMING ANALYSIS FRAME-
WORK FOR LARGE DESIGNS 83
4.1 Introduction . 83
4.2 Problem Formulation . 85

vii

4.3 Framework . 85
4.4 Distributed Timing Algorithm 90
4.5 Experimental Results . 96
4.6 Conclusion . 99

CHAPTER 5 DTCRAFT: AN OPEN-SOURCE DISTRIBUTED
EXECUTION ENGINE FOR COMPUTE-INTENSIVE APPLI-
CATIONS . 100
5.1 Introduction . 100
5.2 The DtCraft System . 104
5.3 System Implementation . 111
5.4 Fault Tolerance Policy . 120
5.5 Experimental Results . 121
5.6 Conclusion . 130

CHAPTER 6 CONCLUSION AND FUTURE WORK 132

REFERENCES . 133

viii

CHAPTER 1

COMMON PATH PESSIMISM REMOVAL

1.1 Introduction

The lack of accurate and fast algorithms for common path pessimism re-

moval (CPPR) has been recently pointed out as a major weakness of exist-

ing static-timing analysis (STA) tools [1]. Conventional STA tools rely on

conservative dual-mode operations to estimate early-late and late-early path

slacks [2]. This mechanism, however, imposes unnecessary pessimism due to

the consideration of delay variation along common segments of clock paths,

as illustrated in Figure 1.1. This is because signal cannot simultaneously ex-

perience early-mode and late-mode operations along the physically common

segment of the data path and clock path in the clock network. Unneces-

sary pessimism may lead to timing tests (e.g., setup check, hold check, etc.)

being marked as failing whereas in reality they should be passing. Thus

designers and optimization tools might be misled into an over-pessimistic

timing report. Therefore, the goal of this chapter is to identify and eliminate

unwanted pessimism during STA so as to prevent true timing properties of

circuits from being skewed.

B2
CLK

B1

B3

B4

D Q

FF1

Combinational
logic D Q

FF2

CK CK

Launching clock path
CLK→B1→B2→B3→FF1CK

Capturing clock path
CLK→B1→B2→B4→FF2CK

Data path
FF1CK→FF1Q→Cmb→FF2D

Pessimism

Capturing
FF

(destination)

Figure 1.1: Common path pessimism incurs in the common path between
the launching clock path and the capturing clock path.

1

The importance and impact of CPPR are demonstrated in Figure 1.2. It is

observed that the number of failing tests was reduced from 642 to less than

half after the pessimism was removed. Unwanted pessimism might force de-

signers and optimization tools to waste a significant yet unnecessary amount

of efforts on fixing paths that meet the intended clock frequency. Such a prob-

lem becomes even critical when design comes to deep submicron era where

data paths are shorter, clocks are faster, and clock networks are longer to

accommodate larger and complex chips. Moreover, without pessimism re-

moval designers and CAD tools are no longer guaranteed to support legal

turnaround for timing-specific improvements, which dramatically degrades

the productivity. At worst, signoff timing analyzer gives rise to the issue of

“leaving performance on the table” and concludes a lower frequency at which

the circuits can operate than their actual silicon implementations [3].

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0
-100

-80

-60

-40

-20

0

20

40

60

80

Pessimism-Oblivious Slack (ps)

P
e
ss

im
is

m
-R

e
m

o
va

l S
la

ck
 (

p
s)

Slack Difference with/without Clock Network Pessimism Removal

data point
slack ratio 1.0

Removal on: 303 negative points
Removal off: 642 negative points

Figure 1.2: Impact on common path pessimism from a circuit in [4].

State-of-the-art CPPR algorithms are dominated by straightforward path-

based methodology [5, 6, 7]. Critical paths are identified without considering

the pessimism first. Then for each path the common segment is found by a

simple walk through the corresponding launching clock path and capturing

clock path. Finally, slack of each path is adjusted by the amount of pessimism

on the common segment. The real challenge is the amount of pessimism

that needs to be removed is path-specific. The most critical path prior to

pessimism removal is not necessarily reflective of the true counterpart (see

the line plot in Figure 1.2), revealing a potential drawback that path-based

2

methodology has the worst-case performance of exhaustive search space in

peeling out the true critical paths. Accordingly, prior works are usually too

slow to handle complex designs and unable to always identify the true critical

path accurately [4].

In this chapter we introduce UI-Timer 1.0, a powerful CPPR algorithm

which achieves high accuracy, ultra-fast runtime, and low memory require-

ment. UI-Timer 1.0 is the preliminary version of OpenTimer and its details

can be referred to [8]. Our contributions are summarized as follows: (1)

We introduce a theoretical framework that maps the CPPR problem to a

graph search formulation. The mapping allows the true critical path to be

directly identified through our search space, rather than the time-consuming

yet commonly applied strategy which interleaves the search between slack

computation and pessimism retrieval. (2) Unlike predominant explicit path

search, we represent the path implicitly using two efficient and compact data

structures, namely suffix tree and prefix tree, and yield a significant saving

in both search space and search time. (3) The effectiveness and efficiency of

our timer have been verified by the TAU 2014 CAD contest [4]. Compara-

tively, UI-Timer 1.0 confers promissing results over existing timers in terms

of accuracy and runtime. The source code of our timer has been released

to the public domain [9], which can be an indicator assisting researchers in

discovering and optimizing the performance bottleneck of their tools.

1.2 Static Timing Analysis

STA is a method of verifying expected timing characteristics of a circuit.

The dual-mode or early-late timing model is the most popular convention

because it provides both lowerbound and upperbound quantities to accounts

for various on-chip variations (OVC) such as process parameter, e.g., tran-

sistor width, voltage drops, and temperature fluctuations [2]. In contrast

to statistical STA (SSTA) where process variations are modeled as random

variables, the early-late timing model has deterministic behaviors and thus

enables lower computational complexity for timing propagation. The earli-

est and latest timing instants that a signal reaches are quantified as earliest

and latest arrival time (at), while the limits imposed on a circuit node for

proper logic operations are quantified as earliest and latest required arrival

3

time (rat). The verification of timing at a circuit node is determined by the

largest difference or worst slack between the required arrival time and signal

arrival time. We focus on two primary types of timing verification – hold test

and setup test for a specified data point at a flip-flop (FF). The hold test

and setup test are two safe timing guards that constrain the earliest required

arrival time and the latest required arrival time for a data point, respectively.

Considering a timing test t, the following equations are applied for STA [4].

ratearlyt = atlateo + Thold, ratlatet = atearlyo + Tclk − Tsetup (1.1)

slackhold
worst = atearlyd − ratearlyt , slacksetup

worst = ratlatet − atlated (1.2)

Notice that Tclk is the clock period, Thold and Tsetup are values of hold and

setup constraints, and o and d are respectively the clock pin and the data

pin of the testing FF. In general, the best-case fast condition is critical for

hold test and the worst-case slow condition is critical for setup test. For a

data path feeding the testing FF, a positive slack means the required arrival

time is satisfied and a negative slack means the required arrival time is in a

violation.

B3

CLK

B1

B2

B4

D
Q

FF2

IN2

IN1

D
Q

FF1

D Q

FF3

OUT

(20, 25) (10, 45) (10, 30)

(50, 50)

(50, 50)

(4
0, 4

0)

(4
0, 4

0)
Setup/Hold: (30, 30)

Data path 1 Data path 2

Capturing clock path

(10, 30)

Tclk: 120

(0, 0)

(0, 0)

(0, 0)

CK

CK

CK

Figure 1.3: An example of sequential circuit network.

Consider a sample circuit in Figure 1.3, where two data paths feed a com-

mon FF. Numbers enclosed within parentheses denote the earliest and latest

delay of a circuit node. Assuming all wire delays and arrival times of pri-

mary inputs are zero, we perform the setup test on FF3. The latest required

4

arrival time of FF3 is obtained by subtracting the values of clock period plus

the earliest arrival time at the clock pin of FF3 from the value of setup con-

straint, which is equal to (120 + (20 + 10 + 10)) − 30 = 130. The respective

latest arrival times of data path 1 and data path 2 at the data pin of FF3

are 25 + 30 + 40 + 50 = 145 and 25 + 45 + 40 + 50 = 160. Using equation

(1.2), the setup slacks of data path 1 and data path 2 are 130 − 145 = −15

(failing) and 130 − 160 = −30 (failing), respectively.

1.3 Common Path Pessimism Removal

The dual-mode split-timing analysis has greatly enabled timers to effec-

tively account for any within-chip variation effects. However, the dual-mode

analysis inherently embeds unnecessary pessimism, which results in an over-

conservative design. Take the slack of data path 1 in Figure 1.3 for example.

The pessimism arises with buffer B1 since it was accounted for both earliest

and latest delays at the same time which is physically impossible. In general,

the pessimism of two circuit nodes appears in the common path from the

clock source to the closest point to which the two nodes converge through

upstream traversal. Such a point is also referred to as the clock reconverg-

ing node. The amount of pessimism is equal to the cumulative differences

between late and early delays along the common path. The true timing with-

out pessimism can be obtained by adding the final slack to a credit which is

defined as follows [4]:

creditholdu,v = atlatecp − atearlycp (1.3)

creditsetupu,v = atlatecp − atearlycp − (atlater − atearlyr) (1.4)

slacksetup
post−CPPR = slacksetup

pre−CPPR + creditsetupu,v (1.5)

slackhold
post−CPPR = slackhold

pre−CPPR + creditholdu,v (1.6)

Notice that r is the clock source and cp is the clock reconverging node

5

of nodes u and v. Since the setup test compares the data point against the

clock point in the subsequent clock cycle, the credit rules out the arrival time

at the clock source [4]. The slack prior to common path pessimism removal

(CPPR) is referred to as pre-CPPR slack and post-CPPR slack otherwise.

For the same instance in Figure 1.3, the credits of data path 1 and data path

2 for the setup tests are respectively 5 and 40, which in turn tell their true

slacks being −15 + 5 = −10 (failing) and −30 + 40 = 10 (passing). A key

observation here is that the most critical pre-CPPR slack (data path 2) is not

necessarily reflective of the true critical path (data path 1). Analyzing the

single-most critical path during CPPR is obviously insufficient. In practice,

reporting a number of ordered critical paths for a given test rather than

merely the single-most critical one is relatively necessary and important.

1.4 Prior Works

Removing pessimism from the design during timing analysis is integral to

meeting chip timing, area, and power targets. To this end, existing STA

tools continue to invest heavily in research and development on this topic

and explore new ideas and concepts to improve CPPR runtime and memory

usage [10]. The predominant approach relies on identifying a set of critical

paths without CPPR first. Then the CPPR credit of each of these paths

are discovered through the traversal on the clock network, after which the

true slack can be retrieved [6, 7]. Based on this framework, straightforward

heuristics such as dominator grouping for clock reconverging nodes [3], hier-

archical timing analysis [5], branch-and-bound pruning [11, 12], and CPPR

credit caching [13] are proposed to either shrink the solution space or reduce

the computational complexity. However, these works suffer from a common

drawback of exhaustive search space. In spite of fine-tuned heuristics, the

resulting performance is always case-by-case and has no guaranteed charac-

teristics of polynomial space and time complexity.

6

1.5 Problem Formulation

The circuit network is input as a directed-acyclic graph (DAG) G = {V,E}.

V is the node set with n nodes which specify pins of circuit elements (e.g.,

primary IO, logic gates, FFs, etc.). E is the edge set with m edges which

specify pin-to-pin connections. Each primary input, i.e., the node with zero

indegree, is assigned by an earliest arrival time and a latest arrival time.

Each edge e or eu→v is directed from its tail node u to head node v and

is associated with a dual tuple of earliest delay delayearly
e and latest delay

delay late
e . A path is an ordered sequence of nodes ⟨v1, v2, · · · , vn⟩ or edges

⟨e1, e2, · · · , en⟩ and the path delay is the sum of delays through all edges.

We are in particular emphasizing on the data path, which is defined as a

path from the clock source pin of an FF to the data pin of another FF. The

arrival time of a data path is the sum of its path delay and arrival time from

where this data path originates. The clock tree is a subgraph of G which

distributes the clock signal with clock period Tclk from the tree root r to all

the sequential elements that need it. A test is defined with respect to an FF

as either a hold check or setup check to verify the timing relationship between

the clock pin and the data pin of the FF, so that the hold requirement Thold or

setup requirement Tsetup is met. We refer to the testing FF as destination FF

and those FFs having data paths feeding the destination FF as source FFs.

Using the above knowledge, the CPPR problem is formulated as follows:

Objective: Given a circuit network G and a hold or setup test t as well as

a positive integer k, the goal is to identify the top k critical paths (i.e., data

paths that are failing for the test) from source FFs to the destination FF in

ascending order of post-CPPR slack.

1.6 Algorithm

The overall algorithm of UI-Timer 1.0 is presented in Algorithm 1. It consists

of of two stages: lookup table preprocessing and pessimism-free path search.

The goal of the first stage is to tabulate the common path information for

quick lookup of credit, while the goal in the second stage is to identify the

top-k critical paths in a pessimism-free graph derived from a given test. We

shall detail in this section each stage in bottom-up fashion.

7

Algorithm 1: UI-Timer 1.0(t, k)

Input: test t, path count k
Output: solution set Ψ of the top-k critical paths

1 BuildCreditLookupTable();
2 Gp ← pessimism-free graph for the test t ;
3 Ψ← GetCriticalPath(Gp.source, Gp.destination, k);
4 return Ψ;

1.6.1 Lookup Table Preprocessing

In graph theory, the clock reconverging node of two nodes in the clock tree

is equivalent to the lowest common ancestor (LCA) of the two nodes. The

arrival time information of each node in the clock tree can be precomputed

and therefore the credit of two nodes can be obtained immediately once their

LCA is known. Many state-of-the-art LCA algorithms have been invented

over the last few decades. The table-lookup algorithm by [14] is employed as

our LCA engine due to its simplicity and efficiency. For a given clock tree,

we build three tables as follows:

• The Euler table E records the identifiers of nodes in the Euler tour of

the clock tree; E[i] is the identifier of ith visited node.

• The level table L records the levels of nodes visited in the Euler tour;

L[i] is the level of node E[i].

• The occurrence table H [v] records the index of the first occurrence of

node v in array E.

As a result, the LCA of a node pair (u, v) is the node situated on the

smallest level between the first occurrence of u the and first occurrence of v.

We have the following: Denoting the index of the node with the smallest level

between the index a and b in the level table L as MinL(a, b), the LCA of a

given node pair (u, v) is E[MinL(H [u], H [v])].

Take the LCA of FF1 and FF3 in Figure 1.4, for example. The occurrence

indices of FF1 and FF3 in Euler tour are 2 and 7, respectively. Referring to

the indices between 2 and 7 in the level table, the node with the lowest level

is situated in the third position of the Euler table. Hence, the LCA of FF1

and FF3 is v1. It is obvious the operations taken on the occurrence table

and Euler table can be done in constant time. Finding the position of an

8

r

v1

FF1

(20, 25)

(10, 30)

v2

(10, 45)

FF2

(0, 0)

FF3

(10, 30)

r v1 FF1 v1 v2 FF2 v2 FF3 v2 v1 r

0 1 2 1 2 3 2 3 2 1 0

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

r v1 FF1 v2 FF2 FF3

0 1 2 4 5 7

E:

L:

H:
H[FF1] = 2
H[FF3] = 7

LCA(FF1, FF3) = E[3] = v1

MinL(2, 7) = 3

Clock tree

Figure 1.4: Derived tabular fields from the clock tree in Figure 1.3.

element with the minimum value between two specified indices in the level

table (i.e., the value returned by function MinL(a, b) for a given index pair

a and b) is the major task. We adopt the sparse-table solution whereby a

two-dimensional (2D) table M [i][j] is used to store the index of the minimum

value in the level table starting at i having length 2j [14]. This concept is

visualized in Figure 1.5.

0 1 2 1 2 3 2 3 2 1 0

0 1 2 3 4 5 6 7 8 9 10
L:

M[1][1] = 1 M[6][2] = 9

MinL(1, 2) = 1 MinL(6, 9) = 9

Figure 1.5: Range minimum query to the level table from Figure 1.4.

Figure 1.5 indicates that the optimal substructure of M [i][j] is the mini-

mum value between the first and second halves of the interval with 2j−1 length

each. Hence, the table M can be fulfilled using dynamic programming with

the following recurrence:

M [i][j] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i, base case j = 0

M [i][j − 1], if L[M [i][j − 1]] ≤ L[M [i + 2j−1][j − 1]]

M [i+ 2j−1][j − 1], otherwise

Provided the table M has been processed, the value of MinL(a, b) can be

computed by selecting two blocks that entirely cover the interval between a

9

and b and returning the minimum between them. Let c be ⌊log(b − a + 1)⌋

and assume b > a, the following formula is used for computing the value of

MinL(a, b):

MinL(a, b) =

⎧
⎨

⎩
M [a][c], if L[M [a][c]] ≤ L[M [b − 2c + 1][c]]

M [b− 2c + 1][c], otherwise

The procedure of building tables E, L, H , andM is presented in Algorithm

2. Tables E, L, and H can be built using a depth-first search starting at

the root of the clock tree (line 1), while table M is fulfilled via bottom-up

dynamic programming (line 2:16). Using these tables as infrastructure, the

credit of two given nodes in the clock tree can be retrieved in constant time

by Algorithm 3. The LCA of the two given nodes is found first (line 1:12).

Then for the hold test, the credit is returned as the difference between the

latest arrival time and the earliest arrival time at the LCA (line 14:15). For

the setup test which performs the timing check in the subsequent clock cycle,

the credit excludes the arrival time at the clock source (line 16:18).

Algorithm 2: BuildCreditLookupTable(G)

Input: circuit network G

1 Build tables E,L,H via Euler tour starting at the root r of clock
tree;

2 size1 ← L.size;
3 size2 ← ⌊log(L.size)⌋;
4 Create a 2D table M with size size1× (size2 + 1);
5 for i← 0 to size1 − 1 do
6 M [i][0]← i;
7 end
8 for j ← 1 to size2 − 1 do
9 for i← 0 to size1 − 2j do

10 if L[M [i][j − 1]] < L[M [i + 2j−1][j − 1]] then
11 M [i][j]←M [i][j − 1];
12 else
13 M [i][j]←M [i + 2j−1][j − 1];
14 end
15 end
16 end

10

Algorithm 3: GetCredit(u, v)

Input: nodes u and v

1 if u or v is not a node of the clock tree then
2 return 0;
3 end
4 if H [u] > H [v] then
5 swap(u, v)
6 end
7 c← ⌊log(H [u]−H [v] + 1)⌋ ;
8 if L[M[H[u]][c]] < L[M[H[v]− 2c + 1][c]] then
9 lca ← E[M [H [u]][c]];

10 else
11 lca ← E[M [H [v]− 2c + 1][c]];
12 end
13 if hold test then
14 return at latelca − atearlylca ;
15 else
16 r ← root of the clock tree;

17 return at latelca − atearlylca − (at later − atearlyr);
18 end

Theorem 1: UI-Timer 1.0 builds lookup tables E, L, H, and M in O(nlogn)

space and O(nlogn + m) time. Using these lookup tables, the credit of two

given nodes in the clock tree can be retrieved in O(1) time.

1.6.2 Formulation of Pessimism-Free Graph

In the course of a hold or a setup check, the required arrival time of the

destination FF and the amount of pessimism between each source FF and the

destination FF remain fixed regardless of which data path is being considered.

Precisely speaking, the way data paths passing through plays the most vital

role in determining the final slack values. In order to facilitate the path search

without interleaving between slack computation and pessimism retrieval, we

construct a pessimism-free graph Gp = {Vp, Ep} for a given test t as follows:

Rule #1: We designate the data pin d of the destination FF the destina-

tion node and artificially create a source node s and connect it to the clock

pin i of each source FF. Denoting the set of artificial edges as Es, we have

11

Vp = V
⋃
{s} and Ep = E

⋃
Es.

Rule #2: We associate (1) offset weight with each artificial edge and (2)

delay weight with each ordinary circuit connection as follows:

• ∀es→i ∈ Es, whold
es→i

= creditholdi,d − ratearlyt + atearlyi .

• ∀es→i ∈ Es, wsetup
es→i

= creditsetupi,d + rat latet − at latei .

• ∀e ∈ E, whold
e = delayearly

e .

• ∀e ∈ E, wsetup
e = −delay late

e .

An example of pessimism-free graph is shown in Figure 1.6. The intuition

is to separate out the constant portion of the post-CPPR slack by an artificial

edge such that the search procedure can focus on the rest portion which is

totally depending on the way data paths passing through. It is clear that

the cost of any source-destination path (i.e., sum of all edge weights) in the

pessimism-free graph is equivalent to post-CPPR slack of the corresponding

data path which is obtained by removing the artificial edge. This crucial fact

is highlighted in the following theorem:

Theorem 2: The cost of each source-destination path in the pessimism-free

graph Gp is equal to the post-CPPR slack of the corresponding data path.

Proof The cost of a source-destination path can be written as the delay of

the corresponding data path p from the source FF i to the destination FF d

plus the offset weight associated with the edge es→i. The path cost for the

hold test is creditholdi,d − ratearlyt + atearlyi +
∑

e∈pdelay
early
e and creditsetupi,d +

rat latet − at latei −
∑

e∈pdelay
late
p for the setup test. It is clear that by definition

the cost is just the post-CPPR slack of a given path in either the hold test

or the setup test.

The problem of identifying the top-k critical paths for a given test is similar

to the path ranking problem applied to the pessimism-free graph. A number

of state-of-the-art algorithms for path ranking have been proposed over the

past few years [15, 16, 17, 18, 19]. The best time complexity acquired to date

is O(m+nlogn+ k) from the well-know Eppstein’s algorithm [16]. However,

it relies on sophisticated implementation of a heap tree which results in little

practical interests. Moreover, most existing approaches are developed for

12

FF data pin

Source

FF1

FF2

FF3

FF4

s d

Combinational
logic

Source

Combinational
logic

Combinational
logic

wdelay

wdelaywoffset

Data path

... ...

...

Artificial edges

...

s Source FFFFi Destinationd

FF clock
pin

Figure 1.6: Derivation of pessimism-free graph from a given test.

general graphs and lack a compact and efficient specialization to certain

graphs such as the directed-acyclic circuit network. We shall discuss in the

following sections the key contribution of UI-Timer 1.0 in resolving these

deficiencies.

1.6.3 Implicit Representation of Data Path

Although explicit path representation is the major pursuit of existing ap-

proaches, the inherent restriction makes it difficult to devise efficient algo-

rithms with satisfactory space and time complexities [6, 7]. UI-Timer 1.0

performs implicit path representation instead, yielding significant improve-

ments on memory usage and runtime performance. While the spirit is similar

to [16], our algorithm differs in exploring a more compact and efficient way

to the implicit path search and explicit path recovery. We introduce the

following definitions:

Definition 1 – Suffix Tree: Given a pessimism-free graph, the suffix tree

refers to the successor order obtained from the shortest path tree Td rooted

at the destination node.

Definition 2 – Prefix Tree: The prefix tree is a tree order of non-suffix-

tree edges such that each node implicitly represents a path with prefix from

13

its parent path deviated on the corresponding edge and suffix followed from

the suffix tree. The root which is artificially associated with a null edge refers

to the shortest path in Td. Table 1.1 lists the data field to which we apply

for each node.

Table 1.1: Data Field of a Prefix Tree Node

Member Definition

p pointer to the parent node
e deviation edge
w cumulative deviation cost
c credit for pessimism removal

Constructor PrefixNode(p, e, w, c)

An example is illustrated in Figure 1.7. The suffix tree is depicted with

bold edges and numbers on nodes denote the shortest distance to the des-

tination node. Dashed edges denote artificial connections from the source

node. The shortest path is ⟨e3, e8, e12, e15⟩ which is implicitly represented by

the root of prefix tree. The prefix tree node marked by “e11” implicitly repre-

sents the path with prefix ⟨e3, e8⟩ from its parent path deviated on “e11” and

suffix ⟨e14⟩ following from the suffix tree. As a result, explicit path recovery

can be realized in a recursive manner as presented in Algorithm 4.

6 9

5

2

0

4

8

6

7

e7

À

e1 e2 e11 e4

e11

e9

Path suffix: <e14>

6 9

5

2

0

4

8

6

7

e3

e8

e11

e14

Path prefix: <e3, e8, e11> Path: <e3, e8, e11, e14>+ =

e2

e1

e3 e4

e5

e6

e7

e8

e9

e10

e11 e12

e13

e14 e15

Path node

Deviation: e11

Figure 1.7: Implicit path representation using the suffix tree and the prefix
tree.

In order to retrieve the path cost, we keep track of the deviation cost of

each edge e, which is defined as follows [16]:

dvi[e] = dis[head[e]]− dis[tail[e]] + weight[e] (1.7)

14

Algorithm 4: RecoverDataPath(pfx, end)

Input: prefix-tree node pointer pfx, node end

1 beg ← head [pfx.e];
2 if pfx.p ̸= NIL then
3 RecoverDataPath(pfx.p, tail [pfx.e]);
4 end
5 while beg ̸= end do
6 Record the path trace through pin “beg”;
7 beg ← successor [beg]
8 end
9 Record the path trace through pin “end”;

Algorithm 5: Slack(pfx, s, r)

Input: prefix-tree node pointer pfx, source node s, CPPR flag r
Output: post-CPPR slack for true flag r or pre-CPPR slack

otherwise

1 if r = true then
2 return pfx.w + dis [s];
3 end
4 return pfx.w + dis [s] - pfx.c;

Notice that dis [v] denotes the shortest distance from node v to the des-

tination node. Intuitively, deviation cost is a non-negative quantity that

measures the distance loss by being deviated from e instead of taking the

ordinary shortest path to destination. Therefore for each node in the prefix

tree, the corresponding path cost (i.e., post-CPPR slack) is equal to the sum-

mation of its cumulative deviation cost and the cost of shortest path in Td.

Algorithm 5 realizes this process. We conclude the conceptual construction

so far by the following two important lemmas.

Lemma 1: UI-Timer 1.0 deals with the implicit representation of each data

path in O(1) space and time complexities.

Lemma 2: The cumulative deviation cost of each node in the prefix tree is

greater than or equal to that of its parent node.

Lemmas 1 and 2 are two obvious byproducts of our prefix tree definition.

UI-Timer 1.0 stores each data path in constant space and records or queries

important information such as credit and slack in constant time. We shall

15

demonstrate in the next section their strengths to help prune the search

space.

1.6.4 Generation of Top-k Critical Paths

We begin by presenting a key subroutine of our path generating procedure

– Spur, which is described in Algorithm 6. In a rough view, Spur describes

the way UI-Timer 1.0 expands its search space for discovering critical paths.

After a path pi is selected as the i -th critical path, each node along the path

pi is viewed as a deviation node to spur a new set of path candidates (line

2:14). Any duplicate path should be ruled out from the candidate set (line 1

and line 5:7) and each newly spurred path is parented to the path pi in the

prefix tree (line 8). Having a path candidate with non-negative post-CPPR

slack, the following search space can be pruned and is exempted from the

queuing operation (line 9:11). This simple yet effective prune strategy is a

natural result of lemma 3 due to the monotonic growth of path cost along

with our search expansion.

Algorithm 6: Spur(pfx, s, d, Q)

Input: prefix-tree node pointer pfx, source node s, destination node
d, priority queue Q

1 u ← head [pfx.e];
2 while u ̸= d do
3 for e ∈ fanout(u) do
4 v ← head [e];
5 if v = successor[u] or v is unreachable then
6 continue;
7 end
8 pfx new ← new PrefixNode(pfx, e, pfx.w + dvi [e], pfx.c);
9 if Slack(pfx new, s, true) < 0 then

10 Q.enque(pfx new);
11 end
12 end
13 u ← successor [u];
14 end

Lemma 3: The procedure Spur is compact, meaning every path candidate is

generated uniquely.

