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Abstract—The ever-increasing size of modern deep neural network (DNN) architectures has put increasing strain on the hardware

needed to implement them. Sparsified DNNs can greatly reduce memory costs and increase throughput over standard DNNs, if the

loss of accuracy can be adequately controlled. However, sparse DNNs present unique computational challenges. Efficient model or

data parallelism algorithms are extremely hard to design and implement. The recent effort MIT/IEEE/Amazon HPEC Graph Challenge

has drawn attention to high-performance inference methods for large sparse DNNs. In this article, we introduce SNIG, an efficient

inference engine for large sparse DNNs. SNIG develops highly optimized inference kernels and leverages the power of CUDAGraphs

to enable efficient decomposition of model and data parallelisms. Our decomposition strategy is flexible and scalable to different

partitions of data volumes, model sizes, and GPU numbers. We have evaluated SNIG on the official benchmarks of HPEC Sparse DNN

Challenge and demonstrated its promising performance scalable from a single GPU to multiple GPUs. Compared to the champion of

the 2019 HPEC Sparse DNN Challenge, SNIG can finish all inference workloads using only a single GPU. At the largest DNN, which

has more than 4 billion parameters across 1920 layers each of 65536 neurons, SNIG is up to 2.3� faster than a state-of-the-art

baseline under a machine of 4 GPUs. SNIG receives the Champion Award in 2020 HPEC Sparse DNN Challenge.

Index Terms—Task graph parallelism

Ç

1 INTRODUCTION

LARGE deep neural network (DNN) models have brought
significant quality improvement to several fields, includ-

ing natural language processing, speech recognition, and
image classification [6], [23], [27]. To relieve the increasing
strain on the hardware needed to deploy them, much
research over the past decades has focused on the sparsifica-
tion of DNNs in the interest of reduced storage and runtime
costs [10], [14], [17]. Computing large sparse DNNs presents
unique computational challenges and scaling difficulties.
Sparseness can make the application of the DNN on current
processors extremely inefficient. This inefficiency limits the
size of data towhat can be held inGPUmemory, or it requires
a high-end, expensive cluster of computers to make up for
this inefficiency. Also, sparse DNN inference presents unique
computational challenges from training, because the kernel
efficiency largely depends on nonzero entries that vary from
layer to layer. To address these problems for advancing
emerging sparse machine learning (ML) systems, the 2019
MIT/IEEE/Amazon HPEC Graph Challenge has developed
SparseDNNChallenge to encourage new solutions for sparse
DNN inference [19]. Table 1 lists the statistics of each sparse
DNN. The largest network contains over 4 billion nonzero

parameters across 1920 layers each of 65536 neurons, adding
up to 100GBmemory storage.

The challenge of computing large sparse DNN inference
is twofold, kernel and decomposition algorithms, both of
which require strategic designs to benefit from parallelism.
Existing kernel algorithms focus on optimizing sparse
matrix-matrix multiplication kernels or carefully maintain-
ing data sparsity during the weight propagation [9], [22],
[25], [29]. However, most of these approaches require mod-
els to sit in the GPU memory, and they are difficult to
operate on partitioned pieces, due to the cost of maintain-
ing consistent sparse matrix structures between partitions
along with iterations. Existing decomposition strategies
divide large data or models into partitions and distribute
partitions across GPUs [7], [15], [20], [28]. Partitioning data
and models can both improve parallelism and alleviate the
tension on hardware constraints, including memory limita-
tions and communication bandwidths on GPUs. However,
efficient decomposition algorithms are extremely hard to
design and implement. We need to address complexity
among GPU capacity, scaling flexibility, and inference effi-
ciency. To simplify the design, pipeline parallelism has been
a popular choice in existing frameworks [5], [13], [24], [26].
The idea of the pipeline is simple and easy to implement,
but it suffers from many performance problems, including
synchronous execution, imbalanced load, and limited pipe-
line depth.

As a consequence, we introduce SNIG, an efficient large
sparse DNN inference engine using task graph parallelism.
SNIG develops highly optimized inference kernels that can
effectively avoid unnecessary computation incurred by zero
entries during the inference iterations. We leverage the
power ofmodern CUDAGraph [3] to enable efficient decom-
position of model and data parallelisms. Our decomposition
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strategy transforms a partitioned inference workload into a
GPU task graph that flows dependent GPU operations natu-
rally with the graph structure, providing improved schedul-
ing efficiency and runtime asynchrony. Atop the task graph
parallelism, we have designed a new kernel algorithm that
can efficiently avoid unwanted computation and incremen-
tally update memory entries during the inference iterations.
Comparedwith existing solutions, SNIG is more flexible and
cost-efficient in fitting together partitioned data and models
into different GPUs under hardware constraints.

We demonstrate the flexibility and efficiency of SNIG on
the 12 large sparse DNNs provided by the 2019HPEC Sparse
DNN Challenge [19]. SNIG is able to complete all DNNs
using only one RTX 2080 Ti GPU of 11 GB memory, and we
solve the largest DNN 2:27� faster than the 2019 champion
solution developed by Bisson and Fatica (“BF” method for
brevity) [5]. Compared with a pipeline baseline inspired by
GPipe [13], SNIG is faster at almost all networks (up to 2:19�
speedup) and scales better on multiple GPUs. With these
promising results, SNIG receives the Champion Award in
2020 HPEC Sparse DNN Challenge [1]. We believe SNIG
stands out as a unique inference engine for large sparse
DNNs, given the ensemble of kernel algorithm designs and
parallel decomposition strategies we havemade.

