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Abstract—Since the first release in 2015, OpenTimer v1 has
been used in many industrial and academic projects for ana-
lyzing the timing of custom designs. After four-year research
and developments, we have announced OpenTimer v2—a major
release that efficiently supports: 1) a new task-based paral-
lel incremental timing analysis engine to break through the
performance bottleneck of existing loop-based methods; 2) a new
application programming interface (API) concept to exploit high
degrees of parallelisms; and 3) an enhanced support for industry-
standard design formats to improve user experience. Compared
with OpenTimer v1, we rearchitect v2 with a modern C++ pro-
gramming language and advanced parallel computing techniques
to largely improve the tool performance and usability. For a par-
ticular example, OpenTimer v2 achieved up to 5.33× speedup
over v1 in incremental timing, and scaled higher with increasing
cores. Our contributions include both technical innovations and
engineering knowledge that are open and accessible to promote
timing research in the community.

Index Terms—Computer-aided analysis, parallel program-
ming.

I. INTRODUCTION

STATIC timing analysis (STA) is a pivotal step in the over-
all chip design flow. It verifies the expected timing behav-

iors and prevents chips from malfunction after tapeout [2].
Among timing analysis applications, incremental timing is
imperative for the success of timing-driven optimization flows,
such as placement, routing, logic synthesis, and physical syn-
thesis [3]. Optimization tools often call a timer millions of
times in their inner loop to evaluate a design transform or
an algorithm. The timer must quickly and accurately answer
timing queries to ensure slack integrity and timing closure
after the circuit experiences one or more changes. Otherwise,
optimization tools may be misguided to a wrong direction end-
ing up with a huge waste of computing resources and timing
violations. As a consequence, the capability of a timer on both
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speed and accuracy fronts is crucial for reasonable turnaround
time and performance.

To this end, we have developed OpenTimer v1, a
high-performance timing analysis tool for very large-scale
integration (VLSI) systems in 2015 [1]. OpenTimer is an
award-winning tool at ACM TAU Timing Analysis Contests in
2014–2016. It has received many recognitions in the computer-
aided design (CAD) community, such as golden timers in
2015 IEEE/ACM ICCAD CAD Contests [4], golden timers
of ACM TAU Timing Analysis Contests in 2016–2018 [3],
and the Best Open-Source EDA Tool Award (one out of 30)
in 2018 WOSET at ICCAD [5]. OpenTimer v1 has been open
source and we are committed to free sharing of our tech-
nical innovations to make CAD a better and open place in
order to engage more talented people to contribute to the
community. So far, OpenTimer v1 has been used in many
industrial and academic research projects, such as Qflow,
VSDflow, CloudV, OpenDesign, LGraph, Ophidian, and
more [6]–[12].

After several years of research and developments, we have
announced a major release, OpenTimer v2, in 2019 DARPA
IDEA/POSH Integration Exercise [14]. Since then, we have
continued to enhance the capability of the timer. Compared
with the previous generation, we rewrote the codebase of
OpenTimer v2 from the ground up using modern C++17 and
developed a new software architecture to facilitate the design
of parallel incremental timing. Performance scalability is never
an afterthought in the course of our developments. Our par-
allel decomposition strategy has delivered new performance
scalability and programming productivity that were previously
out of reach. Fig. 1 presents the overview of OpenTimer
v2’s software architecture. We summarize our contributions
as follows.

1) New Parallel Task Programming Model: We developed
a new task-based programming model that enables effi-
cient implementations of parallel decomposition strate-
gies. The new model allows us to go beyond the
traditional loop-based parallelization of incremental tim-
ing, thereby leading to more asynchrony and faster
runtime.

2) New Software Architecture and API Concept: We
developed the core timing routines around three con-
cepts, builder, action, and accessor. The new application
programming interface (API) concept defines a clear and
concise logic for each operation of the timer. We lever-
aged this idea to exploit high degrees of parallelisms
both inside and outside a sequence of operations.
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Fig. 1. OpenTimer v2 software architecture [13].

3) New Parallel Incremental Timing Framework: We
developed a task-based incremental timing framework
that propagates timing naturally with the structure of the
timing graph. Our framework can simultaneously per-
form both graph-based analysis and path-based analysis
in parallel, while keeping accurate results without break-
ing complex dependencies between different timing
propagation tasks.

4) Open Source and System Engineering: OpenTimer v2 is
open source under MIT license [13]. In addition to tech-
nical innovations that drive academic values, we have
invested a lot in system engineering to make the tool
open and accessible to the community. These efforts are
crucial for both researchers and practitioners to more
easily use OpenTimer v2 and develop derived work on
top. We believe this is essential for a CAD project to be
impactful.

Compared with the previous generation, OpenTimer v2 is
faster, and is more scalable with increasing CPU numbers and
problem sizes. The programming interface is more succinct
and concise due to the new API concept. We have made
many software components of OpenTimer v2 modular and
reusable, such that users can quickly integrate OpenTimer
v2 into their projects or contribute to our codebase. Other
timing-driven CAD applications can benefit from our facil-
ity as well. We believe OpenTimer v2 stands out as a unique
system considering the technical innovations and ensemble of
software tradeoff and architecture decisions we have made.
Still, different timers have their pros and cons, and deserve
a particular reason to exist [15]–[19]. We would like to posi-
tion OpenTimer v2 as a modern alternative to advance timing
research through parallelism.