16

Proof Suppose there is at least a pair of duplicate path candidates p1 and

p2, which are implicitly represented by ξ1 and ξ2 the sets of deviation edges.

Since p1 and p2 are identical, ξ1 and ξ2 must be identical as well. If both ξ1 and

ξ2 contain only one edge, the respective prefix tree nodes must be parented

to the same node, which is invalid due to the filtering statement in line 5:7.

If both ξ1 and ξ2 contain multiple edges, there exists at least two distinct

permutations in the prefix tree that represent the same path. However, this

will results in a cyclic connection of edges which violates the graph property

of the circuit network. Therefore by contradiction the procedure Spur is

compact.

Lemma 4: The procedure Spur takes O(n + mlogk) time complexity.

Proof The entire procedure takes up to n phases on scanning a given path

and spurs at most m new path candidates. We maintain only the top-k

critical candidates ever seen such that the maximum number of items in

the priority queue at any time will not exceed k. This can be achieved in

O(mlogk) time using a min-max priority queue [20]. Therefore the total

complexity is O(n + mlogk).

Using Algorithms 4–6 as primitive, the top-k critical paths can be identified

using Algorithm 7. Prior to the search, we construct the suffix tree by finding

the shortest path tree rooted at the destination node d in the pessimism-free

graph (line 1). Then each of the most critical paths from source FFs to the

destination FF is viewed as an initial path candidate (line 5:11). The major

search loop (line 12:20) iteratively looks for a path with lowest cumulative

deviation cost from the path candidate set and performs spurring operation

on it. Iteration ends when we have extracted k paths (line 16:18) or no more

steps can be proceeded. Finally, we draw the following two theorems.

Theorem 3: UI-Timer 1.0 is complete, meaning that it can exactly identify

the top-k critical paths for each hold test or setup test without common path

pessimism.

Proof Proving the completeness of UI-Timer 1.0 is equivalent to showing

that the major search framework of UI-Timer 1.0 is exactly identical to a typ-

ical graph search problem [19]. The search space or search tree of UI-Timer

17

Algorithm 7: GetCriticalPath(s, d, k)

Input: source node s, destination node d, path count k
Output: solution set Ψ of the top-k critical paths

1 Build the suffix tree by finding the shortest path tree rooted at d ;
2 Initialize a priority queue Q keyed on cumulative deviation cost;
3 Ψ← φ ;
4 num path ← 0;
5 for e ∈ fanout(s) do
6 credit ← GetCredit(head [e], d);
7 pfx ← new PrefixNode(NIL, e, dvi [e], credit);
8 if Slack(pfx, s, true) < 0 then
9 Q.enque(pfx);

10 end
11 end
12 while Q is not empty do
13 pfx new ← Q.deque();
14 num path ← num path + 1;
15 Ψ← Ψ

⋃
RecoverDataPath(pfx, d);

16 if num path ≥ k then
17 break;
18 end
19 Spur(pfx, s, d, Q);
20 end
21 return Ψ;

18

Pessimism-free graph

6 9

5

3

0

4

8

6

7

Suffix tree

6 9

5

3

0

4

8

6

7

Suffix tree

À

Prefix tree

e2

e1

e3 e4

e5

e6

e7

e8

e9

e10

e11 e12

e13

e14 e15

e1e2 e11 e4

6 9

5

3

0

4

8

6

7

e7

À

e1e2 e11 e4

(a) Build the suffix graph: shortest distance to target (b) Spur along the 1st critical path (post-CPPR = -12) (c) Spur along the 2nd critical path (post-CPPR = -11)

Suffix tree Prefix tree

e2

e1

e4

e11

-19

0

-18 -13

1

2

4 1 6
5

3 2
1

6 3

+19+1 +4 +8

+0

+19 +4 +8

+2

6 9

5

2

0

4

8

6

7

e7

À

e1e2 e11 e4

(d) Spur along the 3rd critical path (post-CPPR = -10)

Suffix tree Prefix tree

+19 +4 +8

+6 e11

6 9

5

2

0

4

8

6

7

e7

À

e1e2 e11 e4

(e) Spur along the 4th critical path (post-CPPR = -8)

Suffix tree Prefix tree

+19 +4 +8

+6 e11

6 9

5

2

0

4

8

6

7

e7

À

e1e2 e11 e4

(f) Spur along the 6th critical path (post-CPPR = -4)

Suffix tree Prefix tree

+19 +4

+10

+6 e11

e9

kth critical path (pessimism-free) Spurred node/deviation Frontier +v: Cumulative deviation costArtificial edge from the source

4 paths spurred

Post-CPPR slack = {-11, 7, -8, -4}

1 path spurred

Post-CPPR slack = -6

0 path spurred

7 path

candidates

1 path spurred

Post-CPPR = -2

5 path

candidates

4 path

candidates

1 path spurred

Post-CPPR slack = -10

6 path

candidates

6 path

candidates

e7

e11

e9

Figure 1.8: Exemplification of UI-Timer 1.0. (a) UI-Timer 1.0 builds a suffix tree in the initial iteration by finding the
shortest path tree rooted at the target node. (b) During the first search iteration, four paths are spurred from the most
critical path ⟨e3, e8, e12, e15⟩. (c) During the second search iteration, one path is spurred from the second critical path
⟨e2, e6, e14⟩. (d) During the third search iteration, one path is spurred from the third critical path ⟨e2, e7, e12, e15⟩. (e) No
path is generated from the fourth and fifth search iterations. (f) During the sixth search iteration, one path is spurred from
the sixth critical path ⟨e4, e10, e13, e15⟩.

19

1.0 grows equivalently with the prefix tree, in which each state represents a

path implicitly. Spur is responsible for neighboring expansion, iteratively in-

cluding a set of new deviation edges as tree leaves or search frontiers. Since

by definition all paths can be viewed as being deviated from the shortest

path, the initial state is equivalent to the root of the prefix tree. Using a

priority queue, the items or paths extracted are in the order of criticality.

Theorem 4: UI-Timer 1.0 solves each hold test or setup test in space com-

plexity O(nlogn + m + k) and time complexity O(nlogn + kn + kmlogk).

Proof The space complexity of UI-Timer 1.0 involves O(n + m) for storing

the circuit graph, O(nlogn) for lookup table, and O(n) for the suffix tree as

well as O(k) for the prefix tree. As a result, the total space requirement is

O(nlogn + n + k). On the other hand, it takes up to k iterations on calling

the procedure Spur in order to discover the top-k critical paths. Recalling

that the lookup table is built in time O(nlogn) and the suffix tree can be con-

structed in time O(n + m) using topological relaxation, the time complexity

of UI-Timer 1.0 is thus O(nlogn + kn + kmlogk).

An exemplification is given in Figure 1.8. (a) illustrates a suffix tree derived

by computing the shortest path tree rooted at the destination node from a

given pessimism-free graph. (b) shows a total of four paths are spurred

from the current-most critical path p1 = ⟨e3, e8, e12, e15⟩ in the first search

iteration. For instance, the path with deviation edge e11 has cumulative cost

equal to 0 + (6 − 5 + 3) = 4. The corresponding explicit path recovery

is ⟨e3, e8, e11, e14⟩ as a result of combining the prefix of p1 ending at the tail

of e11 and the suffix from the suffix tree beginning at the head of e11. On

the other hand, the path with deviation edge e1 has deviation cost equal to

0 + (7 − (−12) + 0) = 19 which in turns tells the value of its post-CPPR

slack being −12 + 19 = 7. Since the post-CPPR slack has been positive

already, by lemma 3 the following search space can be pruned (node marked

with a slash “/”). Accordingly in the end of this iteration, only three of the

four spurred paths are explored as search frontiers from the parent path p1.

(c)–(f) repeat the same procedure except no more paths are spurred from

the fourth and fifth search iterations.

20

1.7 Application to Multiple Tests

The architecture of UI-Timer 1.0 is developed on the basis of one test at

one time. That is, each test is regarded as an independent input and has no

dependence on each other. For applications where multiple tests are desig-

nated, a readily available parallel framework can be carried out by forking

multiple threads with each operating on a subset of tests. With the shared

lookup table and the circuit graph, we impose the least memory requirement

by maintaining only private information about the suffix tree and the prefix

tree for each thread. A number of tests with up to the maximum number

of threads supported by the machine can be simultaneously processed. One

multi-threaded application is presented in Algorithm 8, in which we sweep

the test and report the top-k critical paths for each test.

Algorithm 8: SweepReport(t̂, k)

Input: test vector t̂, path count k
Output: solution vector Ψ̂ of the top-k critical paths for each test

1 BuildCreditLookupTable();

2 #Parallel for index i in range(t̂) do
3 Gi

p ← pessimism-free graph for the test t̂[i];

4 Ψ̂[i]← GetCriticalPath(Gi
p.source, G

i
p.destination, k);

5 end

6 return Ψ̂;

As opposed to the sweep report in Algorithm 8, the block report is another

common application where probing the top-k critical paths across all timing

tests is the main goal. We refer the criticality of a test to the slack value

of the top most critical path extracted from this test. It is intuitive by set

property that the top-k critical paths must exist in the path set generated

from the top-k critical tests. Therefore, we first develop Algorithm 9 to peel

the top-k critical tests out of a given test set. Algorithm 9 sweeps the test

set and finds the most critical path for each test (line 1:4). The post-CPPR

slack value of each path is used as the criticality of the corresponding test

(line 5). A sorting procedure is then followed so as to peel out the top-k

critical tests (line 7:9).

Using Algorithm 9, the function of the block report for the globally top-k

critical paths is constructed in Algorithm 10. We first apply Algorithm 9 to

21

Algorithm 9: GetCriticalTest(t̂, k)

Input: test vector t̂, test count k
Output: the set Ω̂ of the top-k critical tests

1 BuildCreditLookupTable();

2 #Parallel for index i in range(t̂) do
3 Gi

p ← pessimism-free graph for the test t̂[i];
4 p← GetCriticalPath(Gi

p.source, G
i
p.destination, 1);

5 t.criticality ← p.slack ;
6 end

7 sort t̂ according to criticality;

8 Ω̂← top-k tests in t̂;

9 return Ω̂;

peel out the top-k critical tests (line 1). Since it has been shown that the

globally top-k critical paths must be investigated from these tests, we iter-

atively extract the top-k critical paths from each of the top-k critical tests

(line 3:10). An efficient min-max priority queue [20] is employed to dynami-

cally maintain the solution paths (line 2) and prune unnecessary search (line

4:6).

Algorithm 10: BlockReport(t̂, k)

Input: test vector t̂, path count k
Output: the set Ψ̂ of the globally top-k critical paths across t̂

1 Ω̂← GetCriticalTest(t̂, k);
2 Q← priority queue keyed on slack values;

3 for t ∈ Ω̂ do
4 if Q.size = k and t.criticality ≥ Q.top max then
5 break;
6 end
7 Gt

p ← pessimism-free graph for the test t;
8 Q← Q∪ GetCriticalPath(Gt

p.source, G
t
p.destination, k);

9 Q.maintain top k min(k);
10 end

11 Ψ̂← paths from the priority queue Q;

12 return Ψ̂;

Theorem 5: The function SweepReport in Algorithm 8 takes O(nlogn +

22

|t̂|(kn + kmlogk) / C) time complexity, where t̂ is the input test vector and

C is the number of available cores or threads.

Proof Algorithm 8 exerts the core procedure of UI-Timer 1.0 on a given test

vector t̂. A sequential version hence takes O(nlogn + |t̂|(kn + kmlogk)) time

complexity. Notice that the lookup tables for CPPR credit only needs one-

time building, which takes O(nlogn) time complexity. Running Algorithm

8 in a machine with C cores or C threads supports a parallel reduction by

up to a factor of C. Therefore, the runtime complexity of sweep report is

O(nlogn + |t̂|(kn + kmlogk) / C).

Theorem 6: The function GetCriticalTest in Algorithm 9 takes O(nlogn +

(n + m) / C + |t̂|log|t̂| + k) time complexity, where t̂ is the input test vector

and C is the number of available cores or threads.

Proof The first section (before sorting) of Algorithm 9 is nearly the same

as Algorithm 8, except that only the single most critical paths is generated.

Therefore, the time complexity is O(nlogn + |t̂|(n + m) / C). Afterwards,

sorting the test vector t̂ takes O(|t̂|log|t̂|) time complexity and outputting

the top-k critical tests takes linear time complexity O(k). Hence, the entire

runtime complexity of Algorithm 9 is O(nlogn + (n + m) / C + |t̂|log|t̂| +

k).

Theorem 7: The function BlockReport in Algorithm 10 takes O(nlogn + (n

+ m) / C + |t̂|log|t̂| + k2n + k2mlogk) time complexity, where t̂ is the input

test vector and C is the number of available cores or threads.

Proof Algorithm 10 first calls Algorithm 9 to obtain the top-k critical tests

from a given test vector t̂, which takes O(nlogn + (n + m) / C + |t̂|log|t̂| +

k) time complexity. Generating the globally top-k critical paths involves k

iterations calling Algorithm 7. Besides, each iteration requires k logarithmic

operations in order to maintain the top-k critical paths in the priority queue.

The time complexity of each iteration is thus O(kn + kmlogm + klogk). As

a result, the total time complexity of the block report is O(nlogn + (n + m)

/ C + |t̂|log|t̂| + k2n + k2mlogk).

23

1.8 Implementation and Technical Details

In this section, we highlight two implementation techniques that are practical

for the improvement of runtime performance, despite not reducing the theo-

retical bound. It is observed from the program profiler that the majority of

the runtime is spent on the construction of suffix tree, which is equivalent to

finding the shortest path tree in the pessimism-free graph. The shortest path

routines such as storage initialization, distance relaxation, and fanin/fanout

scanning typically exhibit a wild and deep swing in the search space and

consume a huge amount of CPU instructions. The problem becomes even

critical when multiple tests are taken into account. To remedy this problem,

two verified trials are worth delivering.

1.8.1 Memory Pool for Storage Initialization

Constructing the suffix tree is equivalent to discovering the shortest path

tree rooted at the target node of the pessimism-free graph. A generic frame-

work of any shortest path algorithms requires two data arrays, distance and

successor, for storing the distance labels and shortest path tree connection,

respectively [21]. Before the relaxation on distance labels takes effect, pro-

grammer should clear the two arrays by assigning an infinite value to every

distance entry and a nil value to every successor entry. Nonetheless, real ap-

plications come with multiple tests. This linear procedure will be repeated

for each test and the accumulative runtime becomes non-negligible. Fur-

thermore, in most cases each test involves only a small portion of the entire

circuit graph in labeling process. It is desirable to clear those entries ever

participating in the previous search. To this end, we pre-allocate a memory

pool for distance and successor arrays and clear their memory values in the

very beginning. We also keep track of those entries whose values were ever

modified in the course of shortest path routines and clear these entries by

the end of function return. As a consequence, the computational effort on

storage initialization can be minimized.

24

1.8.2 Redundant Search Space Pruning

Reducing the size of suffix tree is another effective way to decrease the run-

time, and it can be beneficial for the later search on prefix paths. Since we

consider only violating points, any suffix paths discovered so far with positive

value can be discarded so as to prune the subsequent search space. In the

course of shortest path search, the worst timing quantities at a given pin

(which can be precomputed) provide a lower bound and a upper bound on

the minimum hold and maximum setup path slack that are reachable from

this pin. An A*-like pruning strategy can thus be employed, as presented

in Algorithm 11. Notice that without loss of generality one can replace the

cutoff value with any user-specified slack threshold and this has no impact on

the overall correctness subject to a proper implementation of shortest path

algorithms.

Algorithm 11: is prunable(m, p, dis)

Input: test type m, a pin p, a distance array dis
Output: true if p is prunable from the suffix tree or false otherwise

1 if m = HOLD then
2 if dis[p] + atearlyp ≥ cutoff then
3 return true;
4 end
5 end
6 if dis[p]− atlatep ≥ cutoff then
7 return true;
8 end
9 return false;

Lemma 5: The pruning strategy in Algorithm 11 is correct, meaning that

the derived suffix tree contains no path suffix which has a slack value larger

than the given cutoff value.

We have proved that the cost of any source-destination path in the pessimism-

free graph is identical to the slack value of the corresponding data path. In

hold time test, the distance value of a pin p, denoted as dis [p], represents

the potential slack value discovered so far from the destination. The earliest

arrival time at this pin, denoted as atearlyp , is the minimum delay that will be

added for any complete data paths suffixed at the pin p. That is, the slack

25

values of such paths are lower-bounded by dis [p] + atearlyp and any search

points exceeding the cutoff values can be pruned. The proof for the setup

time test can be drawn in a similar way.

1.9 Experimental Results

UI-Timer 1.0 is implemented in C++ language on a 2.67 GHz 64-bit Linux

machine with 8 GB memory. The application programming interface (API)

provided by OpenMP 3.1 is used for our multi-thread parallelization [22].

Our machine can execute a maximum of four threads concurrently. Experi-

ments are undertaken on a set of circuit benchmarks released from the TAU

2014 CAD contests [1]. The benchmarks are modified from well-known in-

dustrial circuits (e.g., s27, s510, systemcdes, wb dma, pci bridge32, vga lcd,

etc.) that have been released to the public domain for research purpose.

Statistics of these circuits are summarized in Table 2.1. All benchmarks are

associated with multiple tests. The three largest circuits, Combo5, Combo6,

and Combo7, have million-scale graph data. For example, the circuit Combo6

has 3577926 pins and 3843033 edges.

1.9.1 Effectiveness of CPPR

Figure 1.9 depicts the impact of CPPR on hold and setup test slacks for

circuits des perf and vga lcd. The horizontal and vertical axes in the plots

denote the pre-CPPR slack and the post-CPPR slacks, respectively. Each

plot is attached a reference line with slope 1.0 indicating the identical slacks.

It is observed that each post-CPPR slack is at least the pre-CPPR slack

value and most post-CPPR slack values are improved. The plots indicate

the effectiveness of CPPR during design closure from designers’ perspective.

The synthesis and optimization tools can focus their efforts on true timing-

critical paths and optimize these paths only by the amount necessary to meet

the target clock frequency of the chip.

26

-2000 -1000 0 1000 2000
-2000

-1500

-1000

-500

0

500

1000

1500

2000

Pessimism-Oblivious Slack (ps)

P
e
ss

im
is

m
-R

e
m

o
va

l S
la

ck
 (

p
s)

Hold Test (aes_core)

data point
slack ratio 1.0

-2000 -1000 0 1000
-2000

-1500

-1000

-500

0

500

1000

Pessimism-Oblivious Slack (ps)

P
e
ss

im
is

m
-R

e
m

o
va

l S
la

ck
 (

p
s)

Setup Test (aes_core)

data point
slack ratio 1.0

-2000 -1000 0 1000
-1500

-1000

-500

0

500

1000

Pessimism-Oblivious Slack (ps)

P
e
ss

im
is

m
-R

e
m

o
va

l S
la

ck
 (

p
s)

Hold Test (mem_ctrl)

data point
slack ratio 1.0

-2000 -1000 0 1000
-2000

-1500

-1000

-500

0

500

1000

Pessimism-Oblivious Slack (ps)

P
e
ss

im
is

m
-R

e
m

o
va

l S
la

ck
 (

p
s)

Setup Test (mem_ctrl)

data point
slack ratio 1.0

-2000 -1000 0 1000 2000
-2000

-1500

-1000

-500

0

500

1000

1500

2000

Pessimism-Oblivious Slack (ps)

P
e
ss

im
is

m
-R

e
m

o
va

l S
la

ck
 (

p
s)

Hold Test (wb_dma)

data point
slack ratio 1.0

-2000 -1000 0 1000
-1500

-1000

-500

0

500

1000

Pessimism-Oblivious Slack (ps)

P
e
ss

im
is

m
-R

e
m

o
va

l S
la

ck
 (

p
s)

Setup Test (wb_dma)

data point
slack ratio 1.0

-1500 -1000 -500 0 500
-1500

-1000

-500

0

500

Pessimism-Oblivious Slack (ps)

P
e
ss

im
is

m
-R

e
m

o
va

l S
la

ck
 (

p
s)

Hold Test (systemcaes)

data point
slack ratio 1.0

-2000 -1000 0 1000 2000
-2000

-1500

-1000

-500

0

500

1000

1500

2000

Pessimism-Oblivious Slack (ps)

P
e
ss

im
is

m
-R

e
m

o
va

l S
la

ck
 (

p
s)

Setup Test (systemcaes)

data point
slack ratio 1.0

Figure 1.9: Impact of CPPR on hold and setup time slacks for circuits aes core, mem ctrl, wb dma, and systemcaes. Data
points are sampled based on the worst pre-CPPR slack value of each test.

27

Table 1.2: Comparison Between UI-Timer 1.0 and the Top-3 Winners, Timer-1st, Timer-2nd, and Timer-3rd from the TAU
2014 CAD Contest [4]

Circuit |V | |E| |C| # Tests # Paths
Timer-2nd Timer-3rd Timer-1st UI-Timer 1.0

AER MER CPU AER CPU AER CPU AER CPU
s27 109 112 6 6 9 9.97 50.00 0.20 0 0.40 0 0.20 0 0.01
s344 574 658 16 11 11 0 0 0.22 0 0.53 0 0.22 0 0.02
s349 598 682 16 11 11 0 0 0.25 0 0.53 0 0.22 0 0.02
s386 570 701 7 9 7 0 0 0.20 0 0.49 0 0.20 0 0.02
s400 708 813 22 5 6 0 0 0.23 0 0.56 0 0.21 0 0.02
s510 891 1091 7 21 7 0 0 0.18 0 0.40 0 0.18 0 0.01
s526 933 1097 22 5 6 0 0 0.25 0 0.56 0 0.22 0 0.02
s1196 1928 2400 19 16 14 0 0 0.25 0 0.59 0 0.22 0 0.01
s1494 2334 2961 7 10 19 0 0 0.25 0 0.58 0 0.21 0 0.02

systemcdes 10826 13327 1967 380 41436 6.79 32.89 2.27 0 3.62 0 0.14 0 0.09
wb dma 14647 17428 5218 1374 158 7.46 39.30 0.23 0 0.90 0 0.28 0 0.19
tv80 18080 23710 3608 838 19227963 8.20 43.49 32.38 0 23.13 0 0.23 0 0.23

systemcaes 23909 29673 6643 2500 13069928 6.53 29.92 33.23 0 22.44 0 0.62 0 0.37
mem ctrl 36493 45090 10638 3754 62938 5.41 24.73 0.65 0 3.71 0 0.83 0 0.52
ac97 ctrl 49276 55712 22223 9370 148 - - - 0 2.95 0 1.31 0 0.69
usb funct 53745 66183 17665 4392 129854 6.43 37.87 0.94 0 5.64 0 1.41 0 0.78

pci bridge32 70051 78282 33474 16450 17296 5.04 25.49 2.27 0 14.49 0 4.71 0 2.91
aes core 68327 86758 5289 2528 21064 6.72 31.70 0.68 0 4.46 0 0.96 0 0.62
des perf 330538 404257 88751 19764 1682 4.60 11.89 3.37 0 18.37 0 19.24 0 6.25
vga lcd 449651 525615 172065 50182 5281 7.94 43.21 16.78 0 119.24 0 159.15 0 30.19

Combo2 260636 284091 171529 29574 62938 4.70 24.07 9.19 0 49.00 0 56.12 0 13.67
Combo3 181831 284091 73784 8294 129854 6.71 35.14 3.39 0 20.30 0 11.35 0 4.53
Combo4 778638 866099 469516 53520 19227963 7.93 42.13 205.69 0 557.81 0 333.04 0 78.10
Combo5 2051804 2228611 1456195 79050 19227963 - - - N/A > 3 hrs 0 1225.50 0 226.47
Combo6 3577926 3843033 2659426 128266 19227963 - - - N/A > 3 hrs 0 3544.04 0 544.36
Combo7 2817561 3011233 2136913 109568 19227963 - - - N/A > 3 hrs 0 2485.81 0 464.68

|V |: size of node set. |E|: size of edge set. |C|: size of clock tree. # Tests: # of setup tests and hold tests. #
Paths: max # of data paths per test.
AER/MER: avg/max error rate of mismatched paths (%). CPU: avg program runtime (seconds). -: unexpected
program fault.

28

1.9.2 Comparison with TAU 2014 CAD Contest Winners

We first compare UI-Timer 1.0 with the final entries in the TAU 2015 CAD

contest. Adhering to contest rules, we ran the timer for each circuit bench-

mark with different path counts k from 1 to 20 across all setup and hold tests

and collected averaged quantities on runtime and accuracy for comparison.

The accuracy is measured by the percentage of mismatched paths to a golden

reference generated by an industrial timer [4, 1]. Table 2.1 lists the overall

performance of UI-Timer 1.0 in comparison to the top-3 timers, “Timer-

1st”, “Timer-2nd”, and “Timer-3rd”, for short, from the TAU 2014 CAD

contest [4]. For fair comparison, all timers are run in the same environment

with four threads.

We begin by comparing UI-Timer 1.0 with Timer-2nd. The strength of UI-

Timer 1.0 is clearly demonstrated in the accuracy value. Our timer achieves

exact accuracy yet Timer-2nd suffers from many path mismatches. The

highest error rate is observed in the smallest design s27. Unfortunately, we

are unable to report experimental data of ac97 ctrl, Combo5, Combo6, and

Combo7, because Timer-2nd encounters execution faults. It is expected that

Timer-2nd is faster in some cases as they sacrifice the accuracy for speed.

However, the performance margin of Timer-2nd can be up to ×141.78 worse

than UI-Timer 1.0 in circuit tv80 (i.e., 32.38 vs 0.23) while the counterpart

of UI-Timer 1.0 is more competitive by at most ×1.85 slower in des perf (i.e.,

3.37 vs 6.25). As a result, the solution quality of UI-Timer 1.0 is more stable

and reliable, especially for high-frequency designs where accuracy is the top

priority of timing-specific optimizations.

Next we compare UI-Timer 1.0 with Timer-3rd and Timer-1st. In general,

full accuracy scores are observed for all timers, while UI-Timer 1.0 reaches

the goal far faster than the others. It can be seen that Timer-3rd suffers

from significant runtime overhead across nearly all benchmarks and fails to

accomplish the three largest designs, Combo5, Combo6, and Combo7, within

3 hours. Compared to Timer-1st, the first-place winner in the TAU 2014 CAD

Contest, our Timer achieves fairly remarkable speedup across all benchmarks.

For example, our timer reaches the goal by ×22.0, ×5.3, and ×6.5 faster

than Timer-1st in circuits s1196, vga lcd, and Combo6, respectively. Similar

trend can be found in other cases as well. The speedup curve becomes more

pronounced for large circuits. In terms of memory profiling, we did not see too

29

much difference between UI-Timer 1.0 and other entires. All computations

are able to fit into the main memory with less than 1GB.

0 200 400 600 800 1000
0

100

200

300

400

500

600

Path Count (k)

R
u
n
tim

e
 (

se
co

n
d
s)

Runtime vs Path Count (tv80)

UI-Timer 1.0
Timer-1st
Timer-2nd
Timer-3rd

0 200 400 600 800 1000
0

10

20

30

40

50

Path Count (k)

E
rr

o
r

R
a
te

 (
%

)

Error Rate vs Path Count (tv80)

UI-Timer 1.0
Timer-1st
Timer-2nd
Timer-3rd

0 50 100
0

5

10

0 200 400 600 800 1000
0

100

200

300

400

500

600

Path Count (k)

R
u
n
tim

e
 (

se
co

n
d
s)

Runtime vs Path Count (systemcaes)

UI-Timer 1.0
Timer-1st
Timer-2nd
Timer-3rd

0 200 400 600 800 1000
0

5

10

15

20

25

30

Path Count (k)

E
rr

o
r

R
a
te

 (
%

)

Error Rate vs Path Count (systemcaes)

UI-Timer 1.0
Timer-1st
Timer-2nd
Timer-3rd

0 50 100
0

5

Figure 1.10: Performance comparison of UI-Timer 1.0, Timer-1st,
Timer-2nd, and Timer-3rd for circuits tv80 and systemcaes.