2 BACKGROUND

2.1 HPEC Sparse DNN Graph Challenge

We target on the 2019 HPEC Sparse DNN Graph Challenge,
which is based on a mathematically well-defined DNN
inference computation and can be implemented in any pro-
gramming environment [19]. The input data, Y0, is derived
from the MNIST handwritten letters by resizing each
28� 28 pixel image to 32� 32 (1024 neurons), 64� 64 (4096
neurons), 128� 128 (16384 neurons), and 256� 256 (65536
neurons). The weight matrices of each sparse DNN, includ-
ing the bias vectors, are generated by the RadiX-Net syn-
thetic sparse DNN generator with a number of desirable
properties such that participants can focus on the difficult,
computational part of the problem [18]. The inference prob-
lem is to compute Ylþ1 ¼ hðYlWl þBlÞ for each layer where
hðyÞ ¼ maxðy; 0Þ is a nonlinear function of rectified linear
unit (ReLU). For the Sparse DNN Challenge, hðyÞ has an
upper limit set to 32. The surrounding I/O and verification
provide the context for each sparse DNN inference that
allows rigorous definition of both the input and the output.
Table 1 lists the statistics of each sparse DNN and its input
image set. Loading the smallest DNN can take gigabytes of
memory using single-precision floating numbers. Preloading
all matrices to GPUs is impractical. The Graph Challenge

evaluates each solution based on two metrics, correctness in
comparison to a golden reference and performance in terms of
execution time to performDNN inference.

2.2 CUDA Graph

The new CUDA Graph programming model (since CUDA
v10) allows users to express dependent GPU tasks in a task
dependency graph and offload it directly to a GPU using
minimal kernel call and scheduling overheads [3]. This
organization can deliver significant yet largely untapped
performance advantage for many large machine learning
workloads. Specifically, modern GPUs are very fast and the
overheads of kernel calls have become significant in many
machine learning workloads that compose thousands of
GPU operations and dependencies in forms of task graphs.
These task graphs normally do not change once the neural
network architecture is decided. There is no need to repeti-
tively offload the same task graph using expensive host
function calls and custom stream scheduling algorithms.
Furthermore, CUDA runtime can perform architecture-spe-
cific and whole-graph optimizations that are almost impos-
sible to achieve by a third-party library. For instance, the
new Ampere architecture GPU A100 adds new hardware
features to make the paths between grids in a task graph
significantly faster [2].

Fig. 1 presents the execution model of a CUDA graph
which consists of graph definition, executable instantiation,
graph execution, and graph update. CUDA Graph offers two
methods to define or construct a task graph, explicit graph
construction and implicit graph capture. Users can explicitly
construct a CUDA graph by creating nodes and edges to
describe GPU operations and their dependencies. However,
this method requires full details of kernel execution param-
eters which are often unavailable for vendor libraries, such
as cuBLAS and cuSparse. To overcome this problem, users
can implicitly capture a CUDA graph by creating streams in
capturing modes and inserting events for cross-stream depen-
dencies. Implicit graph capture is flexible but it takes addi-
tional steps of deciding how dependent GPU operations are
inserted into streams and linked via events. Regardless of
the explicit or implicit method, users instantiate an execut-
able graph from a constructed graph and offload that execut-
able graph to a GPU using a single host call. The overhead
of graph definition and instantiation can be amortized over
many executions, and graphs provide a clear advantage
over streams. Between successive executions, users can
update the execution parameters of a GPU operation or a
node in the graph.

While CUDA Graph opens new research opportunities to
accelerate machine learning workloads, there are two major
challenges users need to overcome. First, CUDA Graph pro-
gramming is extremely tedious. Users need to wrangle with

TABLE 1
DNN Benchmark Statistics in HPEC Sparse DNN Graph

Challenge [19]

Neurons/Layers 120 480 1920 Bias Size Nonzeros

1024 3.9M 15.7M 62.9M -0.30 1.25 GB 6,374,505
4096 15.7M 62.9M 251.7M -0.35 5.40 GB 25,019,051
16384 62.9M 251.7M 1.0B -0.40 22.70 GB 98,858,913
65536 251.7M 1.0B 4.0B -0.45 94.70 GB 392,191,985

The largest benchmark consists of 1920 fully-connected layers each of 65536
neurons.

Fig. 1. Execution model of CUDA Graph consists of four major steps,
graph definition, executable graph instantiation, graph execution, and
executable graph parameter updates.
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many error-prone and low-level details, including but not
limited to parameter settings, stream/event insertions, and
concurrency controls. The same code written in CUDA
Graph can be 2–5� more complicated than that of streams.
Second, in situations where the task graph topology is not
changing, updating node parameters between successive
executions requires very detailed attention to the update
rules of CUDA Graph, such as context rules, memory alloca-
tion rules, child graph rules, and so on. As a result, the lack
of suitable programming abstraction over CUDA Graph is
imposing a high barrier on its broad adoptions due to large
programming complexities.

3 SNIG

At a high level, SNIG describes the inference workload in a
GPU task graph that comprises both data-level and model-
level parallelisms. We introduce a C++ programming model
called cudaFlow to abstract the programming complexity of
building CUDA graphs. Our task graph can scale to arbi-
trary sizes of DNN and input data under different numbers
of GPUs. We design a new inference kernel inside the task
graph that computes only necessary entries during the
inference iterations. Our kernel incorporates an efficient
pruning strategy to avoid unwanted computation incurred
by sparsified network and data. Everything runs in a single
end-to-end task graph and there is no extra CPU-GPU or
GPU-GPU synchronization to redistribute the input data
among GPUs as the state of the art [5]. In the following sec-
tions, we will first introduce our cudaFlow programming
model atop CUDA Graph and discuss how SNIG uses it to
describe data and model parallelisms in a GPU task graph.
Then, we will present our new kernel solution for the infer-
ence workload.