II. INCREMENTAL TIMING

Various stages of the design flow, such as logic synthesis,
placement, routing, physical synthesis, and optimization facil-
itate a need for incremental timing analysis [3]. During these
stages, local operations, such as gate sizing, buffer insertion,
or net rerouting can modify small fractions of the design and
significantly change both local and global timing landscape.
As the example shown in Fig. 2, a change on gate B3 has
the potential to affect the majority of the circuit (downstream
timing). Depending on the trace of critical paths, only a small
portion of the timing would need to be updated. For instance, if
such a change does not affect the timing (e.g., slew and arrival

Fig. 2. Incremental timing example [1].

time) at I1:o, the downstream timing after I1:o is unaffected.
Likewise, the effect of modifying gate B3 is up-bounded by
its downstream timing. Recomputing the timing outside this
region, for instance, gates FF1 and B2, is unnecessary. A timer
must act cleverly to quantify a small region effective enough
for timing correction after the design is modified.

Fig. 2 is a simplified view of incremental timing. In practice,
we incorporate various timing propagation tasks into the incre-
mental timing update. Important tasks include graph-based
analysis and path-based analysis, both of which can end up
with a large amount of computations. For example, reaching
timing closure on an industrial design of 2M gates can eas-
ily take several hours or days [3]. It is important to leverage
the power of parallel computing on a multicore machine for
performance reason.

A. Problem Statement

The industry-standard format for timing analysis requests
the following input files.

1) Two liberty (.lib) files that defines the early and late char-
acteristics of available cells in a given design, including
pin capacitance, delay and slew lookup tables (LUTs),
and setup/hold timing guard for sequential elements.

2) A verilog (.v) file that defines the netlist and circuit topol-
ogy in gate level for a given design, including primary
input/output ports and connections among gates.

3) A parasitics (.spef) file that defines the design parasitics
of a set of nets as a resistive–capacitive (RC) network,
including the capacitance of internal nodes and wire
resistance between internal nodes.

4) A Synopsys design constraint (.sdc) file that defines the
design operating conditions, including the clock port,
clock period, initial timing at primary input ports, and
load capacitance at primary output ports.

A practical incremental timer supports the following oper-
ations for users to modify the design and query the timing
quantities [3].

1) insert_gate adds a new gate to the design.
2) repower_gate changes the size of an existing gate.
3) remove_gate removes a disconnected gate from the

design.
4) insert_net creates an empty net.
5) remove_net removes a net from the design.
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6) read_spef asserts parasitics on existing nets.
7) disconnect_pin disconnects a pin from its net.
8) connect_pin connects a pin to a net.
9) report_at reports the arrival time at a pin under a rise/fall

transition and an early/late split.
10) report_rat reports the required arrival time at a pin under

a rise/fall transition and an early/late split.
11) report_slack reports the slack at a pin under a rise/fall

transition and an early/late split.
12) report_timing reports the top-k worst critical paths in the

design (k by default equals one).
The first eight operations describe the gate-level, net-level,

and pin-level modifications on the design topology. The last
four operations probe the design to report timing information.
Depending on the use case, the timer may need to support
another set of operations. Considering the scope of this article,
our definition is sufficient enough to represent generic use.

B. Three Big Challenges in Parallel Incremental Timing

Developing an efficient parallel incremental timing engine
is never an easy job. It requires deep knowledge about circuit
modeling, graph theory, parallel computing, optimization, and
dynamic data structures. We highlight the challenge in three
aspects as follows.

1) Complex Task Dependencies: Updating a timing graph
takes dependencies on load capacitance, parasitics, slew,
delay, arrival time, required arrival time, and more.
These quantities are dependent of each other and are not
cheap to compute. The resulting task dependency graph
in terms of encapsulated function calls is very large and
complex. For example, in a million-gate circuit design,
the graph can produce billions of tasks and dependency
constraints. It has also been reported that many timing
graphs are more connected and complex than that of
social media and scientific computing [3].

2) Irregular Compute Patterns: Updating a timing graph
involves extremely diverse computation patterns and
sophisticated memory controls. Data can arrive densely
and sparsely depending on the effect of a design trans-
form. Unfortunately, the timer has little to no knowledge
about the intent of an optimization strategy. We need to
be prepared for different forms of timing data whether it
is structured in a local block or is flat in the global scope.
Computing these data typically spawns highly dynamic,
iterative, and conditional patterns.

3) Unknown API Practices: Our user experience led us to
believe that the API concept dominates the usability of a
timer. According to our user experience, more than 30%
efficiency was lost due to wrong use of OpenTimer v1’s
API. We believe the same hassle happens in other tools
as well. When things go incremental, users and devel-
opers are often confused by the effect of each operation,
such as the per-call complexity, parallelism, and consis-
tency. This can significantly lift up the turnaround time
and result in performance pitfalls due to the misuse of
an API method.

Fig. 3. Loop-based parallel timing propagations. Each level applies a
parallel_for to update timing from the fanin of each node [1].

The extensibility and scalability to new technology is also
an important consideration in unlocking the sustainable growth
of our incremental timing engine. We are not only interested
in technical innovations but also in the system engineering to
keep each software component modular and extensible.

C. Bottleneck in OpenTimer v1 and Existing Timers

Similar to most existing timers, OpenTimer v1 dealt with
incremental timing using loop-based parallelism [1]. In a
rough view, we levelized the circuit into a topological order
and maintain levels of nodes using a dynamic data structure,
level list. Since all the nodes in the same level are independent
on each other and can run in parallel, we applied language-
specific “parallel for” to each list of nodes level by
level. This level-based decomposition is advantageous in its
simple pipeline concept and is by far the most implementa-
tion in existing timers, including industrial tools [19]. Fig. 3
illustrates this strategy on an example of forward timing propa-
gation [1]. For each node, we update a sequence of dependent
tasks, including parasitics (RCP), slew (SLP), delay (DLP),
arrival time (ATP), jump points (JMP), and common path pes-
simism reduction (CRP). We encapsulated the task dependency
into a parallel pipeline and used one thread to run a partic-
ular type of task level by level. Details of each task can be
referred to [1]. OpenTimer v1 carried out this strategy using
Algorithm 1. It first calls update_level to update the level
list for incremental timing (line 5). The timing propagation is
then performed level by level in a parallel pipeline (lines 8–18
for forward timing propagation and lines 19–25 for backward
timing propagation). By the end of each pipeline stage, a bar-
rier is imposed to synchronize all spawned tasks (lines 16
and 23). The level list is reset after the timing propagation
completes (line 26). Depending on applications, the timer may
add more tasks to the pipeline for parallelism.