We investigate the scalability of UI-Timer 1.0 by varying the input param-

eter, the path count k, from 1 to 1000. The performance comparing UI-Timer

1.0 with the top-3 entires, Timer-1st, Timer-2nd, and Timer-3rd on two ex-

ample circuits, tv80 and systemcaes, is characterized in Figure 1.10. We see

all runs are accomplished instantaneously by UI-Timer 1.0 and the runtime

gap to the other timers becomes clear as path count grows. Take the point of

980 paths for example. UI-Timer 1.0 consumes only 3.41 seconds while the

runtime values for Timer-1st, Timer-2nd, and Timer-3rd are 10.38 seconds,

93.25 seconds, and 500.26 seconds, respectively. With regard to accuracy,

our timer is always exact and confers a fundamental difference to Timer-2nd

which sacrifices accuracy for speedup.

Finally we give a scatter plot showing the runtime growth of UI-Timer 1.0

versus the design size in Figure 1.11. The measurement is taken over the

open core series (systemcdes, wb dma, etc.) and the combo series (Combo2,

Combo3, etc.). We approximate the design size using discrete quantity on

30

Design size (|V| + |E|) ×105
0 2 4 6 8 10

R
un

tim
e

(s
)

0

5

10

15

20

25

30

35
Runtime growth (open core series)

Design size (|V| + |E|) ×106
0 2 4 6 8

R
un

tim
e

(s
)

0

100

200

300

400

500

600
Runtime growth (combo series)

Figure 1.11: Scatter plot on runtime growth and design size for UI-Timer
1.0.

the total number of nodes and edges in the circuit graph. It is convinced

by the least square reference line that the runtime of UI-Timer 1.0 grows

linearly with respect to the increase of design size. One can indirectly infer

the amount of runtime needed for larger designs.

1.9.3 Comparison with the State-of-the-Art Timer

We have seen the superior performance of UI-Timer 1.0 in comparison to the

top-ranked timers in the TAU 2014 timing analysis contest. Ever since the

contest was concluded, a few following works demonstrating promising results

have been published in recent years [13, 11, 12]. We are particularly interested

in the comparison with the timer, “iTimerC” [12], as it presented significant

improvement to the contest winners. We observed both timers, iTimerC

and UI-Timer 1.0, performed very well and achieved close results based on

the TAU 2014 contest environment. In order to discover the performance

margin, we enhance the difficulty and the scale of this experiment on the six

largest benchmarks, Combo2–Combo7. Each timer is requested to peel out

the top-50 critical tests and report the top-2000 critical paths for each of the

tests. In other words, evaluation is undertaken under an extreme condition

in which reporting a high number of critical paths over a subset of critical

tests is the goal.

The performance comparison between UI-Timer 1.0 and iTimerC [12] is

presented in Table 1.3. It can be seen that UI-Timer 1.0 achieves highly scal-

able and reliable performance when the design size and query difficulty scale

31

Table 1.3: Comparison Between UI-Timer 1.0 and iTimerC [12]

Circuit Type
iTimerC [12] UI-Timer 1.0
AER CPU AER CPU

Combo2 hold 0 4.20 0 2.77
Combo2 setup 0 12.94 0 11.35
Combo3 hold 0 3.98 0 1.39
Combo3 setup 0 10.08 0 8.16
Combo4 hold 0 14.09 0 14.38
Combo4 setup 0 73.91 0 24.21
Combo5 hold 0 1334.24 0 47.20
Combo5 setup unknown > 1 hr 0 59.01
Combo6 hold unknown > 1 hr 0 130.60
Combo6 setup unknown > 1 hr 0 127.59
Combo7 hold unknown > 1 hr 0 88.91
Combo7 setup unknown > 1 hr 0 110.90

AER: avg error rate of mismatched paths (%). CPU: runtime (s).

up. The higher runtime in setup test is expected because most critical paths

come from the violation of setup constraint. Our runtime is superior in almost

all testcases. We have observed significant runtime speedup to iTimerC by

more than an order of magnitude for million-scale graphs, Combo5, Combo6,

and Combo7. Considering the hold tests in Combo5, UI-Timer 1.0 requires

only 47.20 seconds which is ×28.27 faster than that by iTimerC. For the rest

of million-scale graphs, our timer is able to analyze the timing by less than

3 minutes, whereas iTimerC cannot finish the program within 1 hour. These

results have justified the practical viability of our timer.

1.9.4 Search Space Pruning through Slack Cutoff

Due to the high complexity of CPPR, modern industrial timers, in practice,

apply various cutoff slack strategies to prune the search space. For example,

the number of CPPR branching points can be controlled by some tolerance

or threshold values so as to reduce the runtime and memory. As aforemen-

tioned, one important feature of UI-Timer 1.0 is the ease to control the slack

margin, which has the potential to affect the number of paths generated dur-

ing CPPR. By default, UI-Timer 1.0 reports negative slack and such cutoff

value can be easily tuned since every path is (1) implicitly represented in con-

stant time and space, and (2) generated in increasing order of post-CPPR

32

slack values.

Cutoff slack (ps)
20 40 60 80 100

To
ta

l r
un

tim
e

(s
)

150

200

250

300

350

400

450

500

550
Cutoff slack pruning (Combo6)

Cutoff slack (ps)
20 40 60 80 100

To
ta

l r
un

tim
e

(s
)

150

200

250

300

350

400

450

500
Cutoff slack pruning (Combo7)

Figure 1.12: Runtime reduction curve under different slack cutoff values.

The runtime reduction under different cutoff slack values is plotted in

Figure 1.12. We run experiments with five cutoff slack values, 20 ps, 40

ps, 60 ps, 80 ps, and 100 ps on the two largest benchmarks, Combo6 and

Combo7. It is expected that the runtime decreases as the cutoff slack values

increase. The higher the cutoff slack value is, the less the search space is

spanned by path ranking. In spite of higher pessimism (less CPPR credit),

the curve can be an useful indicator in striking a balance between program

runtime and pessimism margin.

1.9.5 Extension to Distributed Computing

We have performed an extra evaluation on a distributed system running

the three largest cases, Combo5, Combo6, and Combo7, in order to further

demonstrate the scalability of our program. UI-Timer 1.0 is advantageous in

handling every timing test independently. In distributed environment, mul-

tiple tests can be evenly partitioned into groups with respect to the number

of cores. Each group is then assigned to one computing node and is ana-

lyzed by the timer independently. The application programming interface

(API) provided by OpenMPI 1.6.5 is used as our message passing interface

for distributed computing [23]. The evaluation is taken on a computer cluster

having over 500 compute nodes with each configured with 16 Intel E5-2670

2.60GHz cores and 128GB RAM. The network infrastructure is 384-port Mel-

lanox MSX6518-NR FDR InfiniBand for high speed cluster interconnect [24].

We begin by demonstrating the runtime performance versus the number of

33

0 100 200 300 400
0

50

100

150

200

250

Number of cores

C
P

U
 r

u
n
tim

e
 (

in
 s

e
co

n
d
s)

Performance vs Core Count

Combo5 (hold)
Combo6 (hold)
Combo7 (hold)

0 100 200 300 400
0

100

200

300

400

500

600

Number of cores

C
P

U
 r

u
n
tim

e
 (

in
 s

e
co

n
d
s)

Performance vs Core Count

Combo5 (setup)
Combo6 (setup)
Combo7 (setup)

0 100 200 300 400
0

20

40

60

80

100

Number of cores

R
u
n
tim

e
 S

p
e
e
d
u
p
 (

tim
e
s)

Performance vs Core Count

Combo5 (hold)
Combo6 (hold)
Combo7 (hold)

0 100 200 300 400
0

20

40

60

80

100

Number of cores

R
u
n
tim

 S
p
e
e
d
u
p
 (

tim
e
s)

Performance vs Core Count

Combo5 (setup)
Combo6 (setup)
Combo7 (setup)

Figure 1.13: Runtime and speedup curves of hold tests and setup tests for
benchmarks Combo5, Combo6, and Combo7 on a distributed system.

cores that is invoked for running our program. The core count is varied from

1 to 400 and the runtime is measured by a synchronized moment at which

all process cores complete their jobs (i.e., reading the file, passing message,

and handling all algorithmic procedures). The performance is interpreted

in terms of the runtime and its relative speedup to a baseline which was

run in single-core execution. Figure 1.13 shows the performance plot of this

evaluation. It can be clearly seen that the runtime is reduced drastically as

the number of cores increases. For example, the setup tests of Combo6 are

accomplished by less than 1 minute with 16 cores, obtaining ×5.23 speedup

to the single-core execution (266.29 vs 50.95). Similar speedup curve is also

present in other testcases. In a single minute, hold tests and setup tests of

all testcases are solvable using only 16 cores.

34

1.10 Conclusion

In this chapter we have presented UI-Timer 1.0, an exact and ultra-fast algo-

rithm for handling the CPPR problem during static timing analysis. Unlike

existing approaches which frequently use exhaustive path search with case-

by-case heuristics, our timer maps the CPPR problem to a graph-theoretic

formulation and applies an efficient search routine using a highly compact

and efficient data structure to obtain an exact solution. We have highlighted

important features of UI-Timer 1.0 such as simplicity, coding ease, and most

importantly the theoretically-proven completeness and optimality. Compar-

atively, experimental results have demonstrated the superior performance of

UI-Timer 1.0 in terms of accuracy and runtime over existing timers.

We shall discuss how we extend UI-Timer 1.0 in Chapter 2 to deal with

incremental timing analysis with CPPR [25]. Various stages of the design

flow such as logic synthesis, placement, routing, physical synthesis, and opti-

mization facilitate a need for incremental timing analysis. The performance

of incremental timing with CPPR plays a key role in the success of timing

optimizations. Due to the path-specific property of CPPR, CPPR-aware

incremental timing has emerged as one of the major challenges in existing

timing analysis tools [9]. A high-quality CPPR-aware incremental timer is

definitely important to speed up the timing closure.

35

CHAPTER 2

OPENTIMER: A HIGH-PERFORMANCE
TIMING ANALYSIS TOOL

2.1 Introduction

The lack of accurate and fast algorithms for high-performance timing analysis

tool with incremental capability has been recently pointed out as a major

weakness of existing timing optimization flows [9]. In the deep submicron

era, timing-driven operations are imperative for the success of optimization

flows. Optimization transforms change the design and therefore have the

potential to significantly affect timing information. The timer must reflect

such changes and update timing information incrementally and accurately

in order to ensure slack integrity as well as reasonable turnaround time and

performance [2]. However, such a process requires extremely high complexity

especially when path-based analysis is configured [1, 8, 12]. A high-quality

incremental timer capable of path-based analysis is definitely advantageous

in speeding up the timing closure.

1

Optimization Transforms

R
u

n
ti

m
e

im
p

ro
v
em

en
t

(x
) Impact of incremental timing

on runtime performance

10 100 1000 10000 100000 1000000

2.13

10.58

3.78
4.95

6.41

8.37

9.46

Full timing

Incremental timing

Figure 2.1: Performance improvement of incremental timing to full timing
on one benchmark from [9].

The significance of incremental timing is demonstrated in Figure 2.1. It is

observed that the runtime improvement keeps growing as the number of op-

36

timization transforms increases. One obvious reason is that once the critical

paths in a design have been reported, the optimization tool would optimize

the logic (e.g., gate sizing, buffer insertion) so as to overcome the timing vio-

lations. This subtle change can affect up to the majority of a circuit, whereas

in reality, depending on the trace of critical paths, the timing update may

only involve a small portion of the circuit. Since an optimization tool can

perform millions of logic transformations, it is important that the timing

profile is kept up-to-date in an incremental fashion. Otherwise, optimization

tools cannot support fast turnaround for timing-specific improvement, which

dramatically degrades the productivity.

Figure 2.2: The software architecture of OpenTimer.

Besides being incremental, one important feature of a practical timer is

the capability of common path pessimism removal (CPPR). CPPR is a path-

specific timing update that intends to remove redundant pessimism incurred

by common segments between data paths and clock paths. Unwanted pes-

simism might force designers and optimization tools to waste an unnecessary

yet significant amount of effort on fixing paths that meet the intended clock

frequency. This problem becomes even more critical when design comes to

the deep submicron era where data paths are shorter, clocks are faster, and

clock networks are longer to accommodate larger and complex chips. How-

ever, the real problem is the amount of pessimism that needs to be removed is

path-specific. Computational complexity and space requirements for CPPR

typically grows exponentially as the design size increases, not to mention the

challenge in conjunction with incremental timing analysis. Consequently,

in this chapter we introduce OpenTimer, an open-source high-performance

37

timing analysis tool. An overview of OpenTimer is shown in Figure 2.2. We

highlight three key features of OpenTimer as follows:

• Parallel framework. OpenTimer applies a pipeline task scheduler

as the central engine. Critical tasks such as timing propagation and

endpoint slack calculation are scheduled into the pipeline to overlap

their runtimes.

• Incremental capability. OpenTimer precisely and minimally cap-

tures the features that are key to incremental timing. With lazy eval-

uation, we are able to keep computation minimum.

• Path-based analysis. OpenTimer represents the path implicitly us-

ing efficient and compact data structure, yielding a significant saving

in both search space and search time for CPPR.

The effectiveness and efficiency of our timer have been evaluated on a set

of industry benchmarks released from the TAU 2015 CAD contest. Com-

pared to the top performers in the TAU 2015 CAD contest, OpenTimer

confers a high degree of differential in nearly all aspects. The source code

of OpenTimer has been released to the public domain for promoting further

research.

2.2 Incremental Timing Analysis and CPPR

Various stages of the design flow such as logic synthesis, placement, routing,

physical synthesis, and optimization facilitate a need for incremental timing

analysis [9]. During these stages, local operations such as gate sizing, buffer

insertion, or net rerouting can modify small fractions of the design and sig-

nificantly change both local and global timing landscapes. As the example

shown in Figure 2.3, a change on gate B3 has the potential to affect up to

the majority of the circuit (downstream timing). Nevertheless, depending on

the trace of critical paths, only a small portion of the timing would need to

be updated. For instance, if such a change does not affect the arrival time

at I1:o, then every downstream timing after I1:o is unaffected.

In addition to incremental processing, the capability of CPPR is another

important component for modern timing analysis tools. Optimization trans-

38

B3

CLK

B1

B2

B4

D
Q

FF2

IN2

IN1

D
Q

FF1

D

FF3

Q

OUT

(20, 25)
(10, 45)

(10, 30)

(50, 50)

(50, 50)

(4
0, 4

0)

(4
0, 4

0)

Data path 1 Data path 2

Capturing clock path

(10, 30)(0, 0)

(0, 0)

(0, 0)

CK

CK

CK
(4

0, 4
0)

Affected area for
change on B3

(downstream cone)

Incremental timing

I1

Figure 2.3: An example of sequential circuit network.

forms on the data network have no impact on CPPR credit (or CPPR adjust-

ment) for any given launch-capture flip-flop (FF) pairs. Because the clock

paths are not changed, any cached value for CPPR credit can be reused.

However, in reality many optimization transforms are applied to the clock

network, such as resizing a buffer or adding or deleting buffers on the clock

tree in order to meet slack or skew targets. These changes can potentially

affect a large number of data paths and slacks, and these data points must

be recomputed with updated CPPR credits. Further, in some cases, changes

on the clock network may not even impact CPPR for any data paths at all.

As the example shown in Figure 2.3, the change on B3 can impact the CPPR

credit for the launch-capture FF pair FF2 and FF3, while a change on B4

does not affect the CPPR credit for any FF pair. Therefore, the challenge of

incremental CPPR is correctly identifying what data points are affected by

which changes in an incremental manner.

2.3 Tool Configuration

OpenTimer follows the industry format to analyze the timing of your designs.

The industry-standard format for timing analysis requests the following input

files.

• Two liberty (.lib) files that defines the early and late characteristics

of available cells in a given design, including pin capacitance, delay and

39

slew look-up tables (LUTs), and setup/hold timing guards for sequen-

tial elements.

• A verilog (.v) file that defines the net list and circuit topology in the

gate level for a given design, including primary input/output ports and

connections among gates.

• A parasitics (.spef) file that defines the design parasitics of a set of

nets as a resistive-capacitive (RC) network, including the capacitance

of internal nodes and wire resistance between internal nodes.

• A Synopsys design constraint (.sdc) file that defines the design op-

erating conditions, including the clock port, clock period, initial timing

on primary input ports, and load capacitance of primary output ports.

Given these input files, we develop a CPPR-aware incremental timer that

supports incremental timing updates subject to a set of design modifiers and

reports the timing with CPPR of any queried data path or timing point. The

slack prior to and after CPPR is referred to as pre-CPPR slack and post-

CPPR slack, respectively. Particularly, the timer adheres to the following

operations:

• insert gate: adds an unconnected gate.

• repower gate: changes the size of a gate.

• remove gate: removes a disconnected gate.

• insert net: creates an empty net.

• remove net: removes a net from the design.

• read spef : asserts parasitics on existing nets.

• disconnect pin: disconnects a pin from its net.

• connect pin: connects a pin to a net.

• report at: reports the arrival time at a pin for any rise/fall transition

and early/late split.

• report rat: reports the required arrival time at a pin for any rise/fall

transition and early/late split.

• report slack: reports the worst post-CPPR slack at a pin for any

rise/fall transition and early/late split.

40

• report worst paths: reports the worst post-CPPR path either in the

design or through a specified pin.

The first eight operations describe the gate-level, net-level, and pin-level

modifications on the design topology. The last four operations probe the

design to report timing information. In order to collaborate with optimiza-

tion tools, the timer should process these operations in an interactive or

online manner. That is, advanced input disclosure or offline preprocessing is

prohibited.

2.4 Algorithm

The overall framework of OpenTimer is presented in Algorithm 12. It first

initializes the circuit based on input liberty, verilog, parasitic, and Synopsys

design constraint files. Then it enters the interactive while loop, reading the

operation commands and processing each command accordingly.

Algorithm 12: OpenTimer(.lib, .v, .spef, .sdc)

Input: .lib, .v, .spef, .sdc files

1 initialize the circuit from input .lib, .v, .spef, and .sdc files;
2 while op ← GetOperationCommand do
3 process the operation command op accordingly;
4 end

2.4.1 State of the Art: UI-Timer

OpenTimer is built upon the state-of-the-art timer, UI-Timer (the winner of

the TAU 2014 CAD contest), which targets on one-time full timing update

with CPPR [8]. We have presented UI-Timer in Chapter 1. OpenTimer

inherits the merits of UI-Timer, in particular its efficient data structures

for pessimism retrieval and path search, and enhances it to be capable of

incremental processing. For pessimism retrieval, we have implemented the

LUT-based method by UI-Timer. Several LUTs are first built through the

clock tree. Based on these LUTs, the amount of pessimism can be quickly

41

retrieved by referring to the lowest-common ancestor (LCA) between tree

nodes.

The second idea we borrowed from UI-Timer is the implicit representation

of path. UI-Timer proposed two complementary data structures, namely

suffix tree and prefix tree, to represent the search space of the path ranking.

The suffix tree represents the shortest path tree rooted at a referenced node.

The prefix tree is a tree order of non-suffix-tree edges such that each tree

node represents the path being deviated on the corresponding edge from

its ordinary trace in the suffix tree. Each path can be implicitly stored by

the two data structures and the memory usage and the search time can be

significantly reduced to constant time per path during the search. In the

following sections, we shall focus on the major contributions of OpenTimer,

while algorithmic details of pessimism retrieval and path ranking can be

referred to [8].

2.4.2 Topological Ordering and Incremental Levelization

In timing analysis, the circuit is interpreted as a set of pin-to-pin connections

or a directed acyclic graph (DAG)G = {P,E}, where P is the pin set and E is

the edge set. Because of this special property, every pin p in the circuit graph

can be levelized by a level index “level [p]” such that the topological order

among different pins is maintained. The timing can thus be propagated level

by level without destroying the circuit topology. In fact, we observe three

major advantages of the topological levelization:

• Incremental timing can be achieved via the insertion of frontier pins

from which the timing propagation originates.

• Using the level indices, timing can be propagated in a pipeline fashion

as dependencies can be scheduled into different levels.

• Multi-threading is highly scalable since the timing in a given level can

be propagated simultaneously.

As a result, we construct a bucket list as the core data structure for timing

propagation. Each bucket is associated with a level index l and has a list

storing those pins with level indices equal to l. The bucket list also records

the minimum and maximum level indices of non-empty pin lists. Starting

42

from the pin list in the lowest level, the function of incremental levelization is

presented in Algorithm 13. In a rough view, Algorithm 13 iteratively levelizes

a pin from the lowest level to the highest level (line 2:16). Once the pin is

levelized, all its fanout pins are inserted to the bucket list (line 8:13).

Algorithm 13: IncrementalLevelization(B)

Input: bucket list B
Output: level indices of pins

1 l ← B.min nonempty level ;
2 while l ≤ B.max nonempty level do
3 for p ∈B.pinlist(l) do
4 for p− ∈ p.fanin pins do
5 level [p]← max(level [p−] + 1, level [p]);
6 end
7 B.insert(p);
8 for p+ ∈ p.fanout pins do
9 if level[p] + 1 > level[p+] then

10 level [p+] = level [p] + 1;
11 end
12 B.insert(p+);
13 end
14 end
15 l ← l + 1;
16 end

Lemma 6: Denoting the downstream pin set of a pin as D+
p , for every pin

p in the bucket list B, we have {p′ ∈ B | p′ ∈ D+
p } after Algorithm 13.

2.4.3 Forward Timing Propagation

Using the levelized bucket list, we develop the procedure of forward timing

propagation. The forward timing propagation performs six tasks, RC prop-

agation, slew propagation, delay propagation, arrival time propagation, jump

point propagation, and CPPR credit propagation, for every pin in the bucket

list level by level. RC propagation updates the RC parameters that are re-

quired for slew and delay propagations through a net. Slew propagation

propagates the slew from an input cell pin to the output cell pin through a

cell or an output cell pin to multiple input cell pins through a net. Delay

43

propagation computes the edge delay through cells and nets. Similar to slew

propagation, arrival time propagation propagates the arrival time through

delay values on cell edges or net edges. In jump point propagation, we con-

tract the graph in order to reduce the search space. CPPR credit propagation

computes the amount of pessimism to be removed for a timing test.

RC Propagation

We adopt the parasitic protocol by [9], where the output slew and delay

through the RC network of a net are approximated by the symmetric of

the value of the first and second moments of the impulse response. The

approximation can be parameterized in a way such that the output slew and

delay are functions of these RC parameters. Therefore, the goal of the RC

propagation is to compute these RC parameters for any RC network. While

the details are referred to [9], Algorithm 14 presents the procedure of RC

propagation on the RC networks in a given level.

Algorithm 14: PropagateRC(l)

Input: level index l

1 B ← bucket list of the timer;
2 for p ∈ B.pinlist(l) do
3 if p.is rc network root = true then
4 n← p.net ;
5 if n.is rc up to date = false then
6 update RC parameters for net n;
7 end
8 end
9 end

Slew and Delay Propagation

The propagations of slew and delay are carried out by Algorithm 15 and

Algorithm 16, respectively. For each pin from a given level, the slew and

delay to this pin are propagated from its fanin through either the RC network

using pre-computed RC parameters (line 7:8 in Algorithm 15 and line 4:5

in Algorithm 16) or the cell timing arc where the values are obtained via

44

extrapolation or interpolation on the corresponding slew and delay LUTs

(line 10:12 in Algorithm 15 and line 7:9 in Algorithm 16).

Algorithm 15: PropagateSlew(l)

Input: level index l

1 B ← bucket list of the timer;
2 for p ∈ B.pinlist(l) do
3 if p.num fanins = NULL then
4 assign slew to p from the primary input;
5 else
6 for e ∈ p.fanin edges do
7 if e.is net edge = true then
8 propagate slew to p through rc-timing on e.net ;
9 else

10 if e.is constraint edge = false then
11 propagate slew to p through LUT on e;
12 end
13 end
14 end
15 end
16 end

Arrival Time Propagation

The propagation of arrival time is trivial once the delay value on each edge

is ready. It has been shown that finding the earliest and latest arrival time

in the circuit graph is equivalent to finding the shortest and longest paths in

a DAG, which can be fulfilled using levelized propagation [2]. Algorithm 17

presents such propagation at a given level.

Jump Point Propagation

Reducing the size of the timing graph is an effective way to speed up the

path search. Because of intrinsic properties of cells, many paths are present

in a tree form. To be more specific, for some pin pairs at certain transitions,

the paths in between are uniquely defined. For instance, the AND gate in

Figure 2.4 is unate-definite (i.e., either positive unate or negative unate),

and hence any paths passing through are not diverged. Starting from pin

45

Algorithm 16: PropagateDelay(l)

Input: level index l

1 B ← bucket list of the timer;
2 for p ∈ B.pinlist(l) do
3 for e ∈ p.fanin edges do
4 if e.is net edge = true then
5 update delay of e through rc-timing on e.net ;
6 else
7 if e.is constraint edge = false then
8 update delay of e through LUT on e;
9 end

10 end
11 end
12 end

Algorithm 17: PropagateArrivalTime(l)

Input: level index l

1 B ← bucket list of the timer;
2 for p ∈ B.pinlist(l) do
3 if p.num fanins = 0 then
4 assign arrival time to p from the primary input;
5 else
6 for e ∈ p.fanin edges do
7 propagate arrival time to p through delay on e;
8 end
9 end

10 end

46

FF3:D at any transition, there exists only one path back to pin FF1:Q or

pin FF2:Q. Consequently, we can construct a shortcut that allows the path

search to jump over the subcircuit from FF2:Q or FF1:Q to FF3:D. In this

case, the pin FF3:D is named as “jump head” and pins FF2:Q and FF1:Q

are named as “jump tail”.

D
Q

FF2

D
Q

FF1

D

FF3

Q

(50, 50)

(50, 50)

(4
0, 4

0)

(4
0, 4

0)

CK

CK

CK D
Q

FF2

D
Q

FF1

D

FF3

Q

(4
0, 4

0)

(4
0, 4

0)

CK

CK

CK

5 pin-to-pin connections
2 jump-to-jump

connections

Pin connection
Jump point
connection

(a) Ordinary circuit graph (b) Contracted circuit graph

Figure 2.4: Graph contraction using jump-point connections.

The examination of whether a pin is a jump head or a jump tail is presented

in Algorithms 18–19. It can be analogized to a tree where the jump head is

the root and the jump tail is the leave. As shown in Algorithm 18, a pin at

any transition and timing split is referred to as a jump head only if its output

signal is not branched. On the other hand, the jump tail is determined by

whether its input signal is uniquely defined. Using Algorithms 18–19, the

construction and propagation of jump points are given by Algorithms 20–21.

In a rough view, Algorithm 20 induces the jump point connection through

a recursive traversal to discover any tree-structured subcircuit. Algorithm

21 applies Algorithm 20 to each pin in a give level. Notice that jump point

connections are only considered among data network.