3.1 cudaFlow Programming Model

To enable broad adoption of CUDA Graph, we introduce a
C++-based programming model called cudaFlow to abstract
the programming complexities of CUDA Graph. cudaFlow
methods consist of three major categories, graph construction,
graph execution, and graph update. Table 2 describes a partial
list of graph construction, graph exectuion, and graph
update methods; complete API can be referred to [12]. List-
ing 1 implements the canonical saxpy (A�X plus Y) task
graph that composes two host-to-device (H2D) copies, one
saxpy kernel, and two device-to-host (D2H) copies using
our cudaFlow programming model. Between successive
executions (i.e., offload), we update the parameters of the
task kernel with different sizes of grid (GRID2), block

(BLOCK2), and saxpy kernel parameters. The code explains
itself through a succinct graph description language. The
same code that describes this workload but using the plain
CUDA Graph API is shown in Listing 2 which is a lot more
complicated. For instance, adding a memory copy node
using the plain CUDA Graph API requires over 15 lines of
code, whereas cudaFlow requires only a single line. The key
advantage of cudaFlow is that we reduce a large amount of
boilerplate code and parameter settings that are unneces-
sary for expressing common GPU operations.

Listing 1. cudaFlow Program of Constructing an Explicit
Saxpy (“Single-Precision A�X + Y”) CUDA Graph

When users offload a cudaFlow, an executable graph will
be created in that cudaFlow which is completely hidden
from users. Each graph creation method (e.g., copy, ker-
nel) in cudaFlow comes with an overload that takes an
additional argument of an existing cudaFlow task to which
the rest arguments will be applied to update in its present
executable graph. cudaFlow is primarily used for explicit
graph construction when all the GPU operation parameters
are known to programmers. For implicit graph capture,
cudaFlow provides a method capture that allows users to
capture a GPU task graph through a stream-based interface
cudaFlowCapturer::on. Listing 3 gives an example of
capturing a saxpy kernel task using a third-party library
that issues the kernel through the given stream.

Unlike a cudaFlow that keeps a one-to-one mapping
between a user-level graph and its native CUDA graph, a
cudaFlow capturer does not have this mapping because it is
impossible to know how a third-party library launches ker-
nels. For instance, a reduction algorithm may spawn

TABLE 2
Description of Graph Construction, Graph Execution, and Graph Update Methods in cudaFlow [12]

cudaFlow API category Method Description

Graph construction kernel(grid, block, shm, kernel_name, args) create a kernel task
copy(target, source, byte_count) create a memory copy task
precede(task) create a dependency to a task

Graph execution offload() offload a cudaFlow
offload_until(n) offload a cudaFlow n times

Graph update kernel(task, grid, block, shm, kernel_name, args) update the parameters of a kernel task
copy(task, target, source, count) update the parameters of a memory copy task
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different numbers of kernels for different input sizes along
the reduction tree. This inherent limitation restricts users
from updating a captured graph on a per-node basis but on
a per-graph basis. Specifically, each cudaFlow capturer stores
all the parameters of user graphs and lazily constructs the
CUDA graph when an offload call is issued. If the execut-
able graph exists from the previous offload call, we update
it from the newly constructed CUDA graph. Otherwise, we
instantiate a new executable graph from this CUDA graph.

Listing 2. Partial Code of Rewritten Listing 1 Using Plain
CUDA Graph API. Adding a CUDA Graph Memory
Copy Node Requires Over 15 Lines of Boilerplate Code
Whereas cudaFlow Requires Only a Single Line

Listing 3. cudaFlow Capturer Program of Capturing a
Saxpy Kernel Task Using an Existing Stream-Based Func-
tion Call

3.2 Task Graph Architecture of SNIG

Fig. 2 shows the overview of SNIG. SNIG describes the infer-
ence workload in a task graph that includes one CPU task,
fetch, and three GPU tasks, define graph, update, and offload.

Our task graph defines a cudaFlow once and iteratively
fetches a batch of input images to perform inference via off-
loading the defined cudaFlow. At each batch iteration, we
update kernel inputs to the newly fetched input batch with-
out rebuilding a CUDAgraph, hence reducing CUDAGraph
construction overhead. Our task graph iterates fetch, update
and offload GPU tasks until there are no input images left. In
the fetch task, a CPU task grabs a batch of input images. Users
can tune batch size based on availableGPUmemory. To have
multiple threads fetch data at the same time,we use an atomic
counter to represent the remaining number of images. In the
offload task, SNIG computes the inference on an input batch
by offloading the defined cudaFlow on aGPU. SNIG is exten-
sible due to its decentralized architecture. Users can easily
extend to multiple GPUs by allocating a cudaFlow to a GPU.
Each GPU infers a batch of inputs independently and shares
the atomic counter indicating the remaining input data.

Fig. 3 illustrates details of our cudaFlow that performs the
inference for one batch iteration. Each node represents one of
the three GPU operations, host-to-device (H2D) copy, device-
to-host (D2H) copy, and kernels. Each edge represents the
dependency of two GPU operations. SNIG transposes the
weight matrix of each sparse DNN layer and stores them
using the Compressed Sparse Column (CSC) format. Since
preloading all models to the GPU is impossible due to mem-
ory limit, we store the entire weight matrices into pinned host
memory, and only keep a fewweight buffers (W 1,W 2, ...) on a
GPU at a time. All weight buffers have the same size equal to
themaximum size of all weightmatrices.Moreweight buffers
results in a higher overlap between data communication and
kernel computation. For example, we have two weight buf-
fers, W 1 and W 2, in Fig. 3. The weight copy of the 2nd layer
can overlap the inference of the 1st layer. Since the inference
at one layer only depends on the results from the previous
layer, we allocate for each GPU two result buffers Y 1 and Y 2

each of size (batch size � num neurons), where batch size
denotes the input batch size and num neurons denotes the
number of neurons per input data, to perform rolling swap
for storage optimization. Each result buffer can be accessed
via modulo operation on 2; in each layer l, we use Y l%2þ1 as
input and Y ðlþ1Þ%2þ1 as output. After completing the inference
at the last layer, the GPU identifies the categories (predicted
digits). SNIG is highly flexible with limited GPU memory.
Users can configure different input batch sizes and number of
weight buffers based on available GPU memory to fit arbi-
trary sizes ofmodels and input data.