The loop-based pipeline strategy is simple and easy to
implement using popular parallel programming libraries, such
as OpenMP and Intel Threading Building Blocks (TBB) Flow
Graph [20], [21]. However, it suffers from many performance
drawbacks. For example, the number of nodes can vary from
level to level, resulting in highly unbalanced computations
and thread utilization. Also, there is a synchronization barrier
between successive levels in order to keep task dependen-
cies. The overhead can be large for graph with long data
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Algorithm 1: OpenTimer_v1_update_timing()

1 B← Level list of the timer;
2 if B.num_pins = 0 then
3 return;
4 end
5 update_level(B);
6 lmin ← B.min_nonempty_level;
7 lmax ← B.max_nonempty_level;
8 # Parallel_Region {
9 # Master_Thread_do for l = lmin to lmax + 4 do

10 # spawn_task propagate_rc(l);
11 # spawn_task propagate_slew(l− 1);
12 # spawn_task propagate_delay(l− 1);
13 # spawn_task propagate_arrivel_time(l− 2);
14 # spawn_task propagate_jump_point(l− 3);
15 # spawn_task propagate_cppr_credit(l− 4);
16 # synchronize_tasks;
17 end
18 };
19 # Parallel Region {
20 # Master_Thread_do for l = lmax to

B.min_non_empty_level do
21 # spawn_task propagate_fanin(l);
22 # spawn_task propagate_required_arrival_time(l);
23 # synchronize_tasks;
24 end
25 };
26 remove all pins from the level list B;

paths. Furthermore, it is difficult to extend the pipeline to effi-
ciently include other types of compute-intensive tasks, such as
advanced delay modeling, signal integrity, and cross-talk anal-
ysis. These tasks often expose dependency constraints across
multiple layers of the timing graph that do not fit in a single
level [2]. Neither can path-specific update be included to the
pipeline without significant rewrite of the core data structure.

III. OPENTIMER V2: NEW BREAKTHROUGH

With years of research, we decided to rearchitect the core
of OpenTimer v1 from the ground up to a comprehensively
parallel target based on three big ideas: 1) a new parallel task
programming model; 2) a new API concept and software archi-
tecture; and 3) a new task-based parallel incremental timing
algorithm. We discuss these ideas as follows.

A. New Parallel Task Programming Model

Over the past years, we have studied many parallel pro-
cessing options with our industrial partners, and we came to a
conclusion that the biggest hurdle to a scalable parallel timer is
a suitable parallel programming model. In addition to the tra-
ditional loop-based approach, the programming model must
be capable of task-based parallelism. In fact, we have tried
multiple libraries, such as OpenMP 4.5 tasking and TBB. We
found them not easy to suit our workload for various reasons.
For example, OpenMP task dependency clause relies on static

Listing 1. Example of OpenTimer v2’s parallel task programming engine,
Cpp-Taskflow [22].

task annotations. Developers must explicitly specify a valid
order of tasks consistent with the sequential execution. This
restriction makes it very difficult to handle dynamic flows,
where the graph structure is unknown at programming time.
On the other hand, TBB is disadvantageous from an ease-of-
programming standpoint. Its task graph description language
is very complex and often results in large source lines of code
(LOC) that are hard to read and debug. These issues combined
to make it difficult to go beyond the loop-based approach and
prevent computations from flowing naturally along the timing
graph. Therefore, we decided to develop a new parallel task
programming model using modern C++ technology. While the
original purpose was for OpenTimer v2, we have generalized it
to an open-source general-purpose parallel task programming
library, Cpp-Taskflow, for generic C++ developers [22], [23].

Listing 1 presents an example of a Cpp-Taskflow program.
The code is self-explanatory. The program creates a task
dependency graph of four tasks, A, B, C, and D, where task
A runs before task B and task C, and task D runs after task B
and task C. Each task is described as a callable object, which
can be either a lambda, a functor, a binding expression, or
an operator. Cpp-Taskflow provides an abstraction over diffi-
cult concurrency controls, such as threading and scheduling.
Users describe an application in terms of tasks rather than
threads. They do not need to manage threads or locks, and
can focus on high-level developments. In fact, delegating task
scheduling to Cpp-Taskflow lets the core of OpenTimer v2
remain small and flexible. Individual libraries can evolve at
a faster pace for each problem domain. Due to the space
limit, we refer the readers to our official repository to learn
more about Cpp-Taskflow [23]. The project has gained much
attention in gaming, animation, and parallel programming
communities. In 2019, ACM Multimedia Conference awarded
Cpp-Taskflow the second prize in open-source software com-
petition. A key difference between Cpp-Taskflow and existing
tools is our experience of real-world VLSI timing applications.
Cpp-Taskflow is the backbone technology of OpenTimer v2.

B. New API Concept and Software Architecture

With Cpp-Taskflow in place, we develop a new software
architecture in OpenTimer v2 to enable efficient parallel
decomposition strategies of incremental timing. We do not
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Fig. 4. Lineage graph example of five builder operations (marked in cyan).
Three parsing tasks (marked in white) are independent on each other and run
in parallel.

only address the algorithm but also the entire software stack
from tool commands to library APIs. We group each timing
operation to one of the three categories, builder, action, and
accessor. A timing operation can be either a C++ method in
the timer class or a command in the shell.