Algorithm 18: is jump head(p)

Input: an existing pin p

1 if p.num fanouts = 0 or p.num fanouts > 1 or p.is in clock tree
then

2 return true;
3 end
4 e← p.fanout edges ;
5 return e.timing sense = non unate;

47

Algorithm 19: is jump tail(p)

Input: an existing pin p

1 if p.num fanins = 0 then
2 return true;
3 end
4 for e ∈ p.fanin edges do
5 if e.is constraint edge = false then
6 head ← is jump head(e.from pin);
7 if head = true then
8 return true;
9 end

10 end
11 end
12 return false;

Algorithm 20: induce jump point(p, p′, d)

Input: two pins p and p′ and a delay value d

1 p.jump head ← p′;
2 if is jump tail(p) = true then
3 if p ̸= p′ then
4 insert a jump connection from p to p′ with delay d;
5 end
6 return;
7 end
8 for e ∈ p.fanin edges do
9 p− ← e.from pin;

10 if e.is constraint edge = true or p−.is in clock tree = true then
11 continue;
12 end
13 induce jump point(p−, p′, d+ e.delay);
14 end

Algorithm 21: PropagateJumpPoint(l)

Input: level index l

1 B ← bucket list of the timer;
2 for p ∈ B.pinlist(l) do
3 if p.is in clock tree = true or is jump head(p) = false then
4 return;
5 end
6 induce jump point(p, p, 0);
7 end

48

Algorithm 22: PropagateCPPRCredit(l)

Input: level index l

1 B ← bucket list of the timer;
2 for p ∈ B.pinlist(l) do
3 t← p.timing test ;
4 if t = NULL or t.is sequential test = false then
5 continue;
6 end
7 # Fork Thread Task {
8 path ← GetCriticalPath(t, 1) [8];
9 t.cppr credit ←path.cppr credit ;

10 };
11 end

CPPR Credit Propagation

For each data pin of an FF that is guarded by setup tests or hold timing tests,

we need to discover the corresponding CPPR credit for slack adjustments [1].

The CPPR credit is defined as the numeric that is applied to skew the worst

post-CPPR slack of a particular test [9]. As aforementioned, the state-of-

the-art path tracing algorithm by UI-Timer [8] is our default engine for the

investigation of CPPR credits for any timing tests. The algorithm of CPPR

credit propagation is presented in Algorithm 22. In contrast to UI-Timer

where the search graph is induced from the flattened circuit graph, we are

able to reduce the search space with jump points which can lead to significant

speedup. Because of the independence of timing tests, the path tracing can

be performed in a parallel manner (line 7:10).

2.4.4 Backward Timing Propagation

In contrast to forward timing propagation, the backward timing propagation

propagates the timing for every pin in the bucket list from the highest level

to the lowest level by performing two major tasks, fanin propagation and

required arrival time propagation. Fanin propagation inserts the fanin of each

pin from the bucket list in order to construct the upstream cone. Required

arrival time propagation propagates the timing constraint in a backward

manner.

49

Fanin Propagation

In order to perform backward timing propagation, we need to construct the

upstream cone of every pin in the bucket list. Considering the procedure

in Algorithm 23 which inserts all fanin pins from a pin list in a given level,

the upstream cone for backward timing propagation can be constructed by

calling this procedure level by level.

Algorithm 23: PropagateFanin(l)

Input: level index l

1 B ← bucket list of the timer;
2 for p ∈ B.pinlist(l) do
3 for p− ∈ p.fanin pins do
4 B.insert(p−);
5 end
6 end

Required Arrival Time Propagation

The propagation of required arrival time in a given level is shown in Algo-

rithm 24. Algorithm 24 exerts similar procedure as Algorithm 17 but in a

reversed direction (line 8:10). For constrained pin, the required arrival time

is assigned by the constraint value from the corresponding timing test (line

4:5) and is adjusted by the CPPR credit in case of sequential timing tests

(line 6).

2.4.5 Design Modification

Based on the levelized bucket list, the objective of dealing with design modi-

fiers is to identify the set of “frontier pins” from which the incremental timing

update originates. Starting at the frontier pins, Algorithm 13 constructs a

downstream cone of the affected area which will be used for incremental tim-

ing update. We consider the design modifiers at gate level, net level, and pin

level.

50

Algorithm 24: PropagateRequiredArrivalTime(l)

Input: level index l

1 B ← bucket list of the timer;
2 for p ∈ B.pinlist(l) do
3 if p.num fanouts = 0 then
4 t← p.timing test ;
5 assign required arrival time to p from t;
6 adjust required arrival time with CPPR credit from t;
7 else
8 for e ∈ p.fanout edges do
9 propagate required arrival time to p through delay on e;

10 end
11 end
12 end

Gate-Level Modifications

The operations that modify the design at gate level are (1) insert gate, (2)

remove gate, and (3) repower gate. Recall that the operation insert gate

creates a new gate in the design and the operation remove gate removes a

disconnected gate from the design. It is obvious that the two operations

introduce no frontier pins as the gate being inserted or removed is not con-

nected to the current circuit. Therefore, for gate-level design modifiers we

only deal with the operation repower gate.

D
Q

FF2

D
Q

FF1

D

FF3

Q

ANDX1(4
0, 4

0)

(4
0, 4

0)

CK

CK

CK

(a) A circuit fragment

Pin connection

D
Q

FF2

D
Q

FF1

D

FF3

Q

ANDX2(4
0, 4

0)

(4
0, 4

0)

CK

CK

CK

(b) Repower gate (X1:X2)

Frontier pins
(FF1:Q and FF2:Q)

AND gate with size X1 AND gate with size X2

Downstream

Figure 2.5: A design modification by repowering the gate with another size
(repower gate).

An example of the operation repower gate is shown in Figure 2.5. The

AND gate in the data network is repowered from size X1 (cell ANDX1) to

51

size X2 (cell ANDX2). Repowering a gate changes the cell timing and the pin

capacitance. The affected area should be traced back by one level where the

pins connecting the gate originate the incremental timing. In this example,

the incremental timing propagation is captured by two frontier pins FF1:Q

and FF2:Q. Using this fact, our solution to the operation repower gate is

presented in Algorithm 25. Algorithm 25 first replaces the cell that was

attached to the gate with the new cell (line 1). Afterward the frontier pins,

which are fanin pins of each input pin of the gate, are inserted into the bucket

list (line 3:9) for incremental timing update.

Algorithm 25: repower gate(g, c)

Input: an existing gate g, a new cell c

1 remap the gate g to the new cell c;
2 B ← bucket list of the timer;
3 for p ∈ g.input pins do
4 for p− ∈ p.fanin pins do
5 B.insert(p−);
6 n← p−.net ;
7 n.is rc up to date ← false;
8 end
9 end

Net-Level Modifications

There are three operations that modify the design at net level: (1) insert net,

(2) remove net, and (3) read spef. Similar to gate-level modifications, the

operation insert net creates an empty (disconnected) net for the design and

the operation remove net deletes an empty net from the design. Due to the

isolation, both operations have no impact on current timing profile. The

net-level design modifier read spef is the only operation that could affect the

timing. Our solution to read spef is presented in Algorithm 26. Algorithm

26 first parses the given .spef file into an object (line 1). Then it iterates

each net that was parsed from the .spef file and asserts the new parasitics to

it (line 3:4). Whenever the parasitics of a net change, the incremental timing

update is captured by the root of the corresponding RC network (line 5:7).

52

Algorithm 26: read spef(.spef)

Input: a .spef file

1 O ← parse .spef file into an object;
2 B ← bucket list of the timer;
3 for net n ∈ O do
4 update the parasitics of net n through O;
5 n.is rc up to date ← false;
6 pr ← n.rc network root pin;
7 B.insert(pr);
8 end

Pin-Level Modifications

The pin-level design modifiers are the most crucial operations since they di-

rectly alter the connectivity in the design. There are two operations that

modify the design at pin level: (1) disconnect pin and (2) connect pin. The

operation disconnect pin disconnects the pin from the net it is connected to

and the operation connect pin connects the pin to a given net. Both oper-

ations alter the structure of the design and directly affect the timing. Con-

sequently, we need to identify the frontier pins that capture the incremental

timing update for such changes.

(b) Connect pin FF3:D to net n1

Frontier pins (I1:o)

D
Q

FF2

D
Q

FF1

D

FF3

Q

I1
(4

0, 4
0)

(4
0, 4

0)

CK

CK

CK

Net n1 (I1:o and FF3:D)

Downstream

D
Q

FF2

D
Q

FF1

I1
(4

0, 4
0)

(4
0, 4

0)

CK

CK

(a) Disconnect pin FF3:D from net n1

Frontier pins
(I1:o and FF3:D)

Net n1 (I1:o)

Downstream

D

FF3

Q

CK

Figure 2.6: A design modification by disconnecting/connecting a pin
from/to a net (disconnect pin/connect pin).

An example for operations disconnect pin and connect pin are given in

Figure 2.6. It can be seen from (a) disconnecting the pin I1:o from its net

cuts off the connection from I1:o to FF3:D. This change affects the timing at

the pins I1:o and FF3:D as well as the downstream cone of the pin FF3:D.

53

Therefore, disconnecting a pin introduces two frontier pins that are the two

end points at the connection to or from which the pin is connected. On the

other hand, connecting a pin to a given net establishes a new connection. In

(b), connecting the pin I1:o to the net n1 produces a new connection from

the pin I1:o to the pin FF3:D. This change has impact on the timing profile

in the downstream cone of pin I1:o. As a result, connecting a pin introduces

one frontier pin which is the tail of this connection. Algorithms 27–28 present

our solutions to pin-level operations. Notice that a pin is considered either

a root of the RC network where we need to remove or insert all possible

connections, including the jump point connection that covers such a change

(line 4:8 in Algorithm 27 and line 2:7 in Algorithm 28), or the terminal of

the RC network in which case we deal with the only one connection (line 10

in Algorithm 27 and line 9:11 in Algorithm 28).

Algorithm 27: disconnect pin(p)

Input: an existing pin p

1 n← p.net ;
2 pr ← n.rc network root pin ;
3 B ← bucket list of the timer;
4 if p = pr then
5 for p′ ∈ n.pinlist −{pr} do
6 B.insert(p′);
7 disconnect pin p′ from the net n;
8 end
9 else

10 B.insert(pr);
11 end
12 B.insert(p);
13 disconnect all jump point connections to p.jump head ;
14 disconnect the pin p from the net n;

2.4.6 Incremental Timing Update

Based on Algorithms 13–28, we are able to deliver the key procedure for

incremental timing update. In order to guarantee correct timing results, the

task dependency among different timing propagations needs to be carefully

addressed. For backward timing propagation in a given level, the procedures

54

Algorithm 28: connect pin(p, n)

Input: an existing pin p and an existing net n

1 B ← bucket list of the timer;
2 if p.is rc network root pin = true then
3 for p′ ∈ n.pinlist do
4 establish the connection from p to p′;
5 disconnect all jump point connections to p′.jump head ;
6 end
7 B.insert(p);
8 else
9 pr ← n.rc network root pin ;

10 establish the connection from pr to p;
11 B.insert(pr);
12 end
13 disconnect all jump point connections to p.jump head ;
14 connect the pin p to the net n;

of fanin propagation and required arrival time propagation are apparently

independent to each other. However, for forward timing propagation in a

given level, the following dependency should be satisfied: (1) RC propa-

gation (RCP) precedes the slew propagation (SLP) and delay propagation

(DLP); (2) DLP precedes the arrival time propagation (ATP); (3) ATP pre-

cedes the jump point propagation (JMP); (4) JMP precedes the CPPR credit

propagation (CRP). As the timing propagation is conducted level by level,

the task dependency can be efficiently encapsulated by a parallel pipeline.

Figure 2.7 illustrates this concept (subscript delineates the level index).

Algorithm 29 presents our solution to incremental timing update. It first

calls Algorithm 13 to construct the downstream cone of all frontier pins in

the bucket list (line 5). The timing propagation is then performed level by

level in a parallel pipeline fashion (line 8:18 for forward timing propagation

and line 19:25 for backward timing propagation). By the end of each pipeline

stage, a barrier is imposed to synchronize all forked threads (line 16 and line

23). The bucket list is reset after the timing propagation is accomplished

(line 26).

55

Algorithm 29: update timing()

1 B ← bucket list of the timer;
2 if B.num pins = 0 then
3 return;
4 end
5 IncrementalLevelization(B);
6 lmin ← B.min nonempty level ;
7 lmax ← B.max nonempty level ;
8 # Parallel Region {
9 # Master Thread do for l = lmin to lmax + 4 do

10 # Fork Thread Task PropagateRC(l);
11 # Fork Thread Task PropagateSlew(l − 1);
12 # Fork Thread Task PropagateDelay(l − 1);
13 # Fork Thread Task PropagateArrivalTime(l − 2);
14 # Fork Thread Task PropagateJumpPoint(l − 3);
15 # Fork Thread Task PropagateCPPRCredit(l − 4);
16 # Synchronize Thread Tasks;
17 end
18 };
19 # Parallel Region {
20 # Master Thread do for l = lmax to B.min non empty level do
21 # Fork Thread Task PropagateFanin(l);
22 # Fork Thread Task PropagateRequiredArrivalTime(l);
23 # Synchronize Thread Tasks;
24 end
25 };
26 remove all pins from the bucket list B;

56

RCPl

CRPl

Stage 1 Stage 2

ATPl

JMPl

Stage 3 Stage 4 Stage 5 Stage 6

RCPl+1 RCPl+2 RCPl+3 RCPl+4 RCPl+5

SLPl

DLPl

SLPl+1

DLPl+1

ATPl+1

SLPl+2

DLPl+2

JMPl+1

ATPl+2

SLPl+3

DLPl+3

CRPl+1

JMPl+2

ATPl+3

SLPl+4

DLPl+4

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Time

Thread ID

Barrier Barrier Barrier Barrier Barrier
...

Parallel Parallel Parallel Parallel Parallel Parallel

Figure 2.7: Parallel forward timing propagation using pipeline.

2.4.7 Timing Query

Using Algorithm 29 as the infrastructure, the value-based timing queries,

for example, reporting the arrival time, can be implemented as Algorithm

30. Queries for required arrival time and slack can be mimicked in a similar

manner. The path-based query is presented in Algorithm 31. Algorithm 31

takes two arguments, one pin p and a path count K, and reports the top K

post-CPPR critical paths through p. If p is nil, the paths are searched across

the entire circuit graph G (line 2). Otherwise, the search graph is limited

to the region of downstream cone D+
p and upstream cone D−

p of p such that

every path discovered in the search graph passes through p (line 3:5). Then

we apply the path ranking algorithm by [8] to peel out the top K critical

tests (line 6). Finally we iteratively extract the top K critical paths from

each of the top K critical tests and maintain the globally top K critical paths

using a priority queue (line 7:15).

Algorithm 30: report at(p, s, m)

Input: an existing pin p and targeted transition s and timing split
m

Output: arrival time at p for s and m

1 update timing();
2 return p.arrival time(s, m);

57

Algorithm 31: report worst path(p, K)

Input: an existing pin p and a path count K
Output: top K critical paths through p in the design

1 update timing();
2 G′ ← G;
3 if p ̸= NULL then
4 G′ ← D−

p ∪D+
p ;

5 end
6 extract a sorted set T of the top K post-CPPR critical tests from

G′ [8];
7 Q← priority queue keyed on post-CPPR slack values;
8 for t ∈ T do
9 if Q.size = K and t.slack ≥ Q.top max then

10 break;
11 end
12 Q← Q∪ GetCriticalPath(t, K) [8];
13 Q.maintain top k min(K);
14 end
15 return Q;

2.5 Experimental Results

OpenTimer is implemented in C++ language on a 2.20 GHz 64-bit Linux ma-

chine with 128 GB memory. The application programming interface (API)

provided by OpenMP 3.1 is used for our multi-threaded programming. Our

machine can execute a maximum of eight threads concurrently. Experiments

are undertaken on a set of industry benchmarks released from the TAU 2015

CAD contest [9]. The golden reference is generated from an industry timer

and the design modifiers are wrapped in a .ops file which contains tens of

millions of operations. Table 2.1 lists the benchmark statistics and the per-

formance of OpenTimer compared to the top performers, “iTimerC 2.0” and

“iitRACE,” from the TAU 2015 CAD contest [9].

We begin by comparing OpenTimer with iitRACE. The strength of Open-

Timer is clearly demonstrated in the accuracy and runtime values. We have

seen a significant performance gap where our timer is much more accurate

and far faster than iitRACE. Even though iitRACE achieves better memory

usage, such data are less meaningful when accuracy is considered the top

priority. Next we compare OpenTimer with iTimerC 2.0. In general, Open-

58

Table 2.1: Performance Comparison Between OpenTimer and Top-ranked Timers iitRace and iTimerC 2.0 from the TAU
2015 CAD Contest [9]

Circuit #Gates #Nets #OPs
iitRACE iTimerC 2.0 OpenTimer

accuracy runtime memory accuracy runtime memory accuracy runtime memory
b19 255.3K 255.3K 5641.5K 63.03 % 629 s 3.0 GB 99.95 % 215 s 5.8 GB 99.95 % 52 s 4.6 GB

cordic 45.4K 45.4K 1607.6K 61.83 % 100 s 0.9 GB 98.88 % 80 s 1.3 GB 98.88 % 18 s 1.3 GB
des perf 138.9K 139.1K 4326.7K 67.43 % 299 s 4.2 GB 97.02 % 92 s 3.1 GB 99.73 % 30 s 3.0 GB
edit dist 147.6K 150.2K 3368.3K 64.83 % 857 s 2.0 GB 98.29 % 98 s 3.8 GB 98.30 % 42 s 3.8 GB

fft 38.2K 39.2K 1751.7K 89.66 % 70 s 0.5 GB 98.45 % 49 s 1.2 GB 99.77 % 11 s 1.2 GB
leon2 1616.4K 1517.0K 8438.5K 72.34 % 16832 s 9.9 GB 100.00 % 787 s 27.2 GB 100.00 % 282 s 22.8 GB

leon3mp 1247.7K 1248.0K 8405.9K 62.99 % 4960 s 8.2 GB 100.00 % 609 s 19.8 GB 100.00 % 163 s 17.9 GB
mgc edit dist 161.7K 164.2K 3403.4K 64.29 % 1578 s 1.9 GB 100.00 % 135 s 4.1 GB 100.00 % 41 s 3.1 GB

mgc matrix mult 171.3K 174.5K 3717.5K 67.93 % 1363 s 2.0 GB 100.00 % 157 s 4.3 GB 100.00 % 31 s 3.1 GB
netcard 1496.0K 1497.8K 11594.6K 87.63 % 6662 s 9.4 GB 99.99 % 691 s 22.9 GB 99.99 % 192 s 20.8 GB

cordic core 3.6K 3.6K 226.0K 59.42 % 21 s 0.3 GB 95.19 % 29 s 0.2 GB 95.19 % 3 s 0.1 GB
crc32d16N 478 495 28.9K 57.15 % 3 s 0.1 GB 100.00 % 5 s 0.1 GB 100.00 % 1 s 0.1 GB

softusb navre 6.9K 7.0K 427.8K 40.17 % 21 s 0.1 GB 0.00 % - - 99.97 % 4 s 0.5 GB
tip master 37.7K 38.5K 1300.4K 82.95 % 64 s 0.6 GB 96.42 % 47 s 1.0 GB 97.04 % 9 s 0.8 GB
vga lcd 1 139.5K 139.6K 2961.5K 99.65 % 260 s 1.6 GB 100.00 % 94 s 2.2 GB 100.00 % 31 s 2.9 GB
vga lcd 2 259.1K 259.1K 12674.7K 98.57 % 1132 s 13.3 GB 100.00 % 156 s 5.0 GB 100.00 % 65 s 3.9 GB

#Gates: number of gates. #Nets: number of nets. #OPs: number of operations. accuracy: average of path accuracy
and value accuracy (%). -: program crash.

59

Timer outperforms iTimerC 2.0 across nearly all circuit benchmarks in any

aspects. We reach the goal by ×2.3 (edit dist) to ×9.7 (cordic core) faster

and consume less memory for most benchmarks. In addition, our accuracy

is higher than iTimerC 2.0 by 7% on average. Unfortunately, we are unable

to compare the data on the benchmark softusb navre because iTimerC 2.0

encountered execution fault.

incremental processing stages
1 400 800 1200 1600

To
ta

l r
un

tim
e

(s
)

0

5000

10000

15000
Scalability (vga_lcd_2)
OpenTimer
iTimerC 2.0

incremental processing stages
1 400 800 1200 1600

R
un

tim
e

sp
ee

du
 (x

)

0

20

40

60

80

100

120

140
Scalability (vga_lcd_2)
Speedup by OpenTimer

Figure 2.8: Scalability comparison between OpenTimer and iTimerC 2.0.

Time axis
0 100 200 300 400 500

C
PU

 u
sa

ge
 (%

)

0

200

400

600

800
Performance (OpenTimer)

Time axis
0 100 200 300 400 500

C
PU

 u
sa

ge
 (%

)

0

20

40

60

80

100
Performance (iTimerC 2.0)

Figure 2.9: Parallelism comparison between OpenTimer and iTimerC 2.0.

Finally we investigate the scalability of our timer and iTimerC 2.0 on ac-

commodating the depth of incremental processing. We omit the comparison

with iitRACE because its low accuracy might result in unfairness. In this

experiment, we refer to a set of design modifiers followed by at least one

timing query as “one stage” of incremental processing. We have divulged,

unfortunately, all benchmarks from the TAU 2015 contest have less than

10 incremental processing stages, which is not sufficient to reveal the per-

formance bottleneck. Therefore, we modified the benchmark vga lcd 2 by

inserting a path-based timing query after each complete design modification.

The comparison of runtime scalability between OpenTimer and iTimerC 2.0

60

is demonstrated in Figure 2.8. It can be clearly seen that our runtime scales

extremely well as the number of incremental processing stages increases. For

instance, OpenTimer accomplished the goal by ×95.8 faster (66 seconds vs.

6324 seconds) than iTimerC 2.0 at the 800th stage. Similar trends can be

observed on other stage numbers. We further reveals the cpu usage for both

programs in Figure 2.9. It is observed OpenTimer is highly parallel, using up

to the hardware-limited thread number, while iTimerC 2.0 does not support

any multi-threaded feature. To sum up, these experiments have justified the

software quality of OpenTimer.

2.6 Conclusion

In this chapter we have presented OpenTimer, a high-quality incremental

timing analysis algorithm with CPPR. We have not only captured the key

features that achieve incremental capability, but also parallelized the incre-

mental timing update in a pipeline fashion. Our framework is very flexible

and scalable as many critical tasks such as timing propagation and CPPR

are scheduled into the pipeline so as to overlap their runtimes. These advan-

tages confer OpenTimer a high degree of differential over existing methods.

Comparatively, experimental results have demonstrated the superior perfor-

mance of OpenTimer in terms of accuracy, runtime, and memory over the

top performers from the TAU 2015 CAD contest.

61

CHAPTER 3

ACCELERATED PATH-BASED TIMING
ANALYSIS WITH MAPREDUCE

3.1 Introduction

Static timing analysis (STA) is a crucial step in verifying the expected timing

behaviors of an integrated circuit [2]. During the STA, both graph-based

timing analysis (GBA) and path-based timing analysis (PBA) are used. GBA

performs a linear scan on the circuit graph and estimates the worst timing

quantities at each end point. GBA is very fast but the results are pessimistic.

Hence, PBA is often performed after GBA to remove unwanted pessimism.

Starting from a negative end point, a core PBA procedure peels a set of paths

in non-increasing order of criticality and applies path-specific timing update

to each of these paths [26]. However, path peeling is a computationally

expensive process. The high runtime demand severely restrains the capability

of PBA during timing signoff.

Unfortunately, current literature still lacks for novel ideas of fast PBA [27].

As pointed out by the 2014 TAU timing analysis contest, algorithms featuring

multi-threaded or massively-parallel accelerations are eagerly in demand [1].

Howbeit, parallel PBA has been reported as a tough challenge primarily be-

cause a path can be prototypically various. For instance, a path can exhibit

arbitrary lengths and span different logical cones and physical boundaries.

Computations in this way are typically hard to be issued in parallel. Al-

though a few prior works claimed to have a solution, the results are usually

compromised with accuracy [5, 28].

As a consequence, we introduce in this chapter an ultra-fast PBA frame-

work with MapReduce. The concept of MapReduce is shown in Figure 3.1.

A MapReduce program applies parallel map operations to input tasks and

generates a set of temporary key/value pairs. Then parallel reduce oper-

ations are applied to all values that are associated with the same key in

62

K2 V1 K1 V2 K3 V3 K2 V4

K1 V11 K2 V12 K3 V13

K3 V5

Data

K2 V6 K3 V8K1 V7 K2 V9 K3 V10

Reducer ReducerReducer

Mapper Mapper Mapper Mapper

Key (K) / Value (V)Ki Vj Input data set

Parallel map
(automatic)

Emitted data set
(temporary)

Parallel reduce
(automatic)

Output data set

Figure 3.1: The execution flow of a MapReduce job.

order to collate the derived data properly [29]. Users only need to provide

desired map/reduce functions while parallelization details are encapsulated

in a MapReduce library [30, 31]. This programming paradigm inspires us

to rethink the PBA problem as “map” operations followed by “reduces”.

Specifically, we cast the PBA problem into tasks with keys and values that

are sandwiched around massively-parallel map and reduce operations.

Our contributions are summarized as follows. (1) We successfully investi-

gated the applicability of MapReduce to accelerate PBA. Our framework is

very general in gaining massively parallel computations, imposing no phys-

ical and logic constraints. (2) Our framework increases the productivity as

designers can focus on timing-oriented turnaround, leaving all hassle of par-

allelization details to the MapReduce library. (3) We have seen a substantial

speedup from the experimental results. On a large distributed system, mil-

lions of cells can be easily analyzed in a few minutes. These features all add

up to faster design cycle. Our work can be beneficial for the speedup of the

signoff timing closure, on which up to 40% of the design flow is typically

spent.

63

3.2 Path-Based Timing Analysis

PBA has gained much attention in deep submicron era due to its capability of

configuring features such as clock-reconvergence-pessimism removal (CRPR)

and advanced-on-chip-variation (AOCV) derating for less-pessimistic timing

reports [1, 8]. Since most of these features are path-specific, a core yet

computationally expensive building block of PBA is to peel a path set from

each end point and recompute the timings path-by-path. By analyzing the

path with reduced pessimism, many timing violations can be waived which

in turn tells better timing signoff. Because of this crucial benefit, studies in

accelerating PBA are in demand especially when we move to the many-core

era. Simply put, the following aspects are in particular of interests:

• Performance is the top concern. A substantial runtime saving will make

a breakthrough in timing signoff.

• Modern circuits are complex. Practical parallelization must scale up

with the growth of the circuit size.

• The framework needs to be general and flexible, imposing the least

constraints and complexity.

• Adequate granularity control is necessary in order to effectively orga-

nize computations at a massive scale.

• Orthogonality should be featured. Compromised solutions to the design

methodology are discouraged.

The above issues all combine to challenges in the development of parallel

PBA algorithms. If the PBA runtime can be significantly improved, designers

are able to utilize PBA on a larger set of paths and perform their analyses

earlier in the design closure flow. As a result, researchers must continue

to provide viable parallel solutions along with the rapid evolution of the

computational power.

3.3 Problem Formulation

The circuit network is input as a directed-acyclic graph G = {V,E}, where V

is the pin set of circuit elements and E is the edge set specifying pin-to-pin

64

connections. Each edge e is associated with a tuple of earliest and latest

delays. A path is an ordered sequence of nodes or edges and the path delay

is the sum of delays through all edges. In this chapter, we are in particular

emphasizing on the data path, which is defined as a path from either the

primary input pin or the clock pin of a launching flip-flop (FF) to the data

pin of a capturing FF. A test is defined w.r.t. an FF as hold or setup check

on any data paths captured by this FF. Considering a test set T as well as

a positive integer k, the following two tasks are essential for PBA [26, 1].