3.3 Inference Kernel

As we perform inference layer by layer, the number of non-
zero rows in each result buffer (i.e., Y 1 and Y 2) is significantly

Fig. 2. Architecture of SNIG. Fig. 3. Partial cudaFlow diagram to perform the inference for one batch
iteration.
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reduced. Also, the number of zero elements in each nonzero
row increaseswith the number of computed layers. Our infer-
ence kernel consists of two parts, incremental memory resetting
and forward feeding, to efficiently prune unwanted computa-
tion incurred by empty rows and zero elements in each
nonzero row. To fully utilize GPU’s massively parallel archi-
tecture, we divide each row of Y 1 and Y 2 into several sections
and assign each GPU block to compute a section. The number
of sections is based on the size of GPU shared memory, and
the section size is the number of neurons in a section.We allo-
cate a boolean buffer, is nonzero1 and is nonzero2, for each
result buffer to indicate whether a section contains at least
one nonzero element. The size of each boolean buffer is
(batch size � num secs), where num secs denotes the num-
ber of sections. In SNIG, each GPU keeps two result buffers
and two boolean buffers for rolling swap. For simplicity, all
examples in the following paper take (Y 1, is nonzero1) as
input and (Y 2, is nonzero2) as output.

In our kernel parameter settings, the grid dimension is
(batch size, num secs, 1), and the block dimension is (2, 512,
1). We allocate (4 � sec size) bytes of external shared mem-
ory, where sec size denotes the section size. The kernel is
launched by < < < ðbatch size, num secs, 1), (2, 512, 1), (4
� sec sizeÞ > > > . Each GPU block blockr;sec computes the
secth section at the rth row of Y 2 independently.

Algorithm 1. Beginning of the Inference Kernel

Input: num neurons: Number of neurons in a rowofY 1 andY 2

Input: num secs: Number of sections in a row of Y 1 and Y 2

Input: sec size: Number of neurons in a section of Y 1 and Y 2

1 r blockIdx.x
2 sec blockIdx.y
3 tid threadIdx.y * blockDim.x + threadIdx.x
4 num threads blockDim.x * blockDim.y
5 is all zero true
6 For s 0; s < num secs; ++s do
7 is all zero & = !is nonzero1½r�½s�
8 end
9 if is all zero == true then
10 /* Incremental memory resetting... * /

11 end
12 else
13 /* Forward feeding... * /

14 end

Fig. 4 illustrates the beginning of our kernel. We inspect
each entry in the rth row of is nonzero1. If there is no true
value, meaning Y 1½r� only contains zero elements, we enter
incremental memory resetting. Otherwise, we enter forward
feeding. Algorithm 1 presents the details of the beginning of
our inference kernel. We use is all zero to record if all entries

in is nonzero1½r� are false (line 5-8). Note that since SNIG
determines to execute either forward feeding or incremental
memory resetting per row of is nonzero1, GPU blocks with the
same r enter into the same kernel part (line 9-14).

3.3.1 Incremental Memory Resetting

The goal of incremental memory resetting is to avoid
unwanted computations induced by empty rows between
successive inference iterations. Fig. 5 shows the process of
incremental memory resetting. Taking advantage of rolling
swap, we perform incremental memory resetting to reset
buffers. If all entries in is nonzero1½r� are false, we inspect
is nonzero2½r� and only reset nonzero sections in Y 2½r�. This
largely avoids the overhead to reset the entire linear buffer
for the next iteration to use. Our implementation computes
each section in parallel and calculates only necessary ele-
ments during inference iterations. After resetting Y 2½r�, we
set is nonzero2½r� to all false.

Algorithm 2 presents the details of incremental memory
resetting. The GPU block blockr;sec first inspects is non
zero2½r�½sec�. If false, we directly return. Otherwise, each
GPU thread resets an element at a time until all elements
in the section are zero (line 2-4). After resetting, we tog-
gle is nonzero2½r�½sec� to false (line 6).

Algorithm 2. Incremental Memory Resetting

1 if is nonzero2½r�½sec� == true then
2 for j tid; j < sec size; j += num threads do
3 Y 2½r�½sec size * sec + j� = 0
4 end
5 __syncthreads()
6 is nonzero2½r�½sec�  false
7 end
8 return

3.3.2 Forward Feeding

The goal of forward feeding is to perform matrix multiplica-
tion followed by ReLU and pass the results to the next layer
via rolling swap, while skipping unnecessary computations
induced by zeros. By inspecting is nonzero1, our algorithm
can efficiently skip a section that contains only zero ele-
ments without checking one element at a time.

Fig. 4. Illustration of the beginning of the inference kernel.

Fig. 5. Illustration of incremental memory resetting.
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Fig. 6 illustrates the process of forward feeding that each
section contains two elements. The white color represents
zeros. SNIG first inspects each entry in is nonzero1½r�. Since
the third and fourth entries in is nonzero1½r� are false, we
can directly skip the computation on the corresponding
sparse weight matrix columns shown as the grey area. Dur-
ing the matrix-vector multiplication, we find the second ele-
ment of Y 1½r� is zero, meaning we can skip the computation
on the second column of the sparse weight matrix shown as
the black area. We then pass Y 2½r� to ReLU and set each
entry in is nonzero2½r� based on the final results of Y 2½r�. For
instance, since the first and second elements of Y 2½r� are
zero, we set the first entry in is nonzero2½r� to false.