1) Builder (Lineage Graph): A builder operation builds
up a timing analysis environment, for example, reading cell
libraries and verilog netlists. OpenTimer v2 maintains a lin-
eage graph of builder operations to create a task execution
plan (TEP). A TEP starts with no dependency and appends
tasks to the lineage graph when users call a builder oper-
ation. It records what transformations need to be executed
when an action operation is issued. A key advantage of lin-
eage graph is fine-grained parallelism and lazy evaluation.
We can decompose a large builder operation into small blocks
and pipeline these tasks with other operations in the lineage
graph. Results of builder operations are lazily evaluated when
an action is required. The lazy evaluation avoids unnecessary
synchronization between subsequent operations.

Fig. 4 shows an example of the lineage graph in
OpenTimer v2. The lineage graph is made of five builder
operations, read_celllib, read_verilog, read_sdc,
enable_cppr, and insert_net. Each time users call a
builder operation, the timer appends one or multiple tasks to
the end of the lineage (marked in cyan). These operations
are not evaluated until an action operation is issued. This
example enables fine-grained task parallelism: the process of
reading a design file is broken into two subtasks, parsing the
file and digesting the data into the timer’s in-memory model.
Obviously, the parsing part can run in parallel with other inde-
pendent tasks as long as it precedes its subsequent reader task.
We leverage the lineage graph to exploit both intraoperation
and interoperation parallelism, and evaluate their results lazily.
Another side benefit of the lineage graph is the ease of debug-
ging. We can easily keep track of the timer state by dumping
the lineage graph. With advanced setting, we can perform state
recovery without time-consuming serialization to an external
database.

Algorithms 2 and 3 give an example of two builder oper-
ations, read_celllib and remove_net. We decompose
the operation read_celllib into two tasks, parser and

Algorithm 2: read_celllib(path)
Input: a cell library file locator path

1 G← get_lineage_graph();
2 c← make_celllib_parser(path);
3 parser← G.add_task([c] () { c.parse(); });
4 reader← G.add_task([c] () { read_celllib_impl(c); });
5 parser.precede(reader);
6 append_task_to_lineage_graph(G, reader);

Algorithm 3: remove_net(n)
Input: net name n to remove from the timer

1 G← get_lineage_graph();
2 task← G.add_task([n] () { remove_net_impl(n); });
3 append_task_to_lineage_graph(G, task);

reader. Task parser is an independent application that
scans the syntax of the input cell library and builds a data
structure, for instance, parsing tree, abstract syntax tree, and
other hierarchical structure. Task reader digests the data
structure and transforms useful information to the timer’s in-
memory model. Apparently, reader must not run before
parser completes, and parser can run in parallel with
other independent tasks. The second operation remove_net
is at the finest level of our decomposition. We create a sin-
gle task to process the net modifier. The task body invokes
an internal implementation remove_net_impl to alter the
net data structure of the timer. Encapsulation of other builder
operations is similar to these two examples.

2) Action (Update Timing): A TEP is materialized and
evaluated when users request the timer to perform an action
operation, for example, reporting the arrival time or the slack
value at a pin under a given rise/fall transition and a min/max
timing split. Calling an action operation triggers a timing
update from the earliest task to the one that produces the
result of the action call. Internally, we create a task dependency
graph and update timing in parallel, including both forward
propagation (slew, delay, and arrival time) and backward prop-
agation (required arrival time). Fig. 5 shows a task dependency
graph created at an action operation to update timing. We
can observe that the task graph flows computations naturally
with the timing graph. There is no explicit synchronization
at each node to coordinate with the loop-based pipeline strat-
egy, but automatic scheduling and distribution of tasks across
CPU cores whenever dependencies are met. To enforce for-
ward propagation to precede backward propagation, we only
need to add dependencies on the last layer of forward propa-
gation tasks, often at endpoints (zero outgoing edges). In this
example, we have fprop_out (task at a primary output) and
fprop_f1:D (task at the data pin of a flip-flop). Notice that
the forward propagation tasks are always a subset of backward
propagation tasks, because the affected delay may also change
the required arrival time.

The bottom-most call of every action operation is the
method update_timing. The method explores a minimum
set of nodes in the timing graph as propagation candidates and
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Fig. 5. Task dependency graph to carry out an action operation. The graph
consists of forward propagation tasks (white) and backward propagation tasks
(black).

constructs a task dependency graph to carry out the timing
update. We shall discuss in the later section how OpenTimer
v2 maintains the list of propagation candidates for incre-
mental timing. Our tasking model can incorporate different
types of timing propagation into a task. Unlike the level-
based approach in v1, a task can start immediately after all its
preceding tasks finish. This largely enhances the asynchrony
of task execution and improves the CPU utilization for faster
runtime.

3) Accessor (Inspect the Timer): An accessor operation
lets users inspect the timer status and dump static timing
information, for example, dumping the timing graph for visu-
alization purpose or dumping the design statistics. All accessor
operations are declared as constant methods in the timer class.
Calling an accessor method does not alter any internal data
structures of a timer. Fig. 6 shows an example of using an
accessor operation to dump a timing graph. The primary use
of accessor operations is inspection. For instance, users can
observe the difference before and after the timer evaluates the
lineage, or examine the slack value of a pin before and after
calling update_timing.

Fig. 6. Inspect the timing graph through accessor dump_graph.

TABLE I
OPENTIMER V2 COMMANDS AND API CONCEPT

4) User-Level Interface Design: It is clear that the proposed
API concept enables the timer to exploit high degrees of paral-
lelism both inside and outside a sequence of operations. Once
users understand the software architecture of OpenTimer v2,
the complexity and effect of each operation become clear and
concrete. Table I lists a couple of API examples and shell
commands available in OpenTimer v2. Each builder method
takes O(1) time, while the time complexity of an action or an
accessor operation is algorithm dependent. Another significant
benefit from this new software architecture is thread safety. On
the basis of TEP, all operations are linearizable in the order
of their calls. The API exposed to users is thread-safe.