Task 1 – Sweep report: The program is asked to sweep all tests and

output the top k critical paths for each test.

Task 2 – Block report: The program is asked to report the top k critical

paths across all tests.

3.4 MapReduce Framework

In this section we discuss our PBA framework with MapReduce. We first

brief the MapReduce programming paradigm and then detail each step of

our framework.

3.4.1 MapReduce Programming Paradigm

Since being first introduced by Google in 2004, the MapReduce program-

ming paradigm has been widely applied to many domains such as data min-

ing, database system, and high-performance computing [29]. The spirit of

a MapReduce program lies in “keys” and “values” which are generated and

manipulated by user-defined functions “mapper” and “reducer”. A key and

a value are simply bytes of strings of arbitrary length which are logically

associated with each other and thus can represent generic data types. The

MapReduce library automatically schedules parallel map and reduce opera-

tions linking mapper and reducer to handle the input data on a distributed

system. State-of-the-art libraries for this purpose such as Apache Hadoop

and MR-MPI from Sandia National Lab. are readily available [30, 31].

A canonical MapReduce program is presented in Algorithm 32. The first

is the map step, which takes a set of data and converts it into another set of

65

Algorithm 32: CanonicalForm(D, mapper, reducer)

Input: input data D, user-defined mapper and reducer

1 {M | <tmp key : tmp value>} ← Map(D, mapper) ;
2 {C | <unique key : value list>} ← Collate(M);
3 {R | <key : value>} ← Reduce(C, reducer);
4 return R

data produced by the function mapper, where individual elements are rep-

resented as temporary key/value pairs. The collate step aggregates across

temporary key/value pairs where each unique key appears exactly once and

the corresponding value is a concatenated list of all the values associated

with the same key 1. The reduce step then takes a single entry from the

aggregated key/value pairs and creates a new key/value pair which stores

the output generated by the function reducer. Parallelism is evident since

function calls by map and reduce are independent to each other and can be

executed on different processors simultaneously. In general, map and reduce

are intra-process operations while collate involves inter-process communica-

tion because of aggregation.

3.4.2 Formulation of Task Graphs

In order to develop a MapReduce program, computations that can be issued

to parallel map and reduce operations must be exploited from our problem.

Considering a test t, we observe: (1) every data path captured by this testing

FF reaches the same end point; (2) the source pins from where a path origi-

nates is prototypically consistent, being either the primary input pins or the

clock pin of a launching FF. The first feature implies that paths feeding the

same end point belong to the same test. By tagging each path with a key in-

dicating the corresponding test index, the program can keep track of the test

to which a path belongs. The second feature implies that paths are wrapped

in a multi-source single-target graph. This motivates us to decompose a test

into several task graphs with regard to different and smaller groups of source

pins.

We define gt for each test t as a set of task graphs gt = {g1t , g
2
t , ..., g

i
t} and

1In some articles the collate is absorbed into the reduce step.

66

FF1

FF2

FF4

FF3

C1

C2

C3

FF5

FF6

FF8

FF7

FF1 C1 FF5

FF2

FF3

C2

C3

FF7

FF4 C3 FF8

FF1

FF2

FF4

FF3

C1

C2

C3

FF5

FF6

FF8

FF7

(a) Circuit graph (b) Grouping (c) Task graphs

FFi Launching FF Ck Combinatorial blockFFj Capturing FF

Figure 3.2: An example formulation of the task graphs.

GT as a union set of all task graphs. Deriving from a test t, a task graph git
is a subgraph spanning all connectivities from a subset of source pins to the

data pin of this test. Under the same test, the source pins corresponding to

different task graphs are mutually disjointed. We associate each task graph

with a key indicating the test index to which this task graph belongs. An

example is illustrated in Figure 3.2. We can see three task graphs are derived

from the tests on capturing FFs 5, 7, and 8, respectively. Notice that a task

graph is indeed a portion of the original circuit graph. Every edge of the

task graph comes with the same delay values as the original circuit graph.

FF2

FF3

C2

C3

FF7

FF4 C3 FF7

FF2 C2 FF7

FF4 C3 FF7

FF3
C2

C3
FF7

FF2

FF4

FF3

C2

C3

FF7

(a) L = 1 (b) L = 2 (c) L = 3

Figure 3.3: Granularity control of the task graph.

The granularity control of the task graphs is an important factor as it

arises performance concern such as process communication and computation

load. We define L-way partition as a partition of each test into L task graphs

such that each task graph has roughly even size on the corresponding set of

67

source pins. Figure 3.3 shows an example of one-way, two-way, and three-way

partitions of the test on FF 7 from Figure 3.2. While discovering a suitable

granularity level tends to be case-dependent, we consider in this chapter only

the case where the number of tests is less than the number of available com-

puting cores. Assuming P cores are available in such the case, up to P task

graphs are generated from each test in order to balance the computation

load. We should be mindful that dividing a test into multiple task graphs fa-

cilitates the parallelism but also gives rise to process communication because

of data merging afterward.

The generation of task graphs is presented in Algorithm 33. We first

identify all source pins of a given test t through a backtrace starting at the

data pin d of this test (line 1:2). The number of task graphs being generated

is determined by a comparison between the number of input tests and the

number of available computing cores (line 3:8). Then we iteratively group a

set of source pins Sk
d in accordance to the specified number of task graphs

and perform a depth-first search to induce the corresponding task graph (line

9:15). Each induced task graph is assigned a key indicating its test index

and is emitted as a key/value object in the end of each iteration (line 14).

Algorithm 33: Generator(t)

Input: a test t
Output: a set of task graphs gt = {g1t , g

2
t , ..., g

i
t}

1 d← data pin of the test t;
2 Sd ← source pins obtained through a back traversal at d;
3 P ← number of available computing cores;
4 L ← 1;
5 if |T | < P then
6 L = P ;
7 end
8 num src ← ⌈|Sd|/L⌉;
9 for i← 1 to L do

10 Si
d ← {num src frontmost elements in Sd};

11 Sd ← Sd \ Si
d;

12 git ← subgraph induced from Si
d to d;

13 key [git] ← t;
14 Emit make pair(t, git);
15 end

Based on the knowledge constructed so far, we deliver a high-level sketch

68

of our MapReduce-based PBA framework. The map operation is responsible

for (1) the generation of task graphs from each test and (2) the path extrac-

tion from each task graph. Because of the granularity control, a test might

be broken into several task graphs that are distributed to different proces-

sors during the map operations. The collate method is required in order to

reorganize paths to their right places. Eventually, the reduce operation peels

out a desired path set and emits it as the final solution. We conclude this

section by the following lemma.

Lemma Every path exactly and uniquely exists in one task graph.

Proof The exactness is true because each task graph is an induced connec-

tivity from a set of source pins to the data pin of a test. Since under a same

test different sets of source pins of task graphs are mutually disjointed, the

existence of every path is uniquely defined.

3.4.3 Mapper and Reducer Functions

Based on the definition of task graphs, we develop the function calls for map

and reduce operations. As presented in Algorithm 34, our mapper function

takes an arbitrary task graph and extracts the top-k critical paths (line 1).

We leave this extraction process as a black box for user preferences. In

this chapter, the optimal path ranking algorithm by [8] is used as our default

engine. Then it iterates through each path and performs path-specific update

according to user-configured features such as CRPR and AOCV (line 3).

Each iteration ends with an emission of a key/value pair where the value is

a path string and the key is being either 1) the key of the input task graph

if sweep is the task objective (line 5:6) or 2) a nominal number instead (line

7:9).

Any key/value pair emitted by our mapper is in fact a solution fragment,

where the key indicates the test index to which the value of a path string

belongs. It can be inferred that after calling the collate method, there are

two possible outcomes: either paths that belongs to the same task graph are

aggregated together or all paths are put in a single group, depending on the

task objective. Eventually, our reducer takes each unique key/value pair and

peels out the final top-k critical paths from the path set stored in each value

list. This implementation is given in Algorithm 35.

69

Algorithm 34: Extracter(git)

Input: an arbitrary task graph git
Output: an emitted set of key/value pairs

1 P ← top k critical paths extracted from git;
2 foreach path pi ∈ P do
3 p′i ← update pi according to user-configured features;
4 value ← make string(p′i);
5 if sweep is the task objective then
6 key ← key [git];
7 else
8 key ← −1;
9 end

10 Emit make pair(key, value);
11 end

Algorithm 35: Peeler(r)

Input: an unique key/value pair r
Output: an emitted key/value pair

1 key ← r.key ;
2 P ← paths parsed from r.value;
3 sort P in non-increasing order of criticality;
4 P ′ ← {k frontmost elements in P};
5 value ← make string(P ′);
6 Emit make pair(key, value);

70

Lemma There are either |T | or O(P |T |) mapper calls on a distributed clus-

ter with P computing processors.

Proof The execution of each benchmark has two possible conditions, either

the number of tests is greater than the number of computing processors or

the number of tests is less than the computing resources. For the former

case, each test is processed by an independent mapper function and thus

there are totally |T | mapper calls. For the later case where the number of

tests is less than the available core count, each test is decomposed into O(P)

task graphs. Hence, there are totally O(P |T |) mapper calls.

Lemma There is only one reducer call for block report while there are |T |

reducer calls for sweep report.

Proof For block report, the key/value pairs emitted by the extractor all

have the same key value (i.e., -1). Therefore, the collate operation produces

only one key/value pair for the following reduce operation. On the other

hand, the intermediate key values for sweep report adhere to the test indices

of the task graphs. Therefore, the collate operation produces a total of |T |

distinct key/value pairs for the following reduce operation.

3.4.4 Main Program

The main program of our PBA framework is shown in Algorithm 36. The

first two lines perform map operations that call Algorithm 33 to generate

a set of task graphs. Using the task graphs as input, the next three lines

follow the canonical form of a MapReduce program, where map operations

call Algorithm 34 to perform path extraction on each task graph, and reduce

operations call Algorithm 35 to peel out the final solution. Prior to the

function return, paths are parsed from the output values of our reducer (line

6:15). Each path is conventionally tagged with the corresponding test index

which can be retrieved from the key value (line 10).

Theorem The proposed framework is correct.

Proof Proving the correctness of our framework is equivalent to showing

that the path set from the input of a reducer contains the top-k critical

71

Algorithm 36: MapReducePBA(G)

Input: a circuit graph G, a test set T
Output: an analyzed path set

1 D ← Map(T , Generator) ;
2 GT ← task graphs parsed/read from D;
3 M ← Map(GT , Extracter) ;
4 C ← Collate(M);
5 R← Reduce(C, Peeler);
6 if sweep is the task objective then
7 P ← φ;
8 foreach pair r in R do
9 Pr ← paths parsed from r.value;

10 Tag Pr with the test index t retrieved from r.key ;
11 P ← P ∪ Pr;
12 end
13 return P
14 end
15 P ← paths parsed from the value in R;
16 return P

paths for the corresponding test. Recalling that the input of our reducer is

an unique key/value pair. The key indicates the test index and the value is

a concatenated list of values with each value storing the top-k critical paths

of a task graph generated from this test. It is obvious by set properties that

the top-k critical paths for this test must be a subset of the path set stored

in the value list. Since our reducer is in fact a sorting process, the output is

the value that stores the final top-k critical paths for this test. Notice that

for block report the test index is nominal while this fact has no impact on

the truth of this proof.

3.5 Data Management

Efficient data management is crucial to a MapReduce program. We discuss

in this section some technical details and data management through our

implementations.

72

3.5.1 Data Locality

Exploiting the data locality is an important principle of efficient MapReduce

programs. Improving the data locality can reduce the network overhead

during the execution, which in turn tells better runtime performance. In

order to improve the data locality, each processor stores a replicate of the

circuit graph in its own local memory. Despite higher memory demand,

accesses to the circuit graph such as generation of task graphs and extraction

of critical paths are reached in hand without extra data passing which is

normally time-consuming.

3.5.2 Storage Efficiency

The communication load is a non-negligible cost for a MapReduce program

in particular during the collate operation. Passing long values of paths gives

rise to the problem of frequent memory allocation which is typically time

consuming. In order to minimize the communication load, explicit path

traces are stored in the memory of each individual machine. Each path is

tagged with an unique index which is used to represent the storage address

and machine number or the temporary file name. Paths are passing through

these indices during collate operation and the final recovery of path traces is

done by indexing back to these tags.

3.5.3 Hidden Reduce

Another way to alleviate the communication overhead is to avoid unnecessary

data passing during the collate operation. Within the same processor, a

reduce operation before the collate call is pre-applied to those path sets

having the same key label. We term this reduce operation as “hidden reduce”

because it is implicitly processed after each mapper call of path extraction.

In other words, multiple data with the same key label in each processor are

merged first to reduce the amount of data passing. It is obvious by Theorem

16 the optimality of the final solution is not affected by this hidden reduce

operation.

73

3.6 Experimental Results

Our program is implemented in C++ language on a 64-bit linux operating

system. The C++ based MR-MPI API is used as our MapReduce library [31].

Evaluation is taken on an academic computer cluster which has over 500

compute nodes. Each compute node is configured with 16 Intel 2.6 GHz

cores and 128 GB RAM. The network infrastructure uses 384-port Mellanox

MSX6518-NR FDR InfiniBand in order to offer high-speed interconnect be-

tween clusters. Access to the compute nodes for running a program is done

via a script submission specifying the number of process cores or threads to

be used.

Table 3.1: Statistics of the Benchmarks from the 2014 TAU Timing
Analysis Contest [1]

Circuit |v| |e| |i| |o| # Tests # Paths

combo5 2051804 2228611 432 164 79050 19227963
combo6 3577926 3843033 486 174 128266 19227963
combo7 2817561 3011233 459 148 109568 19227963

|V |: # of pins. |E|: # of edges. |I|: # of primary inputs.
|O|: # of primary outputs. # Tests: # of setup/hold tests.
Paths: maximum # of data paths per test.

Experiments are undertaken on the three largest benchmarks, combo5,

combo6, and combo7 from the 2014 TAU timing analysis contest [1]. Each

of the three test cases is created by combining a set of industrial circuits (e.g.,

vga lcd, systemcde2, aes core, des perf, usb funct, wb dmav, systemcaes,

and tv80) that were already open-source to academia. The test case combo5

is the combination of circuits vga lcd, usb funct, des perf, tv80, wb dmav,

and systemcaes. The test case combo6 is the combination of circuits vga lcd,

aes core, des perf, usb funct, systemcde2, and tv80. Test test case combo7 is

the combination of circuits vga lcd, tv80, aes core, systemcaes, and vga lcd.

Statistics of these test cases are summarized in Table 3.1. All test cases are

million-scale circuit graphs and the number of tests could reach up to 128266

in combo6.

74

3.6.1 Baseline Setting

We configure CRPR as the baseline application in our PBA framework.

CRPR is an important step during the signoff timing cycle. Without CRPR,

the signoff timing analyzer reports worse violation than the true timing prop-

erties owned by the physical circuits. The 2014 TAU timing analysis contest

has addressed this issue in order to motivate novel ideas for fast and accurate

path-based CRPR [1]. The optimal path ranking algorithm proposed by the

first-place winner, UI-Timer, is applied to our path extractor [8]. In order to

enable CRPR, the third line of Algorithm 34 is implemented as follows: For

each path being iterated, the common clock segment is found by a simple

walk through the corresponding launching clock path and the capturing clock

path. The path slack is then adjusted by the amount of pessimism on the

common segment. With CPPR, the values of path slacks are in general in-

creased after the clock network pessimism is removed. The number of failing

tests was able to be reduced by even more than a half [8].

3.6.2 Performance Characterization

We begin by discussing the generic performance of our MapReduce-based

PBA. Evaluation is undertaken through cross combinations of path count

(i.e., k) and core count in running our program. We request 1 to 10 compute

nodes with each configured by 10 cores. That is, the core count varies from

10 to 100 using 10 as the scaling interval. A special case with only 1 core is

also evaluated in order to demonstrate the baseline without any parallelism.

The path count starts at 1 and varies from 10 to 100 using 10 as the scaling

interval. A total of 121 combinations of path count and core counts are

executed for each benchmark.

The number of key/value pairs processed on each circuit benchmark is

illustrated in Figure 3.4. It can be observed that for each circuit graph the

number of key/value pairs processed by map and reduce operations grows

as the path count increases. Notice that the path count is the only factor

that contributes to the growth of the number of key/value pairs since the

construction of key/value pairs is dedicated to paths. The largest number

appears in the report of 100 paths, in which the program generated 3953344

key/value pairs for combo5, 7114972 key/value pairs for combo6, and 6696880

75

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8 x 106

path (x10)

ke

y/
va

lu
e

pa
irs

of key/value pairs processed on each benchmark

combo5
combo6
combo7

Figure 3.4: Bar chart of the number of key/value pairs processed on each
circuit benchmark.

key/value pairs for combo7. In general, the more the number of key/value

pairs is, the higher the runtime and memory storage the program demands.

The overall performance of our MapReduce-based PBA is shown in Figure

3.5. The left two columns of plots show the runtime value and memory

usage of our program under block report, while the right two columns show

the plots under sweep report. We first discuss the runtime performance

of our program. In a rough view, the runtime scales down drastically as

the core count increases. Using only a single core without any parallelism,

the program took up to (i.e., among all path settings) 14.03 (13.92) minutes,

37.76 (39.53) minutes, and 27.41 (27.07) minutes to accomplish block (sweep)

reports for combo5, combo6, and combo7, respectively. It can be seen that

the runtime significantly goes down when MapReduce begins distributing

works across processors. Even using only 10 processors, the runtime values

can be significantly reduced to 2.92 (2.91) minutes, 8.22 (8.24) minutes, and

4.63 (5.55) minutes under block (sweep) reports of combo5, combo6, and

combo7, respectively. The slope of the runtime reduction can be clearly

seen in the sliced 2D plot fixing path count to 100 in Figure 3.6. Within a

single minute, all tests can be accomplished using approximately 40 cores,

100 cores, and 80 cores, for combo5, combo6, and combo7, respectively.

Figure 3.7 discovers the runtime portions taken by map operations, collate

operations (i.e., process communication or “Comm” for short), and reduce

operations. We measure the runtime portion as an average value across all

76

2

4

6

8

10

12

14

108 6 4 2 0

10
8

6
4

2
0

0

20

40

cores (x10)

Combo5 (block)

paths (x10)

R
u
n
tim

e
 (

m
)

0

5

10

15

108 6 4 2 0

10
8

6
4

2
0

0

10

20

30

cores (x10)

Combo5 (block)

paths (x10)

M
e
m

o
ry

 (
G

B
)

0

5

10

108 6 4 2 0

10
8

6
4

2
0

0

20

40

cores (x10)

Combo5 (sweep)

paths (x10)

R
u
n
tim

e
 (

m
)

0

5

10

15

108 6 4 2 0

10
8

6
4

2
0

0

10

20

30

cores (x10)

Combo5 (sweep)

paths (x10)

M
e
m

o
ry

 (
G

B
)

0

10

20

30

108 6 4 2 0

10
8

6
4

2
0

0

20

40

cores (x10)

Combo6 (block)

paths (x10)

R
u
n
tim

e
 (

m
)

0

5

10

15

20

108 6 4 2 0

10
8

6
4

2
0

0

10

20

30

cores (x10)

Combo6 (block)

paths (x10)

M
e
m

o
ry

 (
G

B
)

0

10

20

30

108 6 4 2 0

10
8

6
4

2
0

0

20

40

cores (x10)

Combo6 (sweep)

paths (x10)

R
u
n
tim

e
 (

m
)

0

5

10

15

20

108 6 4 2 0

10
8

6
4

2
0

0

10

20

30

cores (x10)

Combo6 (sweep)

paths (x10)

M
e
m

o
ry

 (
G

B
)

0

5

10

15

20

25

108 6 4 2 0

10
8

6
4

2
0

0

20

40

cores (x10)

Combo7 (block)

paths (x10)

R
u
n
tim

e
 (

m
)

0

5

10

15

20

108 6 4 2 0

10
8

6
4

2
0

0

10

20

30

cores (x10)

Combo7 (block)

paths (x10)

M
e
m

o
ry

 (
G

B
)

0

5

10

15

20

25

108 6 4 2 0

10
8

6
4

2
0

0

20

40

cores (x10)

Combo7 (sweep)

paths (x10)

R
u
n
tim

e
 (

m
)

0

5

10

15

20

108 6 4 2 0

10
8

6
4

2
0

0

10

20

30

cores (x10)

Combo7 (sweep)

paths (x10)

M
e
m

o
ry

 (
G

B
)

Figure 3.5: Performance characterization of our MapReduce-based PBA on circuit benchmarks combo5, combo6, and
combo7 under block report and sweep report. Within a single minute, all tests can be accomplished using approximately 40
cores, 100 cores, and 80 cores, for combo5, combo6, and combo7, respectively.

77

1 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

cores

R
un

tim
e

(m
)

Runtime reduction for block report

combo5
combo6
combo7

1 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

paths

R
un

tim
e

(m
)

Runtime reduction for sweep report

combo5
combo6
combo7

Figure 3.6: Runtime reduction versus core count.

different settings of path counts and core counts. We have observed that

reduce operations spend the least amount of time (< 1%) comparing to the

others since it involves only string parsing and value sorting. On the other

hand, the time spent on map operations occupies the majority of the entire

runtime. This is because map operations are responsible for the generation of

task graphs and the extraction of critical paths, which are relatively expensive

computations. For all benchmarks, more than 90% of the entire runtime is

taken by map operations. The rest portion of the runtime is occupied by the

collate operation, from which we can see about 4–5% of the entire runtime

is spent on the process communication. In fact, without applying the trick

mentioned in Section 3.5.2, the process communication burdens the entire

runtime by over 20%.

Next we discuss the memory cost of our program. The amount of mem-

ory usage is measured by the peak moment during the execution across all

processors (i.e., including the master processor). Generally speaking, the

amount of memory usage grows as the increase of either path count or core

count. The peak memory usage we observed are approximately 15 GB, 22

GB, and 21 GB for combo5, combo6, and combo7, all under sweep report

with 100 cores and 100 paths, respectively. We provide two extra sliced plots

from the sweep report in Figure 3.8 to show clearer memory cost in terms of

the growth of (1) core count with path count fixing to 100 and (2) path count

with core count fixing to 100. As the path count or the core count increases,

the amount of memory usage grows gradually except for the sharp spot at

the 10-core level where the distributed MapReduce begins taking effect.

To sum up, the experimental results have demonstrated the performance

78

< 1%

92%

8%

combo5 (block)

Reduce
Map
Comm

< 1%

92%

8%

combo5 (sweep)

Reduce
Map
Comm

< 1%

95%

5%

combo6 (block)

Reduce
Map
Comm

< 1%

95%

5%

combo6 (sweep)

Reduce
Map
Comm

< 1%

93%

7%

combo7 (block)

Reduce
Map
Comm

< 1%

93%

6%

combo7 (sweep)

Reduce
Map
Comm

Figure 3.7: Runtime portion of map operations, reduce operations, and
process communication.

of our PBA framework with MapReduce. It is highly scalable as we have

seen a significant runtime reduction as the core count grows. Even in the

first level at which only 10 cores are involved in parallelism, the runtime is

decreased by 75–86% across all runs. From the storage point of view, the

memory consumption of our approach is fairly reasonable. At the highest

peak we have observed in running combo6 with 100 cores and 100 paths,

the total amount of memory demanded by our program is about 22 GB. In

other words, the average amount of memory usage per processor is less than

1 GB. This evidence has justified the practical viability of our approach. The

substantial speedup we have obtained is beneficial for the discovery of a way

to fast timing closure.

3.6.3 Comparison with Multi-Threading

We evaluated in this section the competence of our approach over the im-

plementation using multi-threading, another popular type of parallel pro-

79

1 10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

18

20

22

24

cores

M
e
m

o
ry

 (
G

B
)

Memory usage v.s. Core count

combo5
combo6
combo7

1 10 20 30 40 50 60 70 80 90 100
6

8

10

12

14

16

18

20

22

24

paths

M
e
m

o
ry

 (
G

B
)

Memory usage v.s. Path count

combo5
combo6
combo7

Figure 3.8: Memory usage in terms of path count and core count.

gramming with shared-memory model. The inherent architecture of a multi-

threaded program is distinct from that of distributed computation such as

the MapReduce programming environment. In multi-threaded programming,

multiple threads or processors can operate independently on a standalone

machine but share the same memory resources. The memory bandwidth of

the machine typically dominates the entire runtime performance. As a result,

the scalability of multi-threaded computation is typically not as decent as the

one of distributed computation. Several libraries for using shared memory

such as OpenMP and POSIX are reachable in the public domain [22, 32].

We refit our MapReduce program to the multi-threaded version by replac-

ing the mapper calls and reducer calls with parallel for loop (e.g., #pragma

omp statement) using the API from OpenMP 3.0 [22]. In our cluster each

compute node is configured with 16 Intel 2.60 GHz cores and 128 GB RAM in

a standalone machine. Up to 16 threads or 16 processors can be concurrently

executed using either multi-threaded computation or distributed MapReduce

operations. Due to the architectural limitation of multi-threading, evalua-

tions are undertaken in a single compute node using different core counts

from 1 to 16. The performance differences between multi-threading and

MapReduce are interpreted in terms of runtime values and memory usage,

as illustrated in Figure 3.9. For page efficiency, we discuss only the experi-

ment of block report with the single-most critical path.

The strength of MapReduce over multi-threading is clearly demonstrated

by the runtime plot in Figure 3.9. In comparison to multi-threading, our

MapReduce program obtains higher runtime speedup and better scalability

as core count grows up. The largest difference we observed was in combo6

80

5 10 15
0

5

10

15

20

cores in a single node

R
u

n
tim

e
 (

m
)

Runtime comparison (combo5)

MapReduce
Multi-threading

5 10 15
0

1

2

3

4

cores in a single node

T
im

e
s

(x
)

MapReduce Speedup (combo5)

5 10 15
0

0.5

1

1.5

cores in a single node

M
e

m
o

ry
 (

G
B

)

Memory comparison (combo5)

MapReduce
Multi-threading

5 10 15
0

0.2

0.4

0.6

0.8

1

cores in a single node

T
h

ro
u

g
h

p
u

t
(G

B
/m

)

Throughput comparison (combo5)

MapReduce
Multi-threading

5 10 15
0

20

40

60

80

cores in a single node

R
u

n
tim

e
 (

m
)

Runtime comparison (combo6)

MapReduce
Multi-threading

5 10 15
0

1

2

3

4

5

cores in a single node

T
im

e
s

(x
)

MapReduce Speedup (combo6)

5 10 15
0

0.5

1

1.5

2

2.5

cores in a single node

M
e

m
o

ry
 (

G
B

)

Memory comparison (combo6)

MapReduce
Multi-threading

5 10 15
0

0.2

0.4

0.6

0.8

cores in a single node

T
h

ro
u

g
h

p
u

t
(G

B
/m

)

Throughput comparison (combo6)

MapReduce
Multi-threading

5 10 15
0

10

20

30

40

50

cores in a single node

R
u

n
tim

e
 (

m
)

Runtime comparison (combo7)

MapReduce
Multi-threading

5 10 15
0

1

2

3

4

5

cores in a single node

T
im

e
s

(x
)

MapReduce Speedup (combo7)

5 10 15
0

0.5

1

1.5

2

cores in a single node

M
e

m
o

ry
 (

G
B

)

Memory comparison (combo7)

MapReduce
Multi-threading

5 10 15
0

0.2

0.4

0.6

0.8

cores in a single node

T
h

ro
u

g
h

p
u

t
(G

B
/m

)

Throughput comparison (combo7)

MapReduce
Multi-threading

Figure 3.9: Performance comparison between MapReduce and multi-threading on a single compute node.