Algorithm 3 presents the details of forward feeding. blockr;sec
computes the secth section of Y 2½r�. Each GPU block declares
a shared memory array results size of sec size to store results
(line 1) and initializes results to the bias value directly (line 2-
4). To avoid thread-level synchronization, we use a boolean
array rec nonzero size of two to record whether results has
nonzero values (line 5-6, line 31). During the matrix-vector
multiplication, we iterate one section of Y 1½r� at a time (line 8-
26). If is nonzero1½r�½s� is false, meaning the sth section of
Y 1½r� contains only zero elements, we skip all elements in this
section directly (line 9-11). Otherwise, all threads along y
dimension loop through all elements in the sth section of
Y 1½r� (line 13). We directly skip to the next element if the cur-
rent element is zero (line 15-17). All threads along x dimen-
sion read col w (line 18-19) and iterate the weight values and
the weight row indices (line 20-22). To compute each section
in Y 2 independently, we transform the dimension of each
CSC weight matrix from (num neurons; num neurons) to
(num neurons; num secs� num neurons). All column indi-
ces are shifted by j ¼ jþ num neurons� ði=sec sizeÞ, where
(i; j) is the index of nonzeros in a weight matrix. In line 18-19,
we read column indices of the weight matrix via adding the
offset. Then, we multiply each nonzero input element with
weight value and add the result to the corresponding location
of results (line 23).

After matrix-vector multiplication, SNIG loops through
the results (line 28). blockr;sec computes ReLU, writes the
result to each element in the secth section of Y 2½r�, and sets

rec nonzero½1� to true if there exists a nonzero result (line
29-31). Finally, we toggle is nonzero2½r�½sec� to either true or
false based on rec nonzero½1� (line 34).

Algorithm 3. Forward Feeding

Input: col w: array of column offsets of the weight matrix
Input: row w: array of row indices
Input: val w: array of values
1 extern_ shared_ results½�
2 for k tid; k < sec size; k += num threads do
3 results½k�  bias
4 end
5 _shared_ rec nonzero½2�
6 rec nonzero ½1�  false
7 __syncthreads()
8 for s 0; s < num secs;þþ s do
9 if !is nonzero1½r�½s� then
10 continue
11 end
12 j threadIdx.y + s � sec size
13 for j; j < ðs + 1) * sec size; j += blockDim.y do
14 yval  Y 1½r�½j]
15 if yval == 0 then
16 continue
17 end
18 w�  col w½sec * num nurons + j� + threadIdx.x
19 wþ  col w½sec * num neurons + j + 1]
20 for k w�; k < wþ; k += blockDim:x do
21 wrow  row w½k�
22 wval  val w½k�
23 atomicAdd(&results½wrow - sec * sec size�, yval * wval)
24 end
25 end
26 end
27 __syncthreads()
28 for i tid; i < sec size; i += num threads do
29 v min(32, max(results½i�, 0))
30 Y 2½r�½sec * sec size + i�  v
31 rec nonzero½v 6¼ 0�  true
32 end
33 __syncthreads()
34 is nonzero2½r�½sec� = rec nonzero½1�

4 EXPERIMENTAL RESULTS

We evaluate SNIG’s performance on the official MIT/IEEE/
Amazon HPEC Sparse DNN Challenge Dataset [19]. The
benchmark statistics are shown in Table 1. We implement
SNIG using C++17 and CUDA nvcc 11.1 on a host compiler
of GNU GCC-8.3.0 with C++17 standards -std=c++17 and
optimization flags -O2 enabled. We undertake our experi-
ments on two machines to demonstrate the efficiency of
CUDA Graph, 1) a Ubuntu Linux 5.0.0-21-generic x86 64-bit
desktop of 40 2.0 GHz Intel Xeon Gold 6138 CPU cores and
four GeForce RTX 2080 Ti GPUs with 11 GB memory and 2)
an Nvidia’s internal Linux server of one A100 GPU with 80
GB memory. All data is an average of ten runs with float

type. We will first present our experimental results based on
our champion-award solution for the 2020 HPEC Sparse
DNNChallenge (Sections 4.1, 4.2, and 4.3) [21] and then pres-
ent new performance improvement by leveraging CUDA

Fig. 6. Illustration of forward feeding.
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Graph Update and A100 GPU (Sections 4.4 and 4.5). We tar-
get the benchmarks of the 2019 HPEC Graph Challenge
because it defines a rigorous evaluation environment for par-
ticipants to focus on the computational efficiency of large
sparse neural network inference algorithms. We do not con-
sider other models/datasets because none of them are as
large as theHPEC benchmarks [19].

4.1 Baseline

We consider BF andGPipe�methods for our baseline. The BF
method is the champion solution of the 2019 HPEC Sparse
DNN Challenge [5]. We implemented the BF method and its
kernel using CUDA streams and OpenMP. The original BF
method relies on NVLink to transparently exchange data
amongGPUs using unified addressing. Since we do not have
NVLink, such a process can be very time-consuming. We

manually partition the input data in the beginning evenly
across GPUs and spawn oneOpenMP thread to call the infer-
ence function per GPU. This organization does not impact
the load-balancing performance of BF because according to
our experiment, the number of nonzero rows per iteration is
very balanced at each GPU. For example, as shown in Fig. 7,
the difference of the number of nonzero rows at each GPU is
within 350 rows (< 0.5% of the total rows) across all itera-
tions. We implemented the GPipe� method based on
GPipe [13]. GPipe is an iterative framework for training large
DNNs. We extended its idea to inference by partitioning the
DNN into multiple stages across GPUs and pipelining each
data batch’s execution over these stages using CUDA
streams and OpenMP threads. We use SNIG’s inference ker-
nels inside the pipeline. The goal of comparing GPipe* with
SNIG is to compare the performance difference between task
graph- and pipeline-based kernel scheduling for the infer-
enceworkload.

We configure the block dimension of all kernels to (2, 512, 1),
the batch size of input data to 5000 for SNIG and GPipe�, and
the number of weight buffers to 2 for SNIG to achieve the best
performane. We will discuss the effect of different parameters
in Section 4.3.