C. New Task-Based Parallel Incremental Timing Algorithm

We describe how OpenTimer v2 performs incremental tim-
ing. In particular, we discuss algorithms for design modifiers,
graph-based analysis, and path-based analysis.

1) Design Modifiers: The objective of handling each design
modifier is to identify a set of “frontier pins” from which
the incremental timing update originates. Starting from each
frontier pin, we construct a downstream cone for forward
propagation. This downstream cone is the maximum region
affected by the design modifier. Then, starting from each pin
in the downstream cone, we construct an upstream cone for
backward propagation. This upstream cone is the maximum
region affected by the design modifier. We consider the design
modifiers at the gate level, net level, and pin level. Each design
modifier is a builder operation that takes constant time in the
lineage graph. OpenTimer v2 creates a task for each design
modifier on top of an internal implementation that alters the
timer state. Function remove_net_impl in Algorithm 3
is such an example. Each design modifier has an internal
implementation to invoke by the timer when an action call
materializes the lineage graph. As a consequence, we discuss
the algorithm of each internal implementation with a suffix
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(a) (b)

Fig. 7. Repowering a two-input AND gate with another size introduces
two frontier pins at its two inputs. (a) Circuit fragment. (b) Repower gate
(X1→X2).

Algorithm 4: repower_gate_impl(g, c)
Input: an existing gate g, a new cell c

1 remap gate g to new cell c;
2 B← get_frontier_list();
3 foreach p ∈ g.input_pins do
4 foreach p− ∈ p.fanin_pins do
5 B.insert(p−);
6 n← p−.net;
7 n.is_rc_up_to_date ← false;
8 end
9 end

impl (Algorithms 4–7). Constructing a builder task for each
design modifier is similar to Algorithms 2 and 3.

Gate-level design modifiers include: 1) insert_gate;
2) remove_gate; and 3) repower_gate. Recall in our
problem statement, the operation insert_gate creates
a new unconnected gate in the design and the operation
remove_gate removes a disconnected gate from the design.
It is obvious that the two operations introduce no frontier pins
as the gate being inserted or removed is not connected to the
current circuit. Therefore, for gate-level design modifiers, we
only deal with the operation repower_gate. An example
of the operation repower_gate is shown in Fig. 7. The
AND gate in the data network is repowered from size X1
(cell ANDX1) to size X2 (cell ANDX2). Repowering a gate
changes the cell timing and the pin capacitance. The affected
area should be traced back by one level to the fanin pins of
the gate’s inputs. In this example, the incremental timing prop-
agation is captured by two frontier pins FF1:Q and FF2:Q.
Using this fact, our solution to repower_gate is presented
in Algorithm 4. Algorithm 4 first replaces the cell that was
attached to the gate with the new cell (line 1). Afterward the
frontier pins, which are fanin pins of each input pin of the gate,
are inserted into the frontier list (lines 3–9) for incremental
timing update.

Net-level design modifiers include: 1) insert_net;
2) remove_net; and 3) read_spef. Similar to gate-
level modifications, the operation insert_net creates an
empty unconnected net for the design and the operation
remove_net deletes an empty disconnected net from the
design. Due to the isolation, both operations have no impact

Algorithm 5: read_spef_impl(O)
Input: data structure O of a parsed parasitics

1 B← get_frontier_list();
2 foreach net n ∈ O do
3 update the parasitics of net n through O;
4 n.is_rc_up_to_date ← false;
5 pr ← n.rc_network_root_pin;
6 B.insert(pr);
7 end

on the current timing profile. The net-level design modifier
read_spef is the only operation that could affect the tim-
ing due to new parasitics. Our solution to read_spef_impl
is presented in Algorithm 5. Keep in mind the task of
read_spef is created in the same way as Algorithm 2.
Algorithm 5 takes a data structure of a parsed parasitics O
from an SPEF generator, provided by the optimization tools,
as an input argument. Optimization tools provide SPEF files
and iterate each net in O and attaches the net with new para-
sitics (lines 2 and 3). Whenever a net changes parasitics, the
root of its RC network is inserted to the frontier list for incre-
mental timing (lines 4 and 6). In large designs, SPEF files
can be very large. Decomposing read_spef into two parts,
parsing and reading, and pipeline the parsing task with other
independent tasks in the lineage graph can gain significant
performance benefit.

Pin-level design modifiers include: 1) disconnect_pin
and 2) connect_pin. Pin-level design modifiers are the
most essential operations because they directly alter the con-
nectivity in the design. The operation disconnect_pin dis-
connects a pin from its net and the operation connect_pin
connects a pin to a given net. Both operations modify the
structure of the design and have a direct effect on timing. An
example of disconnect_pin and connect_pin is given
in Fig. 8. It can be seen from Fig. 8(a) disconnecting the pin
I1:o from its net cuts off the connection between I1:o to FF3:D.
This change affects the timing at the pins I1:o and FF3:D as
well as the downstream cone of FF3:D. Therefore, disconnect-
ing a pin introduces two frontier pins that are the two ends
at the connection to or from which the pin is connected. On
the other hand, connecting a pin to a given net establishes a
new connection. In Fig. 8(b), connecting pin I1:o to net n1
produces a new connection from pin I1:o to pin FF3:D. This
change has an impact on the timing profile in the downstream
cone of pin I1:o. As a result, connecting a pin introduces one
frontier pin which is the tail of this connection. Algorithms 6
and 7 present our solutions to pin-level modifiers. Notice that
a pin is considered either a root of the RC network where
we need to remove or insert all possible connections, includ-
ing any hierarchical connections that cover such a change
(lines 4–8 in Algorithm 6 and lines 2–7 in Algorithm 7), or
the terminal of the RC network in which case we deal with the
only one connection (line 10 in Algorithm 6 and lines 9–11
in Algorithm 7).
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(a) (b)

Fig. 8. Design modification by disconnecting/connecting a pin from/to a net.
(a) Disconnect pin FF3:D from net n1. (b) Connect pin FF3:D to net n1.