81

with two cores, where our MapReduce program accomplished all tests by 32

minutes faster than the multi-threaded implementation. Similar trends can

also be discovered in other two cases. The reason for having our MapReduce

program perform worse at the level of one core comes from the redundant

overhead of key/value processing because of the null parallelism. Neverthe-

less, such negative margins are solely less than 3 minutes.

It is expected that our MapReduce program consumes higher memory re-

quirements than the multi-threaded implementation. The distributed com-

putation of MapReduce requires an individual block of memory to be allo-

cated for each processor. As shown in the memory comparison in Figure 3.9,

the memory cost of our MapReduce program is linearly proportional to the

growth rate of the core count. On the other hand, the amount of memory

usage in multi-threading is relatively constant regardless of the increase of

core count. Despite less memory cost by multi-threading, the performance of

concurrent access to the same global memory block is limited by the memory

bandwidth. It can be clearly seen in Figure 3.9 the process throughput grows

poorly compared to the curve achieved by distributed MapReduce. As a con-

sequence, the runtime performance of multi-threading is not as promising as

distributed MapReduce even in a standalone machine.

3.7 Conclusion

In this chapter we have presented a fast PBA framework with MapReduce.

To the best knowledge of the authors, this work is the first attempt to han-

dle the PBA problem using the MapReduce programming paradigm. We

have achieved a success in accelerating PBA by a substantial order of magni-

tude in comparison to non-MapReduce implementations such as single core

and multi-threading. The experimental results have demonstrated the pro-

nounced performance of our approach whereby million-scale circuit graphs

can be quickly and correctly analyzed within a few minutes on a distributed

computer cluster. Our work can be beneficial in assisting designers in speed-

ing up the lengthy design cycles of signoff timing.

82

CHAPTER 4

A DISTRIBUTED TIMING ANALYSIS
FRAMEWORK FOR LARGE DESIGNS

4.1 Introduction

As design complexities continue to grow larger, the need to efficiently analyze

circuit timing with billions of transistors across multiple modes and corners

is quickly becoming the major bottleneck to the overall chip design closure

process [28]. In order to alleviate long runtimes, designers break down the

design into several hierarchical partitions or boxes, apply macro-modeling

(abstraction) to each hierarchical box, and run multi-threaded timing anal-

ysis (MTA) on a single machine [2]. However, it has been reported that a

complete MTA on a design with 2 billion transistors can consume 400 GB

memory. Building such a high-end computer is costly and unscalable to the

ever-increasing design complexities. As a result, trends are shifting toward

distributed timing analysis (DTA).

Nevertheless, very little research have been done on DTA. State-of-the-art

distributed systems such as Hadoop MapReduce, Cassandra, Shark, Mesos,

and Spark are mainly developed for big-data applications [30, 33]. Nonethe-

less, big-data applications have many distinctive characteristics compared to

timing analysis. First, big-data applications are data-intensive whereas tim-

ing analysis is more computation-driven. Second, parallelism is natural in

big-data processing. Large data sets can be arbitrarily broken down to inde-

pendent pieces followed by massively parallel MapReduce operations. How-

ever, timing analysis is highly iterative and loop-dependent, making it hard

to integrate with MapReduce paradigm. Besides, these systems mainly work

on functional or Java virtual machine (JVM) languages such as Scala, Java,

and R. Implementations using high-performance C/C++ are ill-supported.

The real problem is that most EDA tools are developed based on high-

performance C/C++. A benchmark for language performance and system

83

0

20

40

60

80

C++ Python Java Scala Spark
GraphX

Runtime comparison on arrival time propagation

Runtime (s)
1.5s 9.5s 10.68s

68.45s

7.4s

Industrial circuit graph
(2.5M nodes and 3.5M edges)

(4 cores)(1 core) (1 core) (1 core) (1 core)

Figure 4.1: The need of specialized DTA framework.

model on computing the arrival time from an industry circuit is shown in

Figure 4.1. It is observed that C++ is faster than mainstream big-data lan-

guages such as Python, Java, and Scala. Compared to the well-known Spark

GraphX, a big-data model for distributed graph processing, the performance

gap raises a big applicability concern. These evidences have convinced a need

of specialized DTA framework. Consequently, we introduce in this chapter a

DTA framework for large designs. Key features of our framework are high-

lighted as follows:

• General design partitions: Our framework is developed for general

design partitions. Logical, physical, or hierarchical design partitions

are all stored in a distributed file system.

• Multi-program-multi-data (MPMD) paradigm: Our framework

follows the MPMD paradigm. Through a common communication in-

terface, designers can create customized codes for different partitions.

• Non-blocking socket IO: Our framework is developed using C/C++

socket library. We configure non-blocking transmission control protocol

(TCP) channels so as to overlap communication and computation.

• Event-driven environment: Our framework is event-driven. Data

updates are executed asynchronously in response to user-registered call-

backs. The event loop also enables persistent in-memory processing.

• Efficient messaging interface: Our framework is message-efficient.

The overhead between structured data serialization and TCP byte

stream de-serialization is leveraged using scalable Protocol Buffer [34].

84

We have evaluated our framework on a commodity cluster with hundreds

of machines and successfully performed DTA on large industry designs.

4.2 Problem Formulation

The input is a set of partitions broken from a flat design across different log-

ical cones, physical locations, or hierarchical boundaries (chip, unit, macro).

Each design partition file acts as a black box to others and contains a directed

acyclic timing graph. Multiple partitions are implicitly connected together

through a top-level design file. An example of two-level hierarchical parti-

tions is shown in Figure 4.2. The top-level design has three primary inputs

PI1, PI2, and PI3, and one primary output PO1. It connects to two hier-

archical macros M1 and M2 through their primary inputs M1:PI1, M1:PI2,

M2:PI1, and M2:PI2, and primary outputs M1:PO1 and M2:PO1, respec-

tively. In addition, a set of timing assertion files specifying the initial timing

condition on source ports (PI1, PI2, PI3, and PO1) is also given.

TOP level
M1

Hierarchy M2

PI1

PI2

PI3
Hierarchy M1

PO1

M1:PI1

M1:PI2

M1:PO1

M2:PI1

M2:PI2

M2:PO1

M2

I1
G1

H1

Figure 4.2: Example of two-level hierarchical partitions.

Objective: Given a set of design partition files and timing assertions,

develop a distributed timing framework over a network cluster and perform

distributed timing analysis.

4.3 Framework

The overview of our DTA framework is shown in Figure 4.3. The input is a

set of design partitions and timing assertions. Files are stored in distributed

file system such as general parallel file system (GPFS), andrew file system

85

(AFS), and/or hadoop distributed file system (HDFS). Our framework has

one program for server and multiple programs for clients. Each program

performs the timing analysis on one design partition. Communications are

handled indirectly through the server program. Programs are launched on

multiple machines through a network cluster manager such as LSF, Mesos,

Helix, Zookeeper, and OpenLava, that supports remote job execution [30, 33].

Figure 4.3: Overview of our DTA framework.

4.3.1 Distributed Storage and Cluster Manager

To avoid complete copies of the data set on machines, the input files are

stored in a distributed file system. A distributed file system offers location-

independent addressing that is shared by being simultaneously mounted on a

cluster of multiple machines. It aims for transparency in that users access the

system in the same way as a local file system. Multiple data sets live together

and can be accessed by any machines. Besides, our framework requires a

cluster manager to work with the distributed file system. Each machine

node runs application programming interface (API) offered by the cluster

manager to manage and configure services such as remote job execution and

status query over cluster nodes. Our framework is not restricted to certain

distributed file systems and cluster managers. The common features such as

distributed file mounting, remote job execution, and machine status query

offered by the state of the art are sufficient for our development.

86

4.3.2 Software Architecture

The software architecture of our framework follows the multiple-program

multiple-data (MPMD) paradigm. We define a communication group as one

server program along with multiple client programs. Forming a communica-

tion group is particularly useful for the standard design partition flow. The

server program works on the top-level design while client programs handle

other design partitions. Our architecture can be easily extended to recursive

partitions (i.e., a partition spawns child partitions and so on in a tree manner)

by creating a new communication group for each additional layer of parti-

tions. The server program can be viewed as a communicator, dealing with all

timing exchanges among partitions based on TCP socket send/receive calls.

Both server and client programs perform the real tasks on timing propaga-

tions. Through a common communication interface, designers can customize

or safely evolve their timing routines for individual partitions.

Server (TOP)

Client 1 (M1) Client 2 (M2)

Boundary pin Client
M1:PI1, M1:PI2, M1:PO1 Client1
M2:PI1, M2:PI2, M2:PO1 Client2

Exchange
boundary timing

Exchange
boundary timing

Connect
to server

Connect
to server

Boundary pin
mapping

Figure 4.4: Server-client model for the two-level hierarchical partitions in
Figure 4.2.

Figure 4.4 presents an example of the server-client model for the hierarchi-

cal partitions in Figure 4.2. The server is responsible for the top-level design

and two clients are required for hierarchical macros M1 and M2. Besides,

server maintains the mapping between each boundary pin and the corre-

sponding client so that up-to-date timing can be delivered to the correct

host. For instance, server starts propagating the timing from primary input

PI1 and stops at the hierarchical primary input M1:PI1. The up-to-date

timing is then sent to the client 1 for further propagation and so on.

87

4.3.3 Non-Blocking IO and Event Loop

Network latency is typically at least ten times higher than in-memory refer-

ence [35]. This can cause performance degradation if the program is blocked

by waiting for communication. It is desirable that communication can be

executed autonomously by an intelligent non-blocking controller. A non-

blocking send/receive call initiates a send/receive request but does not com-

plete it. The call returns immediately to the user’s program, leaving the

communication taken over by another lightweight thread from operating sys-

tem (OS) kernels. Computation can run simultaneously while waiting for

the send/receive to complete. This implies a need of an extra procedure

polling the communication status from the perspective of program develop-

ment. However, the network speed is hardware-dependent and it might end

up with nothing but a waste of time on polling.

Figure 4.5: Event-driven environment in our framework. Jobs are persistent
in memory through event loops. Non-blocking socket IO enables overlap of
computation (comp) and communication (comm).

In contrast to actively polling the communication status, event-driven pro-

gramming is a more favorable solution. Figure 4.5 presents the event-driven

environment in our framework. Our framework applies the open-source pack-

age, libevent, as the event engine [35]. We define callbacks for various socket

events such as new connection online, message send/receive, and connec-

tion offline. Applications then dispatch the program into an event loop and

88

these callbacks are autonomously invoked by an event handler. Designers

can terminate the programs through special events such as interactive query,

time-out, and signal interrupt. As a byproduct of the event loop, jobs are

persistent in memory, which is an important feature for computation-driven

timing applications.

4.3.4 Efficient Messaging Interface

Reducing the messaging overhead is pivotal especially considering the con-

version between structured data (e.g., class, pointer, random memory access)

in application level and unstructured TCP byte stream in the communication

world. Structured data need serialization before message send and unstruc-

tured TCP byte stream needs de-serialization after message read. Appar-

ently, hand-crafting and hard-defining this infrastructure is error-prone and

inflexible. Instead, we employ the widely used tool, protocol buffer, from

the big-data community [34]. Protocol Buffer is Google’s language-neutral

and extensible mechanism for message serialization and de-serialization. It

compiles user-defined message format into C++ classes that offer heavily

optimized methods (e.g., compression, decoding) for data conversion. The

concept is illustrated in Figure 4.6.

Structured message format
(.proto)

Google Protocol Buffer
(open-source compiler)

enum KeyType {PIN_NAME}
enum ValueType {AT, SLACK}
message Key {
 optional KeyType type = 1;
 optional string data = 2;
}
message Value {
 optional ValueType type = 1;
 optional string data = 2;
}

C++/Java/Python
source code generator

.cpp/.h class methods
ParseFromArray(void*, size_t)
SerializeToArray(void*, size_t)

Derived packet struct
header_t header
void* buffer

Message wrapper

Figure 4.6: Integration of Google’s protocol buffer into our messaging
interface for data conversion between application-level development and
socket-level streams.

89

As shown in Figure 4.6, we define key and value for our application. A key

and a value are simply bytes of strings of arbitrary length which are logically

associated with each other and thus can represent generic timing data. For

instance, a key can be the pin name and the value stores the corresponding

timing numeric such as arrival time and slack. However, simply using key-

value data is not sufficient since non-blocking socket IO might invoke the

callback wherever the message is incomplete (e.g., every 4 K bytes received)

due to the network C10K issue [35]. In order to handle the data appropriately,

we wrap the data into a packet which contains, in addition to the data field, a

header indicating the message size. It is the task of the receiver to inspect the

header and determine when the length of byte stream is enough for processing

the data.

4.4 Distributed Timing Algorithm

In this section, we develop a distributed timing algorithm based on our frame-

work. We shall discuss the flow of the server program and client programs,

and the callbacks corresponding to different events. Due to the space restric-

tion, we focus on the generic concept of timing propagation.

4.4.1 Server Program

The main body of the server program is presented in Algorithm 37. Algo-

rithm 37 takes three arguments, the input data D, the host H of the server

program, and user data U for callback convention, and generates the timing

analysis report. It first parses the timing graph from the input data D and

initiates a TCP server socket binding to host H (line 1:2). Then an event

base B is created (line 3). An event base holds a set of events and polls

to determine which events are active [35]. We add a listener event to B

to note the callback AcceptClientConnection (in Algorithm 38) for any new

TCP client connections (line 4). Finally, the event base is dispatched and

the program enters an event loop (line 5).

Algorithms 38 and 39 present the two callbacks in server’s program. Algo-

rithm 38 is invoked when a new client connection arrives. An event callback

of message read is created for the new client socket (line 3). The detail of

90

Algorithm 37: Server(D, H , U)

Input: input data D, host H , user data U
Output: timing analysis report

1 G← parse timing graph(D);
2 S ← create TCP server socket(H);
3 B ← create event base();
4 add listener event(B, S, U , AcceptClientConnection);
5 dispatch event base(B);

Algorithm 38: AcceptClientConnection(L, U)

Input: listener L, user data U

1 B ← get event base(L);
2 S ← get socket info(L);
3 add socket read event(B, S, ServerReadCallback, U);

read callback is given in Algorithm 39. It iterates each complete packet over

the TCP byte stream M (line 2) and de-serializes the data into key-value

pairs Ω (line 3). At each iteration, the program branches in response to dif-

ferent packet types, which can be either the notice of a new boundary pin

where we build the mapping to the corresponding client identity (line 5:8), or

timing update at boundary pins in which we maintain a candidate set ∆ of

pins for timing propagation (line 16:20). In the former case, the source ports

are added to the candidate set ∆ when all required clients are online (line

9:14). Then, we carry out the timing propagation from the candidate set and

return a set Θ of key-value pairs where the key k indicates a boundary pin at

which this timing propagation stops and the value stores up-to-date timing

(line 23). Finally, each of these key-value pairs is sent to the corresponding

client (line 24:28).

4.4.2 Client Program

The main body of the client program is given in Algorithm 40. In a rough

view, the procedure is identical to the counterpart of server except the call-

back for being connected sends server a packet registering the identity of

each boundary pin in the design (line 4 in Algorithm 40 and line 4:8 in Algo-

rithm 41). This step is necessary for the server program to keep track of the

91

Algorithm 39: ServerReadCallback(S, M , U)

Input: socket descriptor S, message M , user data U

1 ∆← φ;
2 foreach complete packet i ∈M do
3 Ω← deserialize data(i);
4 switch i.type do
5 case BoundaryRegistration do
6 foreach key-value pair (k, v) ∈ Ω do
7 map boundary pin to socket(k, S);
8 end
9 if all clients are online then

10 foreach source port r in top-level design do
11 v ← initial timing assertion(r);
12 ∆← ∆ ∪ {make kv pair(r, v)};
13 end
14 end
15 end
16 case UpdateBoundaryTiming do
17 foreach key-value pair (k, v) ∈ Ω do
18 ∆← ∆ ∪ {(k, v)};
19 end
20 end
21 end
22 end
23 Θ← propagate timing and get new boundary pins(∆);
24 foreach key-value pair (k, v) ∈ Θ do
25 j ← serialize data(k, v);
26 c← get boundary pin client socket(k);
27 send packet(c, j, UpdateBoundaryTiming);
28 end

92

mapping between a boundary pin and its client identity. As presented in Al-

gorithm 42, the read callback in the client program resembles the procedure

in Algorithm 39. From the viewpoint of client, there is no need of branch for

boundary pin registration. We only maintain a candidate set of pins received

from the server for timing propagation. After timing propagation, boundary

pins with up-to-date timing values are packeted and sent to the server (line

12:16).

Algorithm 40: Client(D, H , U)

Input: input data D, server host H , user data U
Output: timing analysis report

1 G← parse timing graph(D);
2 S ← create TCP client socket(H);
3 B ← create event base();
4 add connect event(B, S, U , Connect);
5 dispatch event base(B);

Algorithm 41: Connect(L, U)

Input: listener L, user data U

1 B ← get event base(L);
2 S ← get socket info(L);
3 add socket read event(B, S, ClientReadCallback, U);
4 ∆← Φ;
5 foreach boundary pin p in the design do
6 ∆← ∆ ∪ make kv pair(r, NULL);
7 end
8 send packet(S, serialize data(∆), BoundaryRegistration);

4.4.3 Timing Propagation

We have presented our framework and developed the program architecture

for distributed timing. Although designers can customize their timing rou-

tines (in particular, line 23 in Algorithm 39 and line 12 in Algorithm 42),

processing the timing propagation exhibits high similarities to finding the

shortest and the longest paths in a graph [2, 36]. In this regard, we intro-

duce two techniques that are generically useful for the development of timing

propagation based on our framework.

93

Algorithm 42: ClientReadCallback(S, M , U)

Input: socket descriptor S, message M , user data U

1 ∆← φ;
2 foreach complete packet i ∈M do
3 Ω← deserialize data(i);
4 switch i.type do
5 case UpdateBoundaryTiming do
6 foreach key-value pair (k, v) ∈ Ω do
7 ∆← ∆ ∪ {(k, v)};
8 end
9 end

10 end
11 end
12 Θ← propagate timing and get new boundary pins(∆);
13 foreach key-value pair (k, v) ∈ Θ do
14 j ← serialize data(k, v);
15 send packet(S, j, UpdateBoundaryTiming);
16 end

Frontier Propagation

The timing graph is given as a directed acyclic graph. Maintaining the topo-

logical ordering of the graph during the timing propagation is a common and

important way to correct results [2]. We refer to this topologically ordered

propagation as frontier propagation. Since our framework is non-blocking

and asynchronous, frontier propagation can start moving forward whenever

a new timing update arrives at a boundary pin, and stop at the pin with

at least one incoming arc that has not experienced the frontier propagation.

An illustrative example of forward propagation is shown in Figure 4.7. The

arrival of up-to-date timing at pin F:o invokes the callback to push fron-

tier propagation forward until pin I:o due to the waiting for message at pin

U:o. If resources are available, advanced techniques such as pipelined frontier

propagation proposed by [36] can be applied as well.

Speculative Propagation

It can be observed in Figure 4.7 that the network delay might result in re-

source un-utilization (thread waiting for work). This is because there are no

94

I:a

I:b

I:oF:o

U:o

K:a

L:a

Fully-updated Semi-updated Non-updated

K:o

Non-updated
fanout cone B

A

F

C D

E

Frontier
propagation
ends at I:o L:o

U:o waits for
message

Message arrives at F:o G

Figure 4.7: Frontier propagation follows the topological ordering of the timing

graph.

active events at the moment frontier propagation stops and the main thread

becomes idle. To enable further overlap of communication and computa-

tion, an un-utilized thread can continue to perform speculative propagation

from the pin at which frontier propagation stops. The concept of speculative

propagation is shown in Figure 4.8. Speculative propagation aims to find

the dominant minimum or maximum paths (i.e., slew, delay, arrival time,

etc.) earlier, which can potentially reduce a significant amount of compu-

tation efforts on frontier propagation and thus speed up the entire process.

Nonetheless, the duration of being spare is in fact non-deterministic due to

the unpredictable network traffic. The degree of being speculative must be

carefully restrained to prevent runtime from being overwhelmed by specula-

tive works. A viable solution is to iteratively inspect the event base by the

time speculative propagation starts. If an active event exists, the specula-

tive propagation ceases and returns the program back to the event handler.

Otherwise, we perform speculative propagation for only one level and repeat

the same procedure for the next iteration.

I:a

I:b

I:oF:o

U:o

K:a

L:a

Fully-updated Semi-updated Non-updated

K:o

Speculative
propagation B

A

F

C D

E

Frontier
propagation
ends at I:o L:o

U:o waits for
message

Message arrives at F:o GSpare thread

Figure 4.8: Spare thread performs speculative propagation in order to gain
advanced saving of frontier work.

95

4.5 Experimental Results

Our program is implemented in C++ language on a 64-bit Linux operating

system. We use POSIX socket library and libevent package for our event-

driven network programming [35], and our messaging interface is built upon

flexible protocol buffer [34]. Evaluation is taken on a computer cluster

which has over 500 compute nodes. Each compute node is configured with

16 Intel 2.60 GHz cores and 64 GB RAM. The network infrastructure uses

384-port Mellanox MSX6518-NR FDR InfiniBand with gigabit ethernet con-

trol network and the disk system was configured to GPFS. Accessing to the

compute nodes for running a program is done via a script submission to the

network cluster manager which is designed based on the Torque resource

manager with the Moab workload manager for running distributed jobs [37].

4.5.1 Benchmark Suite

We evaluate our framework based on a set of realistic benchmarks, including

open-source designs used in recent timing community [9] and large hierar-

chical designs generated by an industry standard timer. The benchmark

statistics are summarized in Table 4.1. These design statistics are reported

from a flat point of view. All benchmarks are million-scale circuits in terms

of the size of the timing graph. Each benchmark consists of several parti-

tions and one top-level graph that hooks up the entire design. Initial timing

assertions are applied to the source ports of the top-level graph.

4.5.2 Performance

The overall performance of our framework is listed in Table 4.1. In order

to alleviate the uncertainty of network delay, we present for each design the

average values on ten runs of complete timing analysis (arrival time and

required arrival time propagations, endpoint slack calculation, etc.). It can

be seen that the our framework is highly efficient and effective in terms of

runtime values. For instance, it uses less than a half hour to reach the goal on

large designs such as DesignB, DesignC, and DesignD. The result can scale to

hundreds of partitions (see DesignA). We observed the non-blocking event-

driven feature of our framework achieves effective overlap of communication

96

Table 4.1: Benchmark Statistics and Overall Performance of Our Framework

Circuit |G| |N | |V | |E| |P | L
W/o speculation W/ speculation

cpu mem msg usage cpu mem msg usage
DesignA 2.2M 1.1M 7.3M 12.4M 250 436 63s 1.6GB 0.7MB 17.3% 76s 1.7GB 1.6MB 64.2%
DesignB 14.5M 9.3M 39.0M 117.0M 37 3216 392s 2.9GB 2.0MB 9.1% 346s 3.1GB 5.7MB 73.1%
DesignC 23.3M 11.3M 76.9M 107.0M 30 2023 478s 4.7GB 2.3MB 19.5% 473s 4.8GB 8.1MB 57.8%
DesignD 42.7M 20.8M 128.1M 178.4M 50 5741 1239s 5.1GB 4.9MB 20.1% 1107s 5.1GB 9.7MB 69.4%

|G|: # of gates. |N |: # of nets. |V |: # of nodes. |E|: # of edges. |P |: # of partitions. L: # of levels. cpu: runtime.
mem: peak memory on a program. msg: amount of message passing. usage: avg cpu utilization on a program.

97

and computation, and quick response to message update. From the memory

perspective, the peak usage for a single program is only about 5 GB in

DesignD.

Time axis
0 100 200 300 400 500

Av
g.

 c
pu

 u
sa

ge
 (%

)

0

20

40

60

80

100
W/o speculation

Time axis
0 100 200 300 400 500

Av
g.

 c
pu

 u
sa

ge
 (%

)

0

20

40

60

80

100
W/ speculation

Figure 4.9: Average CPU utilization over time across all machines.

We next discuss the performance difference between implementations with

and without speculative propagation. While the effectiveness of speculative

propagation highly depends on network traffic and the graph topology, it can

be seen in DesignB the total runtime is speeded up by 11.2% compared to

the non-speculative counterpart. Being speculative is in particular beneficial

for design with long chain of partition dependencies, which can be implicitly

reflected on the number of levels in the graph. As a result, higher utilization

of thread also translates into increased CPU usage, as shown in Figure 4.9.

Figure 4.10: Runtime profile of our framework.

An in-depth view of the runtime profile is illustrated in Figure 4.10. It

is expected that timing propagation consumes the majority of the runtime

by about 54.4%. Initialization (data loading and client-pin mapping), event

polling on non-blocking socket IO, and data streaming (serialization and

de-serialization) take about 23.0%, 7.1%, and 3.2%, respectively. The time

spent on message passing, which in fact is hardware-dependent, occupies

98

approximately 12.3%. In a rough overview, the ratio of computation to

communication is about 87.7% to 12.3%.

4.6 Conclusion

In this chapter, we have presented a distributed timing analysis framework

for large designs. Our framework is built around five elements: general de-

sign partitions in distributed file systems, multiple-programs multiple-data

programming paradigm, non-blocking socket IO, event-driven environment,

and flexible messaging interface. These elements together let our framework

achieve high scalability, quick response to message update, and effective over-

lap of communication and computation. We have developed algorithms for

distributed timing as well as generic propagation schemes on the top of our

framework and evaluated the performance on industry designs with millions

of gates and hundreds of hierarchical partitions.

99

CHAPTER 5

DTCRAFT: AN OPEN-SOURCE
DISTRIBUTED EXECUTION ENGINE FOR
COMPUTE-INTENSIVE APPLICATIONS

5.1 Introduction

Electronic design automation (EDA) has been an immensely successful field

in assisting designers in implementing very large scale integration (VLSI)

circuits with billions of transistors. EDA was on the forefront of computing

(around 1980) and has fostered many of the largest computational prob-

lems such as graph theory and mathematical optimizations. As the design

complexity continues to increase, the recent industry is seeking novel plat-

form innovation that offers agile programming environment together with

massively-parallel integration to leverage numerous computations of circuit

designs [38]. While similar studies have been extensively made in big data-

focused challenges over the past few years, EDA experts remain unclear about

how these provenly effective techniques can be extended to silicon domain in

a systematic and scalable manner. Nevertheless, the research counterparts

for EDA-inspired engineering including large-scale optimizations, modeling,

and simulations are still nascent.

Recently, cluster computing frameworks such as MapReduce, Spark, and

Dryad have been widely used for big data processing [30, 29, 39, 40, 33].

The availability of allowing users without any experience of distributed sys-

tems to develop applications that access large cluster resources has demon-

strated great success in many big data analytics. Existing platforms, how-

ever, mainly focus on big data processing. Research for high-performance or

compute-driven counterparts such as large-scale optimizations and engineer-

ing simulations has failed to garner the same attention. As horizontal scaling

has proven to be the most cost-efficient way to increase compute capacity,

the need to efficiently leverage numerous computations is quickly becoming

the next challenge [38, 41].

100

Compute-intensive applications have many different characteristics from

big data. First, developers are obsessed about performance. Striving for

high performance typically requires intensive CPU computations and efficient

memory managements, while big data computing is more data-intensive and

I/O-bound. Second, performance-critical data are more connected and struc-

tured than that of big data. Design files cannot be easily partitioned into

independent pieces, making it difficult to fit into MapReduce paradigm [30].