4.2 Performance Comparison

Table 3 compares the overall inference rate and runtime
performance between SNIG, BF, and GPipe� using one, two,

Fig. 7. Number of nonzero rows in 15 iterations on 4 GPUs using BF
without NVLink.

TABLE 3
Overall Inference Rate (Gigaedges Processed per Second) and Runtime Performance (Seconds)

of SNIG, BF, and GPipe� Across One, Two, Three, and Four GPUs

Bold text represents the best solution in the corresponding benchmark. All results match the golden reference provided by the MIT/IEEE/Amazon Sparse DNN
Challenge [19]. Since the GPipe� method is staged on the number of GPUs, we do not report its runtime under one GPU.
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three, and four GPUs. The result of BF method is different
from BF paper due to different GPU platforms. SNIG outper-
forms BF and GPipe� across nearly all benchmarks. With
four GPUs, SNIG is 2.3� faster than BF on the largest DNN
of 65536 neurons and 1920 layers and is 2.2� faster than
GPipe� on the DNN of 65536 neurons and 120 layers. The BF
method failed to finish the largest DNN of 65536 neurons
and 1920 layers within a reasonable amount of time (> 1800
seconds) under one and two GPUs. This is because BF
requires the entire input data to sit in the GPU under unified
memory addressing to implement load balancing. CUDA
will keep fetching in and out data between CPUs and GPUs
if partitioned data does not fit in a GPU’s memory. Its kernel
design is architecturally constrained by the number of GPUs
and available memory. Similar problems exist in the GPipe�

method as well since GPipe� requires the entire model to sit
in GPUs.We observe long runtime of GPipe� to complete the
DNNs of 65536 neurons and 1920 layers.

Fig. 8 plots the scalability over the increasing number of
GPUs. Our runtime scales the best among the three methods.
In the 16384� 1920 scenario, SNIG outperforms BF by 1.7�,
1.8�, 1.7�, and 1.8� at one, two, three, and four GPUs,
respectively. In the 65536�1920 scenario, SNIG outperforms
GPipe� by 1.9�, 2.1�, 2.0� at two, three, and four GPUs,
respectively. We attribute this to the synchronization over-
head of both methods (BF at each iteration, GPipe� at each
pipeline stage). Fig. 9 plots the scalability over the increasing
number of neurons. SNIG outperforms BF and GPipe� in all
scenarios. The growth rate of our runtime is much slower
than BF and GPipe�, due to our in-kernel pruning strategy
and task parallelism. Fig. 10 illustrates the peak GPU mem-
ory usage of each method. Both SNIG and BF demand less
memory than GPipe� because of buffered rolling swap,
whereas GPipe� stages the model across GPUs. Our memory
is fewer than BF due to batched input data.

Fig. 11 plots a partial GPU execution timeline of each
method using the data extracted from Nvidia Profiler

(nvprof) [4] under the same time scale. Since SNIG and BF do
not pipeline the model across GPUs, both methods require
weight copy during the inference iterations. However, the
time for data transfers is largely overlapped with the kernel
computation (i.e., task parallelism in SNIG and stream paral-
lelism in BF). In SNIG, each GPU performs the inference on a
data batch independently, and thus the runtime of each GPU
is different. The execution timeline of GPipe� at each GPU is
more fragmented and discontinued than SNIG and BF. This
is because computation and GPU-to-GPU data transfers at
each pipeline level need to synchronize before moving to the
next stage. For example, we can clearly see several white
spaces between successive GPU operations at GPU 2 and
GPU 3, which is taken by CPU. Fig. 12 shows the CPU-GPU
runtime breakdown of each method on the 65536� 1920
benchmark using four GPUs. We can clearly see the advan-
tage of SNIG. By leveraging CUDA Graph, we achieve end-
to-end task parallelism onGPU.

4.3 Parameter Sensitivity

Fig. 13 shows the impact of different block dimensions. All
implementations have the same trend and perform better at
lower dim x, especially under a large number of neurons.
All kernels read input data along y dimension and iteratively
access weights along x dimension. Since weights are sparse
matrices, the overhead is dominated by reading input data.

Fig. 8. Execution time with different numbers of GPUs.

Fig. 9. Execution time with different neurons under four GPUs.

Fig. 10. Peak GPU memory usage under four GPUs.

Fig. 11. Execution timeline of each method on completing 65536 neu-
rons and 1920 layers under four GPUs.

Fig. 12. CPU-GPU runtime breakdown of each method on the
65536�1920 benchmark under four GPUs. The execution time of GPU
includes inference kernels, H2D, and identify kernels.
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Fig. 14 shows the impact of different input batch sizes in
SNIG and GPipe�. Partitioning input data with too small
batch size results in a lousy performance, while a bigger
batch size doesn’t gain speedup. GPipe� has a higher growth
rate of runtime than SNIG. We attribute this to the architec-
ture of GPipe� and GPU memory limitation. Since GPipe�

pipelines computation across GPUs, large input batch size of
large DNNs causes long CPU-GPU andGPU-GPUdata com-
munication times. SNIG does not require any GPU-GPU
data transfers.

4.4 CUDA Graph Update

The previous sections discuss SNIG based on the 2020 HPEC
Sparse DNN Graph Challenge environment [21], which tar-
gets only 60K input images. Since the input number is small,
the advantage of CUDAGraphUpdate is not clear. However,
many real-world image inference applications request large
numbers of inputs, and the effect of updating CUDA graphs
becomes significant. Specifically, instead of repetitively con-
structing and destroying a new cudaFlow at each batch itera-
tion, it is desirable to create a cudaFlow once in the beginning
and update its parameters for the rest of iterations. Therefore,
in this experiment, we enlarge the input size by duplicating
60K images 10�, 100�, 250�, 500�, 1000� and perform the
inference on the 1024�1920 benchmark using one GPU. Since
SNIG constructs an independent cudaFlow for each GPU, the
data of one GPU is sufficient to demonstrate the advantage of
CUDA Graph Update. Hereafter, cudaFlow represents SNIG
without using updating methods, cudaFlow-update represents
SNIG using updating methods, cudaFlowCapturer represents
SNIG using implicit graph capture, and cudaFlowCapturer-
update represents SNIG using implicit graph capture and
updatingmethods.