Algorithm 6: disconnect_pin_impl(p)
Input: an existing pin p

1 n← p.net ;
2 pr ← n.rc_network_root_pin ;
3 B← get_frontier_list();
4 if p = pr then
5 foreach p′ ∈ n.pinlist −{pr} do
6 B.insert(p′);
7 disconnect pin p′ from the net n;
8 end
9 else

10 B.insert(pr);
11 end
12 B.insert(p);
13 disconnect all hierarchical connections at p;
14 disconnect the pin p from the net n;

Algorithm 7: connect_pin_impl(p, n)
Input: an existing pin p and an existing net n

1 B← get_frontier_list();
2 if p.is_rc_network_root_pin = true then
3 foreach p′ ∈ n.pinlist do
4 establish the connection from p to p′;
5 disconnect all hierarchical connections to p′;
6 end
7 B.insert(p);
8 else
9 pr ← n.rc_network_root_pin;

10 establish the connection from pr to p;
11 B.insert(pr);
12 end
13 disconnect all hierarchical connections to p;
14 connect the pin p to the net n;

2) Graph-Based Analysis: At the bottom of every action
operation, OpenTimer v2 calls update_timing to perform
graph-based timing update starting from frontier pins. As
shown in Algorithm 8, the timer first evaluates the lineage
graph if it exists (lines 1–6). After the lineage graph is mate-
rialized, the timer enters a state ready for timing update. If
users request a full timing update, we insert all pins to the

Algorithm 8: update_timing

1 G← get_lineage_graph();
2 if G.empty() == true then
3 return;
4 end
5 executor.run(G).wait();
6 G.reset();
7 if full_timing == true then
8 insert_all_pins_to_frontiers();
9 end

10 B← get_frontier_list();
11 C+ ← φ;
12 C− ← φ;
13 foreach p ∈ B do
14 C+∪ downstream_cone(p);
15 end
16 foreach p ∈ C+ do
17 C−∪ upstream_cone(p);
18 end
19 build_propagation_tasks(G, C+, C−);
20 executor.run(G).wait;

frontier list. We then identify the propagation candidates by
expanding the downstream and upstream cones of each fron-
tier pin (lines 10–18), and derive a task dependency graph out
of these candidates for graph-based timing update (line 19).
Submitting the task dependency graph to a taskflow executor
autonomously triggers parallel incremental timing update and
returns with up-to-date timing values (line 20).

Algorithm 9 presents the details of how OpenTimer v2
constructs a task dependency graph to update timing. Each
pin is associated with two tasks: 1) forward propagation task
ftask and 2) backward propagation task btask. First, we
construct the forward part of the task dependency graph from
the forward propagation candidates C+ (lines 1–8). A typi-
cal forward propagation task (line 2) updates the parasitics,
slew, delay, arrival time, and timing constraints (setup, hold,
and clock) of the associated pin (see Algorithm 10). Notice
that the constraint arc is part of the dependency to force clock
path to update before the constraint values. Next, we con-
struct the backward part of the task dependency graph from
the backward propagation candidates (lines 9–16). A back-
ward propagation task (line 10) updates the quantities that are
only available after forward propagation, for instance, required
arrival time (see Algorithm 11). Finally, we add dependen-
cies to the last layer of pins to force forward propagation
tasks to run before backward propagation tasks (lines 17–21).
Our task-based approach is flexible in including other tasks to
the graph-based analysis as long as dependency is properly
attached. For example, we can create tasks of the path-
specific update, pessimism removal credits, and advanced
delay modeling and include them to Algorithms 10 and 11.
Each task can implement its own pruning strategy as well,
such as early termination at pins of unchanged delays.

Using Algorithm 8 as the infrastructure, the value-based
timing query, for example, report_at (reporting the arrival
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Algorithm 9: build_prop_tasks(G, C+, C−)
Input: a taskflow graph G
Input: forward propagation candidates C+
Input: backward propagation candidates C−

1 foreach f ∈ C+ do
2 f .ftask← G.add_task([](){ fprop(f ); });
3 foreach p− ∈ f .fanin() do
4 if p− ∈ C+ then
5 p.ftask.precede(f .ftask);
6 end
7 end
8 end
9 foreach b ∈ C− do

10 b.btask← G.add_task([](){ bprop(b); });
11 foreach p− ∈ b.fanin() do
12 if p− ∈ C− then
13 b.btask.precede(p.btask);
14 end
15 end
16 end
17 foreach b ∈ C− do
18 if b.btask.num_dependents() == 0 then
19 b.ftask.precede(b.btask);
20 end
21 end

Algorithm 10: fprop(p)
Input: a pin p

1 update_parasitics(p.net);
2 update_slew(p);
3 update_delay(p);
4 update_arrival_time(p);
5 update_timing_constraints(p);

Algorithm 11: bprop(p)
Input: a pin p

1 update_required_arrival_time(p);

Algorithm 12: report_at(p, s, t)
Input: an existing pin p
Input: an early/late (i.e., min/max) timing split s
Input: a rise/fall transition t
Output: arrival time at p under s and t

1 update_timing();
2 return p.arrival_time(s, t);

time), can be implemented as Algorithm 12. Other action
operations can be implemented in the same manner.

3) Path-Based Analysis: Path-based analysis is an impor-
tant step in the timing analysis flow. Among various tech-
niques, a core routine, often referred to as report_timing,
requests a set of critical paths and generates timing reports. We

Fig. 9. OpenTimer v2 applies implicit path representation based on a suf-
fix tree and a prefix tree data structures per query to perform path-based
analysis [24].