Also, it is fair to claim most compute-driven data are medium-size as they

must be kept in memory for performance purpose [38]. The benefit of MapRe-

duce may not be fully utilized in this domain. Third, performance-optimized

programs are normally hard-coded in C/C++, whereas the mainstream big

data languages are Java, Scala, and Python. Rewriting these ad-hoc pro-

grams that have been robustly present in the tool chain for decades

0

20

40

60

80

C++ Python Java Scala Spark
GraphX

Graph-based timing analysis in VLSI design

Runtime (s)

1.5s 9.5s 10.68s

68.45s

7.4s

Industry circuit design
(2.5M nodes and 3.5M edges)

(4 cores)(1 core) (1 core) (1 core) (1 core)

Compute-intensive Big data
Computation CPU-bound I/O-bound

Data traits Structured, monolithic Unstructured, sharded
Storage NFS, GPFS, Ceph HDFS, GFS

Programming Ad-hoc, C/C++ MapReduce, Java, Scala

Example EDA, optimization,
simulation

Log mining, database,
analytic

Figure 5.1: An example of VLSI timing analysis and the comparison
between compute-intensive applications and big data [36, 42].

To prove the concept, a recent research study has reported an experiment

comparing the performance of running VLSI timing analysis under different

languages and system frameworks [42]. As shown in Figure 5.1, the hand-

crafted C/C++ program is much faster than many of mainstream big data

languages such as Python, Java, and Scala. It can even outperform one of the

best big data cluster computing frameworks, the distributed Spark/GraphX-

101

based implementation, by 45× faster. Many industry experts have realized

that big data are not an easy fit to their domains, for example, semiconductor

design optimizations and engineering simulations. Unfortunately, the ever-

increasing design complexity will far exceed what many old ad-hoc methods

have been able to accomplish. In addition to having researchers and practi-

tioners acquire new domain knowledge, we must rethink the approaches of

developing software to enable the proliferation of new algorithms combined

with readily reusable toolboxes. To this end, the key challenge is to discover

an elastic programming paradigm that lets developers place computations at

customizable granularity wherever the data are – which is believed to deliver

the next leap of engineering productivity and unleash new business model

opportunities [38].

One of the main challenges to achieve this goal is to define a suitable

programming model that abstracts the data computation and process com-

munication effectively. The success of big data analytics in allowing users

without any experience of distributed computing to easily deploy jobs that

access large cluster resources is a key inspiration to our system design [30,

39, 40, 33]. We are also motivated by the fact that existing big data sys-

tems such as Hadoop and Spark are facing the bottleneck in support for

compute-optimized codes and general dataflow programming [41]. For many

compute-driven or resource-intensive problems, the most effective way to

achieve scalable performance is to force developers to exploit the parallelism.

Prior efforts have been made to either breaking data dependencies based

on domain-specific knowledge of physical traits or discovering independent

components across multiple application hierarchies [42]. Our primary focus

is instead on the generality of a programming model and, more importantly,

the simplicity and efficiency of building distributed applications on top of

our system.

While this project was initially launched to address a question from our

industry partners, “How can we leverage the numerous computations of semi-

conductor designs to improve the engineering productivity?”, our design phi-

losophy is a general system that is useful for compute-intensive applications

such as graph algorithms and machine learning. As a consequence, we intro-

duce in this chapter DtCraft, a general-purpose distributed execution engine

for building high-performance parallel applications. DtCraft is built on Linux

machines with modern C++17, enabling end users to utilize the robust C++

102

standard library along with our parallel framework. A DtCraft application

is described in the form of a stream graph, in which vertices and edges are

associated with each other to represent generic computations and real-time

data streams. Given an application in this framework, the DtCraft runtime

automatically takes care of all concurrency controls including partitioning,

scheduling, and work distribution over the cluster. Users do not need to

worry about system details and can focus on high-level development toward

appropriate granularity. We summarize three major contributions of DtCraft

as follows:

• New programming paradigm. We introduce a powerful and flexi-

ble new programming model for building distributed applications from

sequential stream graphs. Our programming model is very simple yet

general enough to support generic dataflow including feedback loops,

persistent jobs, and real-time streaming. Stream graph components

are highly customizable with meta-programming. Data can exist in ar-

bitrary forms, and computations are autonomously invoked wherever

data are available. Compared to existing cluster computing systems,

our framework is more elastic in gaining scalable performance.

• Software-defined infrastructure. Our system enables fine-grained

resource controls by leveraging modern OS container technologies. Ap-

plications live inside secure and robust Linux containers as work units

which aggregate the application code with runtime dependencies on

different OS distributions. With a container layer of resource man-

agement, users can tailor their application runtime toward tremendous

performance gain.

• Unified framework. We introduce the first integration of user-space

dataflow programming with resource container. For this purpose, many

network programming components are re-devised to fuse with our sys-

tem architecture. The unified framework empowers users to utilize rich

APIs of our system to build highly optimized applications.

We believe DtCraft stands out as a unique system considering the en-

semble of software tradeoffs and architecture decisions we have made. With

these features, DtCraft is suited for various applications both on systems that

103

search for transparent concurrency to run compute-optimized codes, and on

those that prefer distributed integration of existing developments with vast

expanse of legacy codes in order to bridge the performance gap. We have

evaluated DtCraft on micro-benchmarks including machine learning, graph

algorithms, and large-scale semiconductor engineering problems. We have

shown DtCraft outperforms one of the best cluster computing systems in big

data community by more than an order of magnitude. Also, we have demon-

strated DtCraft can be applied to wider domains that are known difficult to

fit into existing big data ecosystems.

5.2 The DtCraft System

The overview of the DtCraft system architecture is shown in Figure 5.2. The

system kernel contains a master daemon that manages agent daemons run-

ning on each cluster node. Each job is coordinated by an executor process

that is either invoked upon job submission or launched on an agent node

to run the tasks. A job or an application is described in a stream graph

formulation. Users can specify resource requirements (e.g. CPU, memory,

disk usage) and define computation callbacks for each vertex and edge, while

the whole detailed concurrency controls and data transfers are automati-

cally operated by the system kernel. A job is submitted to the cluster via a

script that sets up the environment variables and the executable path with

arguments passed to its main method. When a new job is submitted to the

master, the scheduler partitions the graph into several topologies depending

on current hardware resources and CPU loads. Each topology is then sent to

the corresponding agent and is executed in an executor process forked by the

agent. For those edges within the same topology, data are exchanged via effi-

cient shared memory. Edges between different topologies are communicated

through TCP sockets. Stream overflow is resolved by per-process key-value

store, and users are perceived with virtually infinite data sets without dead-

lock.

104

Program1

Program2

Master

Agent Agent Agent

User

Executor
(container)

Executor
(container)

Executor
(container)

Executor
(container)

A B C D
TCP socket
(inter-edge)

TCP socket
(inter-edge)

E F

Agent Executor
1. Topology
2. Frontier message

Master Agent
1. Topology
2. Resource info

Master User
1. Graph
2. Status update

Scheduler
Web UI

(front end)

Inspector
./submit.sh –master=IP executable <args>

Node1: A, B
Node2: C
Node3: D, E, F

Shared memory
(intra-edge)

Shared memory
(intra-edge)Distributed storage

System status
Job status
User command

Database Database Database

Stream
overflow

Stream
overflow

Frontier message

Passing
socket

Lazy initialization
(partial graph only)

A B C D

Executor

E F

Executor

(Non-intrusive)

Light-weight
database

Stream
overflow

B C

Linux container

Figure 5.2: The system architecture of DtCraft. The kernel consists of a master daemon and one agent daemon per working
machine. User describes an application in terms of a sequential stream graph and submits the executable to the master
through our submission script. The kernel automatically deals with concurrency controls including scheduling, process
communication, and work distribution that are known difficult to program correctly. Data is transfered through either TCP
socket streams on inter-edges or shared memory on intra-edges, depending on the deployment by the scheduler. Application
and workload are isolated in secure and robust Linux containers.

105

5.2.1 Stream Graph Programming Model

DtCraft is strongly tight to modern C++ features, in particular the concur-

rency libraries, lambda functions, and templates. We have struck a balance

between the ease of the programmability at user level and the modularity of

the underlying system that needs to be extensible with the advance of soft-

ware technology. The main programming interface including gateway classes

is sketched as follows:

class Vertex {

function<void()> on;

once_flag flag;

Adjacency<DeviceWriter> writers; // weak pointers

Adjacency<DeviceReader> readers; // weak pointers

};

class Stream {

weak_ptr<DeviceWriter> writer;

weak_ptr<DeviceReader> reader;

function<Signal(Vertex&, DeviceWriter&)> on_os();

function<Signal(Vertex&, DeviceReader&)> on_is();

};

class Graph {

template <typename C> // vertex

auto insert(C&&...);

template <typename O, typename I> // stream

auto insert(const auto&, O&&, const auto&, I&&)

template <typename... U>

auto containerize(U&&...);

};

class Executor : Reactor {

Executor(Graph&);

};

106

Programmers formulate an application into a stream graph and define

computation callbacks in the format of standard function object for each

vertex and edge (stream). Vertices and edges are highly customizable subject

to the inheritance from classes Vertex and Stream that interact with our

back-end. The vertex callback is a constructor-like call-once barrier that is

used to synchronize all adjacent edge streams at the beginning. Each edge

is associated with two callbacks, one for output stream at the tail vertex

and another one for input stream at the head vertex. Our stream interface

follows the structure of standard C++ iostream library. We have developed

specialized stream buffer classes in charge of performing reading and writing

operations on stream objects. The stream buffer class hides from users a

great deal of work such as non-blocking communication, stream overflow

and synchronization, and error handling. Vertices and edges are explicitly

connected together through the Graph and its method insert. Users can

configure the resource requirements for different portions of the graph using

our container method containerize. Finally, an executor class forms the

graph along with application-specific parameters into a simple closure and

dispatches it to the remote master for execution.

5.2.2 A Concurrent Ping-Pong Example

To understand our programming interface, we describe a concrete example of

a DtCraft application. The example we have chosen is a representative class

in many software libraries – concurrent ping-pong, as it represents a funda-

mental building block of many iterative or incremental algorithms. The flow

diagram of a concurrent ping-pong and its runtime on our system are illus-

trated in Figure 5.3. The ping-pong consists of two vertices, called “Ball”,

which asynchronously sends a random binary character to each other, and

two edges that are used to capture the data streams. Iteration stops when

the internal counter of a vertex reaches a given threshold.

auto Ball(Vertex& v, auto& k) {

v.writers.at(k).lock->ostream((rand()%2));

return Stream::DEFAULT;

};

auto PingPong(auto& v, auto& r, auto& k, auto& c) {

107

A B

‘1’ or ‘0’ (random)

‘1’ or ‘0’ (random)

ostream
A

istream
B

istream
A

Break at
counter ! 100

ostream
B

eA!B

eA"B

eA!B

eA"B

thdi

thdj

thdk

thdl

A

B

B
A

A

B

B B

A

A

B

t

A

!"

!"
ostream
begins at first

Figure 5.3: Flow diagram of the concurrent ping-pong example.
Computation callbacks on streams are simultaneously invoked by multiple
threads.

int data;

reader.istream(data);

if((c+=data) >= 100) return Stream::REMOVE_THIS;

return Ball(v, k)

}

Graph G;

key_type AB, BA;

auto count_A {0}, count_B {0};

auto A = G.insert([&](auto& v){ Ball(v, AB); })

auto B = G.insert([&](auto& v){ Ball(v, BA); })

AB = G.insert(

A, [&](auto& v, auto& writer) {}, // ostream

B, [&](auto& v, auto& reader) { // istream

return PingPong(v, reader, BA, count_B);

}

);

BA = G.insert(

B, [&](auto& v, auto& writer) {}, // ostream

A, [&](auto& v, auto& reader) { // istream

return PingPong(v, reader, AB, count_A)

}

108

);

G.containerize(A, "memory=1KB", "num_cpus=1");

G.containerize(B, "memory=1KB", "num_cpus=1");

Executor(G).dispatch();

As presented in the above code snippet, we define a function Ball that

writes a binary data through the stream k on vertex v. We define an-

other function PingPong to retrieve the data arriving in vertex v followed

by Ball if the counter has not reached the threshold. We next define ver-

tices and streams using the class method insert from the graph, as well

as their callbacks based on Ball and PingPong. The vertex first reach-

ing the threshold will close the underlying stream channels via a return of

Stream::REMOVE THIS. This is a handy feature of our system. Users do not

need to invoke extra function call to signal our stream back-end. Closing one

end of a stream will subsequently force the other end to be closed, which in

turn updates the stream ownership on corresponding vertices. We configure

each vertex with 1 KB memory and 1 CPU. Finally, an executor instance is

created to wrap the graph into a closure and dispatch it to the remote master

for execution.

5.2.3 Advantages of the Proposed Model

DtCraft provides a programming interface similar to those found in C++

standard libraries. Users can learn how to develop a DtCraft application at a

faster pace. The same code that executes distributively can be also deployed

on a local machine for debugging purpose. No programming changes are

necessary except the options passed to the submission script. Note that our

framework needs only a single entity of executable from users. The system

kernel is not intrusive to any user-defined entries, for instance, the arguments

passed to the main method. We encourage users to describe stream graphs

with C++ lambda and function objects. This functional programming style

provides a very powerful abstraction that allows the runtime to bind callable

objects and captures different runtime states.

Although conventional dataflow thinks applications as “computation ver-

tices” and “dependency edges” [39, 40, 43, 44], our system model does not

impose explicit boundary (e.g., DAG restriction). As shown in previous code

109

snippets, vertices and edges are logically associated with each other and are

combined to represent generic stream computations including feedback con-

trols, state machines, and asynchronous streaming. Stream computations

are by default long-lived and persist in memory until the end-of-file state is

lifted. In other words, our programming interface enables straightforward

in-memory computing, which is an important factor for iterative and incre-

mental algorithms. This feature is different from existing data-driven cluster

computing frameworks such as Dryad, Hadoop, and Spark that rely on either

frequent disk access or expensive extra caching for data reuse [30, 40, 33].

In addition, our system model facilitates the design of real-time streaming

engines. A powerful streaming engine has the potential to bridge the per-

formance gap caused by application boundaries or design hierarchies. It

is worth noting that many engineering applications and companies existed

“pre-cloud”, and the most techniques they applied were ad-hoc C/C++ [38].

To improve the engineering turnaround, our system can be explored as a

distributed integration of existing developments with legacy codes.

Another powerful feature of our system over existing frameworks is guided

scheduling using Linux containers. Users can specify hard or soft constraints

configuring the set of Linux containers on which application pieces would

like to run. The scheduler can preferentially select the set of computers to

launch application containers for better resource sharing and data locality.

While transparent resource control is successful in many data-driven cluster

computing systems, we have shown that compute-intensive applications has

distinctive computation patterns and resource management models. With

this feature, users can implement diverse approaches to various problems in

the cluster at any granularity. In fact, we are convinced by our industry part-

ners that the capability of explicit resource controls is extremely beneficial

for domain experts to optimize the runtime of performance-critical routines.

Our container interface also offers users secure and robust runtime, in which

different application pieces are isolated in independent Linux instances. To

our best knowledge, DtCraft is the first districuted execution engine that

incorporates the Linux container into dataflow programming.

In summary, each system has its own merits in certain application domain,

and it is impossible to provide thorough comparison with prior works due

to the page limit. However, we believe DtCraft stands out as a unique sys-

tem given the following attributes: (1) a compute-driven distributed system

110

completely designed from modern C++17; (2) a new asynchronous stream-

based programming model in support for general dataflow; (3) a container

layer integrated with user-space programming to enable fine-grained resource

controls and performance tunning. Developers are encouraged to investigate

the structure of their applications and the properties of proprietary systems.

Careful graph construction and refinement can improve the performance sub-

stantially.

While there are many benefits about DtCraft, we indeed compromise a

few complexities on code verbosity and data managements compared to

MapReduced-based cluster computing systems. Nevertheless, DtCraft is no-

table for problem domains that rely on dataflow controls to optimize the com-

putation performance. Developers are encouraged to investigate the structure

of their applications and the properties of proprietary systems. Careful graph

construction and refinement can improve the performance substantially.

5.3 System Implementation

DtCraft aims to provide a unified framework that works seamlessly with the

C++ standard library. Like many distributed systems, network program-

ming is an integral part of our system kernel. While our initial plan was to

adopt third-party libraries, we have found considerable incompatibility with

our system architecture (discussed in later sections). Fixing them would re-

quire extensive rewrites of library core components. Thus, we decided to

re-design these network programming components from ground-up, in par-

ticular the event library and serialization interface that are fundamental to

DtCraft. We shall also discuss how we achieve distributed execution of a

given graph, including scheduling and transparent communication.

5.3.1 Event-Driven Environment

DtCraft supports event-based programming style to gain benefits from asyn-

chronous computations. Writing an event reactor has traditionally been the

domain of experts and the language they obsessed about is C [35]. The

biggest issue we found in widely used event libraries is the inefficient support

for object-oriented design and modern concurrency. Our goal is thus to in-

111

corporate the power of C++ libraries with low-level system controls such as

non-blocking mechanism and I/O polling. Due to the space limit, we present

only the key design principles of our event reactor as follows:

class Event : enable_shared_from_this <Event> {

enum Type {

TIMEOUT,

PERIODIC,

READ,

WRITE

};

const function<Signal(Event&)> on;

};

class Reactor {

Threadpool threadpool;

unordered_set<shared_ptr<Event>> eventset;

template <typename T, typename... U>

future<shared_ptr<T>> make(U&&... u) {

auto e = make_shared<T>(forward<U>(u)...);

return promise([&, e=move(e)](){

_insert(e); // insert an event into reactor

return e;

});

}

};

Unlike existing libraries, our event is a flattened unit of operations includ-

ing timeout and I/O. Events can be customized given the inheritance from

class Event. The event callback is defined in a function object that can work

closely with lambda and polymorphic function wrappers. Each event instance

is created by the reactor and is only accessible through C++ smart pointer

with shared ownership among those inside the callback scope. This gives

us a number of benefits such as precise polymorphic memory managements

and avoidance of ABA problems that are typically hard to achieve with raw

pointers. We have implemented the reactor using task-based parallelism. A

112

significant problem of existing libraries is the condition handling in multi-

threaded environment. For example, a thread calling to insert or remove an

event can get a nonsense return if the main thread is too busy to handle the

request [35, 45]. To enable proper concurrency controls, we have adopted

C++ future and promise objects to separate the acts between the provider

(reactor) and consumers (threads). Multiple threads can thus safely create

or remove events in arbitrary orders. In fact, our unit test has shown 4–12×

improvements in throughput and latencies over existing libraries [35, 45].

5.3.2 Serialization and Deserialization

We have built a dedicated serialization and deserialization layer called archiver

on top of our stream interface. The archiver has been intensively used in our

system kernel communication. Users are strongly encouraged, though not

necessary, to wrap their data with our archiver as it is highly optimized to

our stream interface. Our archiver is similar to the modern template-based

library Cereal, where data types can be reversibly transformed into different

representations such as binary encodings, JSON, and XML [46]. However,

the problem we discovered in Cereal is the lack of proper size controls dur-

ing serialization and deserialization. This can easily cause exception or crash

when non-blocking stream resources become partially unavailable. While ex-

tracting the size information in advance requires twofold processing, we have

found such burden can be effectively leveraged using modern C++ template

techniques. A code example of our binary archiver is given as follows:

class BinaryOutputArchiver {

ostream& os;

template <typename... U>

constexpr streamsize operator()(U&&... u) {

return archive(forward<U>(u)...);

}

};

We developed our archiver based on extensive templates to enable a unified

API. Many operations on stack-based objects and constant values are pre-

scribed at compile time using constant expression and forwarding reference

113

techniques. The archiver is a lightweight layer that performs serialization

and deserialization of user-specified data members directly on the stream ob-

ject passed to the callback. We also offer a packager interface that wraps

data with a size tag for complete message processing. Both archiver and

packager are defined as callable objects to facilitate dynamic scoping in our

multi-threaded environment.

5.3.3 Input and Output Streams

One of the challenges in designing our system is choosing an abstraction

for data processing. We have examined various options and concluded that

developing a dedicated stream interface is necessary to provide users a simple

but robust layer of I/O services. To facilitate the integration of safe and

portable streaming execution, our stream interface follows the idea of C++

istream and ostream. Users are perceived with the API similar to those

found in C++ standard library, while our stream buffer back-end implements

the entire details such as device synchronization and low-level non-blocking

data transfers.

Derived stream buffer

beg endnext

@ # * … - - - - -

I/O Device DB

In-memory
char buffer

AgentDatabase

overflowSynchronization

Thread-safe stream buffer object: read, write, copy, etc.

Executor

Key/Value
store

Executor

In-memory database

Integration with our serialization/deserialization interface

rdbuf

Figure 5.4: DtCraft provides a dedicated stream buffer object in control of
reading and writing operations on devices.

Figure 5.4 illustrates the structure of a stream buffer object in our system

kernel. A stream buffer object is a class similar to C++ basic streambuf

and consists of three components, character sequence, device, and database

pointer. The character sequence is an in-memory linear buffer storing a par-

ticular window of the data stream. The device is an OS-level entity (e.g.

114

TCP socket, shared memory) that derives reading and writing methods from

an interface class with static polymorphism. Our stream buffer is thread safe

and is directly integrated with our serialization and deserialization methods.

To properly handle the buffer overflow, each stream buffer object is associ-

ated with a raw pointer to a database owned by the process. The database

is initiated when a master, an agent, or an executor is created, and is shared

among all stream buffer objects involved in that process. Unless the ulti-

mate disk usage is full, users are virtually perceived with unbounded stream

capacity in no worry about the deadlock.

5.3.4 Kernel: Master, Agent, and Executor

Master, agent, and executor are the three major components in the system

kernel. There are many factors that have led to the design of our system

kernel. Overall regard is the reliability and efficiency in response to different

message types. We have defined a reliable and extensible message structure

of type variant to manipulate a heterogeneous set of message types in a

uniform manner. Each message type has data members to be serialized and

deserialized by our archiver. The top-level class can inherit from a visitor

base with dynamic polymorphism and derive dedicated handlers for certain

message types.

To efficiently react to each message, we have adopted the event-based pro-

gramming style. Master, agent, and executor are persistent objects derived

from our reactor with specialized events binding to each. While it is ex-

pectedly difficult to write non-sequential codes, we have found a number of

benefits of adopting event-driven interface, for instance, asynchronous com-

putations, natural task flow controls, and concurrency. We have defined

several master events in charge of graph scheduling and status report. For

agent, most events are designated as a proxy to monitor current machine

status and fork an executor to launch tasks. Executor events are responsible

for the communication with the master and agents as well as the encapsula-

tion of asynchronous vertex and edge events. Multiple events are executed

efficiently on a shared thread pool in our reactor.

115

Communication Channels

The communication channels between different components in DtCraft are

listed in Table 5.1. By default, DtCraft supports three types of commu-

nication channels, TCP socket for network communication between remote

hosts, domain socket for process communication on a local machine, and

shared memory for in-process data exchange. For each of these three chan-

nels, we have implemented a unique device class that effectively supports

non-blocking I/O and error handling. Individual device classes are pluggable

to our stream buffer object and can be extended to incorporate device-specific

attributes for further I/O optimizations.

Table 5.1: Communication Channels in DtCraft

Target Protocol Channel Latency

Master–User TCP socket Network High
Master–Agent TCP socket Network High
Agent–Executor Domain socket Local processes Medium

Intra-edge Shared memory Within a process Low
Inter-edge TCP socket Network High

Since master and agents are coordinated with each other in the distributed

environment, the communication channels run through reliable TCP socket

streams. We enable two types of communication channels for graphs, shared

memory and TCP socket. As we shall see in the next section, the scheduler

might partition a given graph into multiple topologies running on differ-

ent agent nodes. Edges crossing the partition boundary are communicated

through TCP sockets, while data within a topology is exchanged through

shared memory with extremely low latency cost. To prevent our system ker-

nel from being bottlenecked by data transfers, master and agents are only

responsible for control decisions. All data are sent between vertices managed

by the executor. Nevertheless, achieving point-to-point communication is

non-trivial for inter-edges. The main reason is that the graph structure is

offline unknown and our system has to be general to different communication

patterns deployed by the scheduler. We have managed to solve this by means

of file descriptor passing through environment variables. The agent exports

a list of open file descriptors to an environment variable which will be in turn

inherited by the corresponding executor under fork.

116

Application Container

DtCraft leverages existing OS container technologies to enable isolation of ap-

plication resources from one another. Because these technologies are platform-

dependent, we implemented a pluggable isolation module to support multiple

isolation mechanisms. An isolation module containerizes a process based

on user-specified attributes. By default, we apply the Linux control groups

(cgroups) kernel feature to impose per-resource limits (CPU, memory, block

I/O, and network) on user applications. With cgroups, we are able to consol-

idate many workloads on a single node while guaranteeing the quota assigned

to each application. In order to achieve secure and robust runtime, our sys-

tem runs applications in isolated namespaces. We currently support IPC,

network, mount, PID, UTS, and user namespaces. By essentially separat-

ing processes into independent namespaces, user applications are ensured

to be invisible from others and will be unable to make connections outside

of the namespaces. External connections such as inter-edge streaming are

managed by agents through device descriptor passing techniques. Our con-

tainer implementation also supports process snapshots, which is beneficial

for checkpointing and live migration.

Graph Scheduling

Scheduler is an asynchronous master event that is invoked when a new graph

arrives. Given a user-submitted graph, the goal of the scheduler is to find a

deployment of each vertex and each edge considering the machine loads and

resource constraints. A graph might be partitioned into a set of topologies

that can be accommodated by the present resources. A topology is the ba-

sic unit of a task (container) that is launched by an executor process on an

agent node. A topology is not a graph because it may contain dangling edges

along the partition boundary. Once the scheduler has decided the deploy-

ment, each topology is marshaled along with graph parameters including the

UUID, resource requirements, and input arguments to form a closure that

can be sent to the corresponding agent for execution. An example of the

scheduling process is shown in Figure 5.5. At present, two schedulers persist

in our system, a global scheduler invoked by the master and a local scheduler

managed by the agent. Given user-configured containers, the global scheduler

117

performs resource-aware partition based on the assumption that the graph

must be completely deployed at one time. The global scheduling problem is

formulated into a bin packing optimization where we additionally take into

account the number of edge cuts to reduce the latency. An application is

rejected by the global scheduler if its mandatory resources (must acquire in

order to run) exceed the maximum capability of machines. As a graph can

be partitioned into different topologies, the goal of the local scheduler is to

synchronize all inter-edge connections of a topology and dispatch it to an

executor. The local scheduler is also responsible for various container setups

including resource update, namespace isolation, and fault recovery.

A B C D

A B C D

A B

C D

Agent1

Agent2

Graph (4 vertices/4 edges)

Topology1 Topology2

Container 1: A, B
Container 2: C, D

Deploy
(packing)

<Task2: 2 vertices, 2 edges>

<Task1: 2 vertices, 3 edges>

Cut(Agent1) (Agent2)

Control message: ostream from B

Control message: istream to C

Global scheduler (Master) Local scheduler (Agent)

Figure 5.5: An application is partitioned into a set of topologies by the
global scheduler, which are in turn sent to remote agents (local scheduler)
for execution.

Although our scheduler does not force users to explicitly containerize ap-

plications (resort to our default heuristics), empowering users fine-grained

controls over resources can guide the scheduler toward tremendous perfor-

mance gain. Due to the space limitation, we are unable to discuss the entire

details of our schedulers. We believe developing a scheduler for distributed

dataflow under multiple resource constraints deserves independent research

effort. As a result, DtCraft delegates the scheduler implementation to a plug-

gable module that can be customized by organizations for their purposes.

Topology Execution

When the agent accepts a new topology, a special asynchronous event, topol-

ogy manager, is created to take over the task. The topology manager spawns

(fork-exec) a new executor process based on the parameters extracted from

118

the topology, and coordinates with the executor until the task is finished.