Fig. 15 shows the execution time of each method on the
1024�1920 benchmark using oneGPU.As the number of input

images increases, the gap between cudaFlow and cudaFlow-
update becomes remarkable (left figure). For example, at 60K
images (i.e., HPEC Challenge Specification) the difference
between cudaFlow and cudaFlow-update is about 1 second,
whereas at 60M images, the difference becomes 963 seconds
(10% improvement by cudaFlow-update). Since cudaFlow
iteratively defines a graph, instantiates an executable graph,
and destroys a graph/executable graph at each batch itera-
tion, the overhead of CUDA Graph function calls becomes
significant as the number of images grows. By contrast, cuda-
Flow-update creates anddestroys the graph once and updates
its parameters for the rest of batch iterations. Similar perfor-
mance improvement can be observed in cudaFlowCapturer
(right figure). At 60M images, cudaFlowCapturer-update
brings about 6% improvement over cudaFlowCapturer. The
improvement is less than cudaFlow-update because the
update method of cudaFlowCapturer is applied on a per-
graph basis instead of per-node basis.

Fig. 16 shows the runtime breakdown of cudaFlow and
cudaFlow-update on 6M input images based on the data
extracted from NVIDIA Visual Profiler [4]. The right side
shows the detailed breakdown of all CUDA Graph func-
tion calls. Compared with cudaFlow, cudaFlow-update
largely reduces the overhead of CUDA Graph function

Fig. 13. Execution time with different block dimensions (dim x; dim y) on
1920 layers under four GPUs. The total number of threads dim x�
dim y remains 1024.

Fig. 14. Execution time for different batch sizes with 1920 layers using
four GPUs.

Fig. 15. Execution time of cudaFlow, cudaFlow-update, cudaFlowCap-
turer, and cudaFlowCapturer-update on 1024� 1920 benchmark with
different numbers of images using one GPU. The batch size is 1000.

Fig. 16. Runtime breakdown (seconds & percentage) of cudaFlow (top)
and cudaFlow-update (bottom) on 1024� 1920 benchmark with 6M
images. The right side shows detailed breakdown of CUDA Graph func-
tion calls.
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calls by 73% (193.07 seconds versus 52.56 seconds).
That is because cudaFlow needs to iteratively rebuild
CUDA graphs, the overheads of cudaGraphInstanti-
ate, cudaGraphExecDestroy, cudaGraphDestroy,
and so on are much larger than the update counterpart
cudaGraphExecKernelNodeSetParms in cudaFlow-
update. For example, as shown in Fig. 16, the cudaGra-

phExecKernelNodeSetParms takes only about 9.7 sec-
onds, whereas the time to rebuild CUDA graphs is
142.43 seconds.

Fig. 17 shows the runtime breakdown of cudaFlowCap-
turer and cudaFlowCapturer-update. Unlike cudaFlow
that explicitly constructs a CUDA graph, cudaFlowCap-
turer implicitly captures a CUDA graph using streams
andevents(e.g., cudaStreamEndCapture, cudaEven-

tRecord, cudaStreamWaitEvent). The key difference
between cudaFlowCapturer and cudaFlowCapturer-update
is that cudaFlowCapturer repetitively issues cudaGra-

phInstantiate (shown as grey area) from a captured
CUDA graph over batch iterations rather than updating
the existing executable graph with that captured CUDA
graph using cudaGraphExecUpdate. For example, cuda
FlowCapturer spends 64.47 seconds on repetitively
instantiating an executable CUDA graph, whereas cuda-
FlowCapturer-update spends < 1 second on instantiating
an executable graph once and 20.39 seconds for updating
that executable graph for the rest of batch iterations. Since
implicit CUDA Graph construction requires both methods
to re-capture a new CUDA graph, the time spent on event
and stream managements are roughly the same (22.11 ver-
sus 24.12).

4.5 A100 GPU

The experiments in the previous sections are based on RTX-
2080 Ti GPU, which has only 11 GB memory. Considering
this memory capacity, the batch size that achieves the best
inference performance is 5K based on our experiment.
Larger batch size will result in fetching in and out data

between CPUs and GPUs because the data cannot fit in a
GPU. This problem can be overcome by high-end GPUs that
are particularly designed for large-scale machine learning
workloads, such as the newNvidia A100 GPU that has 80 GB
memory. The large memory capacity allows us to load a
much larger machine learning model and dataset into GPU
at a time, significantly reducing the data-movement over-
heads in our batch iterations. In this section, we compare the
runtime performance of SNIG on different benchmarks
among one RTX-2080 Ti GPU (SNIG-RTX-2080) and one
A100 GPU (SNIG-A100, BF-A100, GPipe�-A100).

We first evaluate the performance based on the HPEC
Graph Challenge environment. Since A100 GPU can accom-
modate the entire 60K images, we set batch size of 60K for
SNIG-A100 and GPipe�-A100 to compute the inference in
just a single data batch iteration. SNIG-RTX-2080 uses a
batch size of 5K images. Table 4 compares the execution time
among SNIG-RTX-2080 , SNIG-A100, BF-A100, and GPipe�-
A100 on four benchmarks with the largest layer count (1920)
at four neuron numbers (1024, 4096, 16384, and 65536). In the
16384�1920 benchmark, SNIG-A100 is 3.04� faster than
SNIG-RTX-2080. SNIG-A100with 60K batch size only fetches
input images once from CPU and does not need to update
the cudaFlow, whereas SNIG-RTX-2080 with 5K batch size
requires the GPU to iteratively request input images from
CPU and updates the cudaFlow multiple times. SNIG-A100
outperforms BF-A100 acrosss four benchmarks due to our
in-kernel pruning strategy and task parallelism. On the other
hand, SNIG-A100 has similar performance to GPipe�-A100
since bothmethods compute the inference on the entire input
data at one time without additional data piping between
CPU andGPU.