Algorithm 13: report_timing
Input: Endpoints, path count k
Output: top-k critical paths across all endpoints

1 update_timing();
2 E← update_endpoints(k);
3 PathHeap heap;
4 taskflow.transform_reduce(E.begin(), E.end(), heap,
5 merge_two_heaps(heap1, heap2, k),
6 merge_heap_endpoint(heap, endpoint, k),
7 endpoint_to_heap(endpoint, k)
8 );
9 executor.run(taskflow).wait()

10 return heap.extract_paths();

developed the critical path generation algorithm based on our
prior work in [24]. To the best of our knowledge, this is by far
the fastest algorithm in the literature. The algorithm consists of
two complementary data structures: 1) suffix tree and 2) pre-
fix tree. Each path is transformed to an implicit representation
that takes constant space and time. The suffix tree represents
the shortest path tree rooted at a given endpoint of the design.
The prefix tree is a tree order of timing arcs with respect to
a suffix tree. Each edge in the prefix tree represents a unique
path deviated from the suffix tree. Generating the top-k criti-
cal paths across all endpoints is extremely efficient under this
data structure. It also largely facilitates the parallelization as
each pair of suffix tree and prefix tree is independent of each
other at different endpoints. An example of the implicit path
representation is shown in Fig. 9. Due to the space limit, we
refer readers to [24] for a detailed discussion of the algorithm.

Algorithm 13 presents a skeleton of report_timing that
outputs the top-k critical paths across all endpoints. The data
structure PathHeap encapsulates both suffix tree and pre-
fix tree for generating critical paths at one endpoint [24]. We
developed a method transform_reduce in Cpp-Taskflow
to perform the parallel reduction. The method transforms each
endpoint to a path heap of k critical paths and then iteratively
merges two heaps into a new heap of size k until one left. In
general, the algorithm can handle more arguments such as out-
putting the top-k critical paths only for the min (hold) or max
(setup) session. Our parallelization framework is very general
and is extensible to many path-specific updates. For example,
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TABLE II
SOFTWARE COST OF OPENTIMER V1 AND V2

we incorporate common path pessimism removal (CPPR) into
path generation tasks.

IV. EXPERIMENTAL RESULTS

OpenTimer v2 is implemented in C++17 on a 40-core
3.2-GHz 64-b Linux machine with 128-GB memory. We used
G++ 8.0 with -std=c++17 to compile the source. Our com-
piler supports POSIX threads (pthread) and OpenMP through
the ubiquitous gcc tool chain. Experiments are undertaken on
the TAU15 contest benchmarks with a golden reference gen-
erated by IBM Einstimer under static mode [3]. We used
the same benchmarks to evaluate the correlation between
OpenTimer v2 and a commercial tool OpenSTA by Parallax
Software Inc. [25]. To precisely measure the effect of par-
allelism, we lock each thread to one CPU core by using
both: 1) library-specific API to restrict the number of spawned
threads and 2) OS-level utilities (taskset) to affine the run-
ning process to the same number of CPU cores. All data are
the average of ten runs.

A. Software Cost

We discuss the software cost between OpenTimer v1 and
OpenTimer v2. OpenTimer v1 adopted OpenMP 4.5 tasking
clauses to implement the pipeline-based incremental tim-
ing [20]. OpenTimer v2 leveraged Cpp-Taskflow to implement
the task-based incremental timing [22]. The new software
architecture and API concept allow the core of OpenTimer
v2 to remain compact and modular. Developers can quickly
use our timer in a standalone analysis environment or derive
a timing-driven application. Table II compares the software
costs between OpenTimer v1 and v2. LOC denotes the source
lines of code, Effort estimates the development effort, Sched
shows the largest estimated schedule of a component, Dev
estimates the developer count, and Cost estimates the cost to
develop. All quantities are reported by the popular Linux tool
SLOCCount under the constructive cost model (COCOMO)
organic mode [26]. The organic mode emulates a small
research team of 2–3 people.

OpenTimer v2 reduces almost 50% of the coding com-
plexity from v1 (9K versus 4K LOC) even with enhanced
capability and new features. We attribute this to our new paral-
lel task-based incremental timing framework and the software
architecture of OpenTimer v2. A large amount of parallel
code that was used to maintain the pipeline data structure
in OpenTimer v1 is now replaced by only a few lines of
Cpp-Taskflow code. Pushing parallel task processing to Cpp-
Taskflow keeps the core of OpenTimer v2 small and efficient.
It also minimizes the rate of change required by the timer,
which makes it easier to keep OpenTimer v2 scalable and
robust. Our measurement may be subjective, but it highlights

TABLE III
ACCURACY COMPARISON BETWEEN OPENTIMER V1 AND V2 ON TAU15

CONTEST BENCHMARKS [3]

the potential development effort involved in building derived
work on top of OpenTimer v2.

B. Performance

We study the performance of OpenTimer v2 and its
improvement over OpenTimer v1 on four fronts: 1) accu-
racy on TAU15 benchmarks; 2) incremental timing runtime;
3) scalability with CPU cores; and 4) overhead of task
parallelism.

1) Accuracy: Table III compares the accuracy between
OpenTimer v1 and v2 on a set of TAU15 contest bench-
marks [3]. These benchmarks are where OpenTimer v1 failed
to achieve full accuracy due to a compromise we made for
speed. In Algorithm 1, updating the level list (line 5) is in
fact very time consuming. We need to run a topological traver-
sal over the downstream cone and upstream cone of frontier
pins to restore a correct level order. About 25% runtime is
taken by this process. Therefore, OpenTimer v1 adopted a
simple heuristic to prune to level update at a threshold, at
the cost of accuracy loss. The tradeoff is likely inevitable if
we stick with the loop-based pipeline decomposition strategy.
However, OpenTimer v2 modeled the timing propagation in a
task dependency graph that is directly associated with the tim-
ing graph. We need no extra effort to maintain additional level
dependencies imposed by the pipeline data structure. Neither
is any accuracy–speed tradeoff. The new accuracy values are
able to match the golden reference completely.