Because our kernel requires only a single entity of executable, the executor is

notified by which execution mode to run via environment variables. In our

case, the topology manager exports a variable to “distributed”, as opposed

to aforementioned “submit” where the executor submits the graph to the

master. Once the process controls are finished, the topology manager deliv-

ers the topology to the executor. A set of executor events is subsequently

triggered to launch asynchronous vertex and edge events.

Figure 5.6: A snapshot of the executor runtime in distributed mode.

A snapshot of the executor runtime upon receiving a topology is shown in

Figure 5.6. Roughly speaking, the executor performs two tasks. First, the

executor initializes the graph from the given topology which contains a key

set to describe the graph fragment. Since every executor resides in the same

executable, an intuitive method is to initialize the whole graph as a parent

reference to the topology. However, this can be cost-inefficient especially

when vertices and edges have expensive constructors. To achieve a gener-

ally effective solution, we have applied lazy lambda technique to suspend the

initialization (see the code below). The suspended lambda captures all re-

quired parameters to construct a vertex or an edge, and is lazily invoked by

the executor runtime. By referring to a topology passed from the “future”,

only necessary vertices and edges will be constructed. The meaning of future

means the runtime scheduling decided by the master. The executor on the

distributed mode will not know the exact topology until the agent sends it

119

to the corresponding executor.

template <typename V, typename... U>

VertexDescriptor Graph::insert_vertex(U&&... u) {

auto key = generate_key(); // deterministic key

tasks.emplace_back(// lazy initialization

[u..., key](Topology* t) {

// local mode and distributed mode

if(t == nullptr || t->has_key(key)) {

auto v = make_shared<V>(u...);

pm.set_value(move(v));

}

else t->insert(key); // submit mode

}

);

return key;

}

The second task is to initiate a set of events for vertex and edge call-

backs. We have implemented an I/O event for each device based on our

stream buffer object. Because each vertex callback is invoked only once, it

can be absorbed into any adjacent edge events coordinated by modern C++

threading once flag and call once. Given an initialized graph, the ex-

ecutor iterates over every edge and creates shared memory I/O events and

TCP socket I/O events for intra-edges and inter-edges, respectively. Notice

that the device descriptor for inter-edges are fetched from the environment

variables inherited from the agent.

5.4 Fault Tolerance Policy

Our system architecture facilitates the design of fault tolerance on two fronts.

First, master maintains a centralized mapping between active applications

and agents. Every single error, which could be either heartbeat timeout on

the executor or unexpected I/O behaviors on the communication channels,

can be properly propagated. In case of a failure, the scheduler performs a lin-

ear search to terminate and re-deploy the application. Second, our container

120

implementation can be easily extended to support periodic checkpointing.

Executors are freezed to a stable state and are thawed after the checkpoint-

ing. The solution might not be perfect, but adding this functionality is al-

ready an advantage over our system framework, where all data transfers are

exposed to our stream buffer interface and can be dumped without lost. How-

ever, depending on application properties and cluster environment, periodic

checkpointing can be very time-consuming. For instance, many incremen-

tal optimization procedures have sophisticated memory dumps whereas the

subsequent change between process maps are small. Restarting applications

from the beginning might be faster than checkpoint-based fault recovery.

Therefore, DtCraft leaves the decision of checkpointing to users. Users can

configure this feature on a per-application basis to discover the performance

tradeoff on proprietary systems.

5.5 Experimental Results

We have implemented DtCraft in C++17 on a Linux machine with GCC

7. Given the huge amount of existing cluster computing frameworks, we

are unable to conduct comprehensive comparison subject to the space limit.

Instead, we compare with one of the best cluster computing engines, Apache

Spark 2.0 [33], that has been extensively studied by other research works as

baseline. To further investigate the benefit of DtCraft, we compared with

an application hand-crafted with domain-specific optimizations [42]. The

performance of DtCraft is evaluated on three sets of experiments. The first

two experiments took classic algorithms from machine learning and graph

applications and compared the performance of DtCraft with Spark. We have

analyzed the runtime performance over different numbers of machines on

an academic cluster [24]. The third experiment applied DtCraft to solve a

large-scale semiconductor design problem. Our goal is to explore DtCraft as

a distributed solution to mitigate the end-to-end engineering efforts along the

design flow. The evaluation has been undertaken on a large cluster in Amazon

EC2 cloud [47]. Overall, we have shown the performance and scalability of

DtCraft on both standalone applications and cross-domain applications that

have been coupled together in a distributed manner.

121

5.5.1 Machine Learning

We implemented two iterative machine learning algorithms, logistic regres-

sion and k-means clustering, and compared our performance with Spark.

One key difference between the two applications is the amount of compu-

tation they performed per byte of data. The iteration time of k-means

is dominated by computations, whereas logistic regression is less compute-

intensive [33]. The source codes we used to run on Spark are cloned from

the official repository of Spark. For the sake of fairness, the DtCraft counter-

parts are implemented based on the algorithms of these Spark codes. Figure

5.7 shows the stream graph of logistic regression and k-means clustering in

DtCraft, and two sample results that are consistent with Spark’s solutions.

(b) Logistic regression

Distributed storage

V1 V2 Vn

V0

(a) Stream graph

…
Points

Update weight

(c) k-means

Iteration

Figure 5.7: Stream graph to represent logistic regression and k-means jobs
in DtCraft.

0
50

100
150
200

1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
)

Number of machines (4 CPUs / 16GB each)

Runtime comparison of machine learning applications

Spark (LR)
DtCraft (LR)
Spark (KM)
DtCraft (KM)

40M points (dimension=10)

4-11! speedup on logistic regression (LR)
5-14! speedup on k-means (KM)

Figure 5.8: Runtimes of DtCraft versus Spark on logistic regression and
k-means.

Figure 5.8 shows the runtime performance of DtCraft versus Spark. Un-

less otherwise noted, the value pair enclosed by the parenthesis (CPUs/GB)

denotes the number of cores and the memory size per machine in our cluster.

122

We ran both logistic regression and k-means for 10 iterations on 40M sam-

ple points. It can be observed that DtCraft outperformed Spark by 4–11×

and 5–14× faster on logistic regression and k-means, respectively. Although

Spark can mitigate the long runtime by increasing the cluster size, the per-

formance gap to DtCraft is still remarkable (up to 8× on 10 machines). In

terms of communication cost, we have found hundreds of Spark RDD parti-

tions shuffling over the network. In order to avoid disk I/O overhead, Spark

imposed a significant burden on the first iteration to cache data for reusing

RDDs in the subsequent iterations. In contrast, our system architecture en-

ables straightforward in-memory computing, incurring no extra overhead of

caching data on any iterations. Also, our scheduler can effectively leverage

the machine overloads along with network overhead for higher performance

gain.

5.5.2 Graph Algorithm

We next examine the effectiveness of DtCraft by running a graph algorithm.

Graph problems are challenging in concurrent programming due to the it-

erative, incremental, and irregular computing patterns. We considered the

classic shortest path problem on a circuit graph with 10M nodes and 14M

edges released by [42]. The visualization of the circuit is shown in Figure 5.9.

We implemented the Pregel-style shortest path finding algorithm in DtCraft,

and compared it with Spark-based Pregel variation downloaded from the of-

ficial GraphX repository [44]. As gates are closely connected with each other

to form compact signal paths, finding a shortest (delay-critical) path can

exhibit a wild swing in the evaluation of a value [48, 38].

Figure 5.9: Visualization of our graph benchmark.

123

303

202
111 96 96 98 105 102 108 110

15 14 11 8 9 9 8 10 10 9
0

100
200
300
400

1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
)

Number of machines (4 CPUs / 8GB each)

Runtime comparison of shortest path finding

Spark
DtCraft

Circuit graph with 10M nodes and 14M edges
10-20! speedup by DtCraft

Figure 5.10: Runtimes of DtCraft versus Spark on finding a shortest path
in our circuit graph benchmark.

303 520 674 856 1K 1.2K 1.4K 1.8K
2.2K

3.5K

18 39 52 70 88 108 131 155 176 201
0

1000
2000
3000
4000

24 28 72 96 120 124 168 192 216 240

R
un

tim
e

(s
)

Graph size (# edges + # nodes) in million (M)

Performance scalability (runtime vs graph size)

Spark
DtCraft

All on 10 machines (4 CPUs / 16GB each)
10-17! speedup by DtCraft

Figure 5.11: Runtime scalability of DtCraft versus Spark on different graph
sizes.

Figure 5.10 shows the runtime comparison across different machine counts.

In general, DtCraft reached the goal by 10–20× faster than Spark. Our pro-

gram can finish all tests within a minute regardless of the machine usage. We

have observed intensive network traffic among Spark RDD partitions whereas

in our system most data transfers were effectively scheduled to shared mem-

ory. To further examine the runtime scalability, we duplicated the circuit

graph and created random links to form larger graphs, and compared the

runtimes of both systems on different graph sizes. As shown in Figure 5.11,

the runtime curve of DtCraft is far scalable against Spark. The highest

speedup is observed at the graph of size 240M, in which DtCraft is 17×

faster than Spark. To summarize this micro-benchmarking, we believe the

performance gap between Spark and DtCraft is due to the system architec-

ture and language features we have chosen. While we compromise with users

on explicit dataflow description, the performance gain in exchange can scale

up to more than an order of magnitude over one of the best cluster computing

124

systems.

5.5.3 Stochastic Simulation

We applied DtCraft to solve a large-scale stochastic simulation problem,

Markov Chain Monte Carlo (MCMC) simulation. MCMC is a popular tech-

nique for estimating by simulation the expectation of a complex model. De-

spite notable success in domains such as astrophysics and cryptography, the

practical widespread use of MCMC simulation had to await the invention

of computers. The basis of an MCMC algorithm is the construction of a

transition kernel, p(x, y), that has an invariant density equal to the target

density. Given a transition kernel (a conditional probability), the process can

be started at an initial state x0 to yield a draw x1 from p(x0, x1), x2 from

p(x1, x2), ..., and p(xS−1, xS), where S is the desired number of simulations.

After a transient period, the distribution of x is approximately equal to the

target distribution. The problem is the size of S can be made very large and

the only restriction comes from computer time and capacity. To speed up

the process while catching the accuracy, the recent industry is driving the

need of distributed simulation [49].

Figure 5.12: Stream graph (101 vertices and 200 edges) for distributed
Markov Chain Monte Carlo simulation.

Figure 5.13: Runtime of DtCraft versus hard-coded MPI on MCMC
simulation.

125

We consider Gibbs algorithm on 20 variables with 100000 iterations to

obtain a final sample of 100000 [50]. The stream graph of our implemen-

tation is shown in Figure 5.12. Each Gibbs sampler represents an unique

prior and will deliver the simulation result to the diagnostic vertex. The

diagnostic vertex then performs statistical tests including outlier detection

and convergence check. To measure our solution quality, we implemented

a hard-coded C MPI program as the golden reference. As shown in Figure

5.13, the DtCraft-based solution achieved up to 32× seedup on 40 Amazon

EC2 m4.xlarge machines over the baseline serial simulation, while keeping

the performance margin within 8% to MPI. Nevertheless, it should be noted

that our system enables many features such as transparent concurrency, ap-

plication container, and fault tolerance, which MPI handles insufficiently. We

have observed the majority of runtime is taken by simulation (85%) while

ramp-up time (scheduling) and clean-up time (release containers, report to

users) are 4% and 11%, respectively. This experiment justified DtCraft as

an alternative to MPI, considering the tradeoff around performance, trans-

parency, and programmability.

12
20 27 31

40 45 46 49 52 56

0

20

40

60

1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

Number of machines (4 CPUs / 1GPU / 64GB each)

Runtime scalability (GPU-based MCMC simulation)

DtCraft

Up to 56! speedup to baseline with
distributed GPUs

Figure 5.14: Accelerated MCMC simulation with distributed GPUs using
DtCraft.

There are a number of approaches using GPU to accelerate Gibbs sampling.

Due to memory limitation, large data sets require either multiple GPUs or

iterative streaming to a single GPU. A powerful feature of DtCraft is the

capability of distributed heterogeneous computing. Recall that our system

offers a container layer of resource abstraction and users can interact with the

scheduler to configure the set of computers on which their applications would

like to run. We modified the container interface to include GPUs into resource

constraints and implemented the GPU-accelerated Gibbs sampling algorithm

by [50]. Experiments were run on 10 Amazon EC2 p2.xlarge instances. As

126

shown in Figure 5.14, DtCraft can be extended to a hybrid cluster for higher

speedup (56× faster than serial CPU with only 10 GPU machines). Similar

applications that rely on off-chip acceleration can make use of DtCraft to

broaden the performance gain.

5.5.4 Electronic Design Automation (EDA)

The recent semiconductor industry is driving the need of massively paral-

lel integration to leverage the technology scaling [38]. We applied DtCraft

to solve a large-scale EDA optimization problem, physical design, a pivotal

stage that encompasses several steps from circuit partition to timing closure

(see Figure 5.15). Each step has domain-specific solutions and engages with

others through different internal databases. We used open-source tools and

our internal developments for each step of the physical design [4, 9, 36]. In-

dividual tools have been developed based on C++ with default I/O on files,

which can fit into DtCraft without significant rewrites of codes. Altering the

I/O channels is unsurprisingly straightforward because our stream interface

is compatible with C++ file streams. We applied DtCraft to handle a typical

physical design cycle under multiple timing scenarios. As shown in Figure

5.16, our implementation ran through each physical design step and coupled

them together in a distributed manner. Generating the timing report is the

most time-consuming step. We captured each independent timing scenario

by one vertex and connected it to a synchronization barrier to derive the

final result. Users can interactively access the system via a service vertex.

We derived a benchmark with two billion transistors from ICCAD15 and

TAU15 contests [9, 51]. The DtCraft-based solution is evaluated on 40 Ama-

zon EC2 m4.xlarge machines [47]. The baseline we considered is a batch run

over all steps on a single machine that mimicked the normal design flow. The

overall performance is shown in Figure 5.17. The first benefit of our solution

is the saving of disk I/O (65 GB vs 11 GB). Most data are exchanged on

the fly including those that would otherwise come with redundant auxiliaries

through disk (50 GB parasitics in the timing step). Another benefit we have

observed is the asynchrony of DtCraft. Computations are placed wherever

stream fragments are available rather than blocking for the entire object

to be present. These advantages have translated to effective engineering

127

Circuit design

Partition

Floorplan

Placement

CTS

Routing

Function, logic

Physical design

Signoff

Module(a, b)
Input a;
Output b;

Manufacturing

System Spec.

Architecture

Timing

Final chip

Testing

DRC, LVS

Disk, legacy C codes
(Linux LSF cluster)

Graph

Graph

Analytical

Tree

Graph

NFS
22nm 10B+
transistors

Figure 5.15: Electronic design automation of VLSI circuits and
optimization flow of the physical design stage.

turnaround – 13 hours saving over the baseline. From designers’ perspective,

this value convinces not only a faster path to the design closure but also the

chance for breaking cumbersome design hierarchies, which has the potential

to tremendously improve the overall solution quality [42, 38].

We next demonstrate the speedup relative to the baseline on different clus-

ter sizes. In addition, we included the experiment in presence of a failure to

demonstrate the fault tolerance of DtCraft. One machine is killed at a ran-

dom time step, resulting in partial re-execution of the stream graph. As

Partition Floorplan Placement Routing Timing

Users (service)Interactive query,
incremental update

Multiple scenarios
(100 vertices)

Figure 5.16: Stream graph (106 vertices and 214 edges) of our
DtCraft-based solution for the physical design flow.

128

65

11
0

20
40
60
80

40 machinesD
isk

 I/
O

 (G
B)

(4 CPUs / 16GB each)

Physical design (1B transistors)

Baseline
DtCraft

14.8

1.8
0
5

10
15
20

40 machinesR
un

tim
e

(h
r)

(4 CPUs / 16GB each)

Runtime comparison

Baseline
DtCraft

Figure 5.17: Performance of DtCraft versus baseline in completing the
physical design flow.

shown in Figure 5.18, the speedup of DtCraft scales up as the cluster size

increases. The highest speedup is achieved at 40 machines (160 cores and

640 GB memory in total), where DtCraft is 8.1× and 6.4× faster than the

baseline. On the other hand, we have observed approximately 10–20% run-

time overhead on fault recovery. We did not see pronounced difference from

our checkpoint-based fault recovery mechanism. This should be in general

true for most EDA applications since existing optimization algorithms are

designed for “medium-size data” (million gates per partition) to run in main

memory [38, 42]. In terms of runtime breakdown, computation takes the

majority while about 15% is occupied by system transparency.

4.7
5.9

7
8.1

3.9
5

6.2 6.4

0
2
4
6
8

10

10 20 30 40

Sp
ee

du
p

Number of machines (4 CPUs / 16GB each)

Runtime scalability (physical design flow)

DtCraft
DtCraft*

Up to 8! speedup relative to
baseline

*: Random fault

Figure 5.18: Runtime scalability in terms of speedup relative to the baseline
on different cluster sizes.

Since timing analysis exhibits the most parallelism, we investigate into the

performance gain by using DtCraft. To discover the system capability, we

compare with the distributed timing analysis algorithm (ad-hoc approach)

proposed by [42]. To further demonstrate the programmability of DtCraft,

we compared the code complexity in terms of the number of lines of codes be-

tween our implementation and the ad-hoc approach. The overall comparison

129

is shown in Figure 5.19. Because of the problem nature, the runtime scala-

bility is even remarkable as the compute power scales out. It is expected the

ad-hoc approach is faster than our DtCraft-based solution. Nevertheless, the

ad-hoc approach embedded many hard codes and supports neither transpar-

ent concurrency nor fault tolerance, which is difficult for scalable and robust

maintenance. In terms of programmability, our programming interface can

significantly reduce the amount of the codes by 15×. The corresponding en-

gineering efforts can be far beyond this number. Although this comparison

might not be fair, it indeed reflected the potential engineering productivity

that can be improved by DtCraft.

8.2
13

19

30.1

8.7
14.2

21.7

32

0
10
20
30
40

10 20 30 40

Sp
ee

du
p

Number of machines (4 CPUs / 16GB each)

Runtime scalability (timing analysis)

DtCraft
Ad hoc*

Up to 30! speedup over baseline
15! fewer lines of codes than ad hoc

*: Hard-coded

7 minutes

Figure 5.19: Performance comparison on distributed timing analysis
between DtCraft-based approach and the ad-hoc algorithm by [42].

To conclude this experiment, we have introduced a platform innovation to

solve a large-scale semiconductor optimization problem with low integration

cost. To our best knowledge, this is the first work in the literature that

achieves a distributed EDA flow integration. In addition, DtCraft also opens

new opportunities for improving commercial tools, for example, distributed

EDA algorithms and tool-to-tool integration. While this experiment demon-

strates merely a successful prototype, we believe DtCraft can be extended to

consider more general and complex design flows.

5.6 Conclusion

We have presented DtCraft, a distributed execution engine for high-performance

parallel applications. DtCraft is developed based on modern C++17 on

Linux machines. Developers can fully utilize rich features of C++ standard

130

libraries along with our parallel framework to build highly optimized ap-

plications. Experiments on classic machine learning and graph applications

have shown DtCraft outperforms the state-of-the-art cluster computing sys-

tem by more than an order of magnitude. We have also successfully applied

DtCraft to solve large-scale semiconductor optimization problems that are

known difficult to fit into existing big data ecosystems. For many similar

industry applications, DtCraft can be employed to explore integration and

optimization issues, thereby offering new revenue opportunities for existing

company assets.

131

CHAPTER 6

CONCLUSION AND FUTURE WORK

We have introduced in this thesis (1) an efficient PBA to remove pessimism

from conventional STA flow, (2) an MapReduced-based distributed PBA

framework that scales up to hundreds of machines, (3) a high-performance

timing analysis tool, OpenTimer, (4) a distributed timing analysis framework

for large design, and (5) a general-purpose distributed execution engine. We

have released the source of our research to the public domain as vehicle for

EDA and system research. There are many organizations and individuals

using OpenTimer as either their business products or for contributions to

the EDA community. OpenTimer has been selected as the golden timer in

the TAU 2016 and TAU 2017 Timing Analysis Contests, and IEEE/ACM

ICCAD 2015 CAD Contest. IEEE CEDA also used OpenTimer in their

OpenDesign flow, aiming to promote open-source idea into EDA.

With our DtCraft system in place, there are a number of open oppor-

tunities. For example, we can create a software stack on top of DtCraft

and build API for distributed machine learning applications and graph algo-

rithms. Another important direction is to discover a suitable integration with

POSIX-compliant distributed file systems. We are particularly interested in

such one that supports both block- and object-based storage types. With

the support of distributed storage, it is likely we can support MapReduce-

like API to deal with data-intensive applications. We believe DtCraft can

play an import role in speeding up the convergence between big data and big

compute.

132

REFERENCES

[1] J. Hu, D. Sinha, and I. Keller, “TAU 2014 contest on removing common
path pessimism during timing analysis,” in Proc. ACM ISPD, 2014, pp.
153–160.

[2] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer De-
signs: A Practical Approach. Springer, 2009.

[3] J. Zejda and P. Frain, “General framework for removal of clock network
pessimism,” in Proc. IEEE/ACM ICCAD, 2002, pp. 632–639.

[4] “Tau 2014 contest: Pessimism removal of timing analysis,”
http://sites.google.com/site/taucontest2014.

[5] S. Bhardwaj, K. Rahmat, and K. Kucukcaka, “Clock-reconvergence
pessimism removal in hierarchical static timing analysis,” U.S. Patent
8 434 040, Apr 30, 2013.

[6] D. Hathaway, J. P. Alvarez, and K. P. Belkbale, “Network timing analy-
sis method which eliminates timing variations between signals traversing
a common circuit path,” U.S. Patent 5 636 372, Jan 3, 1997.

[7] A. K. Ravi, “Common clock path pessimism analysis for circuit designs
using clock tree networks,” U.S. Patent 8 205 178, Jan 19, 2012.

[8] T.-W. Huang, P.-C. Wu, and M. D. F. Wong, “UI-Timer: An ultra-
fast clock network pessimism removal algorithm,” in Proc. IEEE/ACM
ICCAD, 2014, pp. 758–765.

[9] “Incremental timing analysis and incremental CPPR,”
http://sites.google.com/site/taucontest2015.

[10] V. Garg, “Common path pessimism removal: An industry perspective,”
in Proc. IEEE/ACM ICCAD, 2014, pp. 592–595.

[11] C.-H. Tsai and W.-J. Mak, “A fast parallel approach for common path
pessimism removal,” in Proc. IEEE/ACM ASPDAC, 2015, pp. 372–377.

133

[12] Y.-M. Yang, Y.-W. Chang, and I. H.-R. Jiang, “iTimerC: Common
path pessimism removal using effective reduction methods,” in Prof.
IEEE/ACM ICCAD, 2014, pp. 600–605.

[13] C. Kalonakis, C. Antoniadis, P. Giannakou, D. Dioudis, G. Pinitas, and
G. Stamoulis, “TKtimer: Fast and accurate clock network pessimism
removal,” in Proc. IEEE/ACM ICCAD, 2014, pp. 606–610.

[14] M. A. Bender and M. F. Colton, “The LCA problem revisited,” in Proc.
4th Latin American Symposium on Theoretical Informatics, 2000, pp.
88–94.

[15] H. Aljazzar and S. Leue, “K*: A heuristic search algorithm for finding
the k shortest paths,” in Artificial Intelligence, 2011, pp. 2129–2154.

[16] D. Eppstein, “Finding the k shortest paths,” in Proc. IEEE FOCS, 1994,
pp. 154–165.

[17] E. Q. V. Martins and M. M. B. Pascoal, “A new implementation of yen’s
ranking loopless paths algorithm,” in A Quaterly Journal of Operation
Research, 2003.

[18] W. Qiu and D. M. H. Walker, “An efficient algorithm for finding the k
longest testable paths through each gate in a combinational circuit,” in
Proc. IEEE ITC, 2003, pp. 592–601.

[19] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Manage.
Sci., vol. 17, no. 11, pp. 712–716, 1971.

[20] M. Atkinson, J. Sack, N. Santoro, and T. Strothotte, “Min-max heaps
and generalized priority queue,” in Commun. ACM, 1986, pp. 996–1000.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Chapter 24:
Single-source shortest paths, introduction to algorithm,” 2009.

[22] “OpenMP: Parallel programming API,” http://www.openmp.org.

[23] “OpenMPI: Open-source high-performance computing,”
http://www.open-mpi.org.

[24] “Illinois campus cluster,” https://campuscluster.illinois.edu.

[25] T.-W. Huang and M. D. F. Wong, “OpenTimer: A high-performance
timing analysis tool,” in Proc. IEEE/ACM ICCAD, 2015, pp. 895–902.

[26] S. Cristian, N. H. Rachid, and R. Khalid, “Efficient exhaustive path-
based static timing analysis using a fast estimation technique,” U.S.
Patent 8 079 004, Dec 13, 2011.

134

[27] R. Molina, “EDA vendors should improve the runtime performance of
path-based timing analysis,” in Eletronic Design, 2003.

[28] O. Levitsky, “Sign off quality hierarchical timing constraints: Wishful
thinking or reality?” in TAU Workshop, 2014.

[29] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[30] “Apache Hadoop,” http://hadoop.apache.org/.

[31] “MapReduce MPI library,” http://mapreduce.sandia.gov/.

[32] “POSIX,” https://computing.llnl.gov.

[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in USNIX
NSDI, 2012.

[34] “ProtocolBuffer,” https://developers.google.com/protocol-buffers/.

[35] “Libevent,” http://libevent.ogr/.

[36] T.-W. Huang and M. D. F. Wong, “Accelerated path-based timing anal-
ysis with MapReduce,” in Proc. ACM ISPD, 2015, pp. 103–110.

[37] “Adaptive computing,” http://www.adaptivecomputing.com/.

[38] L. Stok, “The next 25 years in EDA: A cloudy future?” IEEE Design
Test, vol. 31, no. 2, pp. 40–46, April 2014.

[39] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,” in
ACM EuroSys, 2007, pp. 59–72.

[40] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey, “Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language,” in USNIX OSDI,
2008, pp. 1–14.

[41] “The future of big data,” https://www2.eecs.berkeley.edu/patterson2016/.

[42] T.-W. Huang, M. D. F. Wong, D. Sinha, K. Kalafala, and
N. Venkateswaran, “A distributed timing analysis framework for large
designs,” in ACM/IEEE DAC, 2016, pp. 116:1–116:6.

[43] D. Charousset, R. Hiesgen, and T. C. Schmidt, “CAF - the C++ ac-
tor framework for scalable and resource-efficient applications,” in ACM
AGERE!, 2014, pp. 15–28.

135

[44] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in ACM SIGMOD, 2010, pp. 135–146.

[45] “Libev,” http://software.schmorp.de/pkg/libev.html.

[46] “Cereal,” http://uscilab.github.io/cereal/index.html.

[47] “Amazon EC2,” https://aws.amazon.com/ec2/.

[48] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD
2015 benchmarks with fence regions and routing blockages for detailed-
routing-driven placement,” in ACM ISPD, 2015, pp. 157–164.

[49] T. Kiss, H. Dagdeviren, S. J. E. Taylor, A. Anagnostou, and N. Fantini,
“Business models for cloud computing: Experiences from developing
modeling simulation as a service applications in industry,” in WSC,
2015, pp. 2656–2667.

[50] A. Terenin, S. Dong, and D. Draper, “GPU-accelerated Gibbs sam-
pling,” CoRR, vol. abs/1608.04329, 2016.

[51] “ICCAD CAD contest,” http://cad-contest.el.cycu.edu.tw/CAD-
contest-at-ICCAD2015/.

136