As we presented in Section 4.4, real-world image infer-
ence applications can contain large numbers of input
images that go beyond the memory capacity of A100. In this
case, SNIG-A100 needs to partition the input into several
data batch iterations and update the cudaFlow between suc-
cessive batch iterations. Fig. 18 compares the execution time
between SNIG-RTX-2080 and SNIG-A100 on the 1024�1920
benchmark at different numbers of input images using
cudaFlow-update and cudaFlowCapturer-update imple-
mentations (similar to Section 4.4) at a batch size of 5K.
With cudaFlow-update (left side), SNIG-A100 is consis-
tently faster than SNIG-RTX-2080. The largest speedup we
have observed is 1.78� at 30M images, and the performance
gap continues to enlarge as we increase the number of input
images. Similar data is also observed in cudaFlowCapturer-
update (right side).

Fig. 17. Runtime breakdown (seconds & percentage) of cudaFlowCap-
turer (top) and cudaFlowCapturer-update (bottom) on 1024�1920
benchmark with 6M images. The right side shows detailed breakdown of
CUDAGraph function calls.

TABLE 4
Runtime Comparison (Seconds) Between One RTX-2080 Ti
GPU (SNIG-RTX-2080) and One A100 GPU (SNIG-A100,

BF-A100, GPipe�-A100) on Four Benchmarks at the
Largest Layer Count With Different Neurons

RTX-2080 A100

Neurons Layers SNIG SNIG BF GPipe�

1024 1920 5.25s 1.93s 3.62s 1.89s
4096 1920 17.41s 6.04s 10.37s 6.24s
16384 1920 54.22s 17.80s 35.38s 18.82s
65536 1920 162.2s 69.45s 134.82s 70.60s
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4.6 Effectiveness of Our Kernel Algorithms

To demonstrate the effciency of our kernels, we replace incre-
mental memory resetting with cudaMemset and forward
feeding with BF’s kernel, respectively. Table 5 compares exe-
cution time of SNIG, SNIG without incremental memory
resetting (SNIG-w/o-inc), and SNIGwithout forward feeding
(SNIG-w/o-ff) on four benchmarks using one A100 GPU.
SNIG is consistently faster than SNIG-w/o-inc. That is
because SNIG performs rolling swap between iterations for
storage optimization. Without incremental memory resetting,
we need to call cudaMemset at each iteration to reset result
buffers, thus inducing huge overhead. On the other hand,
SNIG outperforms SNIG-w/o-ff across all benchmarks. For-
ward feeding allows SNIG to efficiently skip sections that con-
tain only zero elements by inspecting boolean buffers,
whereas BF’s kernel needs to check one element at a time.

5 PRIOR WORK

The BF method [5] is the champion-award solution in 2019
HPEC Sparse DNNGraph Challenge [1]. In BF method, each
GPU owns a part of the input matrix and computes the infer-
ence kernel iteratively by one OpenMP thread. To achieve
load balancing, BFmethod requires communication between
CPUs andGPUs at each inference iteration, resulting in huge
overhead. Besides, BF requires the entire input data to sit in
GPUs for implementing load balancing. Similar problems
also exist in other pipeline-based frameworks. For example,
GPipe [13] proposes pipelining computation across GPUs
and synchronizing data transfers stage by stage. The effi-
ciency and scalability are largely limited by the size of parti-
tioned data and available GPU resources that decide the
degree of pipeline parallelism. Hidayeto�glu et al. [11] pro-
pose register tiling, shared-memory tiling, and compact
index representation to implement an optimized kernel
fused with ReLU activation for sparse DNN inference. Their
kernel algorithm targets improving memory bandwidth and
irregular memory accesses induced by the irregular sparsity
at each inference iteration. Like the BFmethod, their solution
requires communication between CPUs and GPUs at each
inference iteration. FlexFlow [16] is a deep learning frame-
work that automatically finds parallelization strategies over
a defined search space for accelerating DNN training. They
use a guided randomized search procedure to explore the
space of possible strategies via a predictor of DNN perfor-
mance. However, they do not target large-scale machine
learning inferenceworkload.

There is a great deal amount of research on general sparse
matrix-matrix multiplication (SpGEMM) using GPUs [8].
However, there are two challenges that prevent us from
directly using them for reaching the best performance in
HPEC Sparse DNN Graph Challenge. First, most SpGEMM
algorithms assume the matrix size fits in GPU, which is not
possible in our case. Second, existing SpGEMM algorithms
target standalone SpGEMM problem instances, rather than
the entire sparse DNN inference workload. This prevents us
from leveraging advanced CUDA Graph parallelism that
combines customized partitioning and pruning strategies
across inference iterations tomaximize the performance.

6 CONCLUSION

In this paper, we have introduced SNIG, an efficient infer-
ence engine for large sparse DNNs. We have described the
inference workload in a task graph comprising both data-
and model-level parallelisms. Our decomposition method
can scale to arbitrary sizes of DNN and input data under
different numbers of GPUs. With four GPUs, SNIG is 2.3�
faster than BF and is 2.0� faster than GPipe� on the largest
DNN of 65536 neurons and 1920 layers (more than 4 billion
nonzero parameters). By using CUDA Graph Update, we
have shown further 10% performance improvement com-
pared to SNIG without updating methods. Our future work
will research new pipeline-based task graph schedulers for
training large neural networks and apply our algorithms to
other practical models, such as CNNs and GNNs.
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