2) Incremental Timing: The TAU15 contest benchmarks
have fewer than ten incremental timing iterations, making it
hard to study the performance. Therefore, we modified these
circuits to incorporate 1000 incremental timing iterations. Each
incremental timing iteration consists of a sequence of builder
operations and one action operation at the end. The action
operation triggers incremental timing update from the earliest
builder to the first action call that queries the timing result.
For example, a valid incremental timing iteration may be one
gate-sizing operation repower_gate followed by a value-
based timing query report_at. In practice, an optimization
engine may invoke millions of iterations in a timing-driven
loop.

Fig. 10 compares the incremental timing performance
between OpenTimer v1 and v2 on two combinational cir-
cuits (c6288 and c7552) and six sequential circuits (ac97_ctrl,
aes_core, wb_dma, tv80, des_perf, and vga_lcd). We draw the
comparison in two lines, per-iteration runtime and cumula-
tive runtime. Both quantities are important for optimization
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Fig. 10. Comparison of incremental timing performance between OpenTimer v1 and v2 on combinational circuits c6288 and c7552, and sequential circuits
ac97_ctrl, aes_core, wb_dma, tv80, des_perf, and vga_lcd.

tools to understand the efficiency of using a timer in a local
scope and a global span. As a whole, OpenTimer v2 outper-
forms v1 in almost all scenarios. In combinational circuits
c6288 and c7552, v2 is consistently faster than v1. The maxi-
mum speedup in a single iteration is 6.83× and 4.5× at c6288
and c7552, and the respective average speedup is 3.71× and
2.75×. For sequential circuits, the runtime difference between
v1 and v2 is also clear. The largest margin we observed is
at tv80, where v2 reached the goal in 8.57 s and v1 required
31.84 s (3.47× slower). Unlike other circuits, tv80 has many
long data paths. This results in a very long pipeline in v1’s par-
allel decomposition strategy. The cost to incrementally update
the level list of long length ends up very high. On the other
hand, vga_lcd is structured in an opposite way. It has many
flip-flops, and most data paths are short in the pipeline. Shorter
pipeline often produces more nodes in a single layer from the
timing graph perspective. Therefore, the performance margin
between v1 and v2 is close in this scenario. Still, v2 is faster.
The maximum and average speedup values are 1.86× and
1.11×, respectively. Another interesting finding in vga_lcd is

the first iteration, where full timing took place to update the
entire timing graph. v2 is a bit slower due to the fact we
discussed above. However, the difference is negligible.

3) Scalability: We measure the runtime scalability with
increasing number of cores on four large circuits, vga_lcd
(139.5K gates), leon2 (1.6M gates), leon3mp (1.2M gates), and
netcard (1.5M gates). We randomly generated 1000 incremen-
tal timing iterations for each circuit and measured the elapsed
runtime of update_timing to complete all iterations at 1,
8, 16, 24, 32, and 40 cores. Fig. 11 draws the result. We
observed OpenTimer v2 scales higher than OpenTimer v1 with
increasing cores. Both saturate at about 8–12 cores. The scal-
ability is affected by many factors, such as the graph structure
and the size of incremental timing. A primary reason that pre-
vents v2 from scaling beyond 12 cores is the data size. Most
data for incremental timing are sparse. They do not span across
large cones, as full timing, that produces a large amount of
data for higher parallelism. Another interesting aspect is the
speedup number versus core count. Using 8 cores, we speed up
vga_lcd by about 3.6×, which is away from the idea factor of
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Fig. 11. Runtime scalability with increasing number of CPU cores on four large circuits, vga_lcd, netcard, leon2, and leon3mp.

8×. It is less likely to have a linearly strong scalability because
the STA workload is graph oriented. Computational patterns
are irregular and dependent on each other. The structures of
the STA graph and design transforms restrict the maximum
parallelism we have at a time. However, this is unpredictable
for the STA engine itself.

Regardless of the core count used, the task-based strategy
leads to much better runtime scalability over the loop-based
pipeline. The maximum parallelism in the loop-based strat-
egy is dominated by the number of independent nodes in
a single layer. It is very difficult to maximize this quantity
with available thread resources in an incremental environ-
ment. In contrast, the task-based strategy lets computation
flow naturally with the timing graph structure. The scheduler
autonomously optimizes the parallelism with dynamically gen-
erated tasks. As a consequence, the runtime difference between
two strategies becomes remarkable as we increase the num-
bers of cores and tasks. For example, it took 12.54 min for
OpenTimer v1 to finish whereas v2 reached the goal in only
8.80 min (30% faster). At about 8–16 cores where both tools
reach the saturation point, the gap between OpenTimer v1 and
v2 remains pronounced. We can clearly see OpenTimer v2 is
more efficient than v1 at each core number.

4) Overhead of Task Parallelism: Task parallelism is
advantageous in flowing computation along the timing graph,
but creating a task graph has some overhead. Fig. 12 shows
the runtime profiling for task-based approach in OpenTimer v2
and loop-based levelization in v1. We measure the time each
significant portion of update_timing takes in a piechart.
Creating a task graph occupies about 10% of the entire run-
time and executing the graph takes the majority of 88%. On
the other hand, the loop-based approach spent up to 26% on
updating the levellist and the parallel execution of tasks across
all levels takes 71%. In fact, updating the levellist is one major
bottleneck v1. It is very costly to maintain the data structure
along with incremental timing because it requires dynamic
changes at each iteration. The time spent on updating the lev-
ellist may overwhelm the benefit of loop parallelism. In terms
of memory overhead, v2 bumps up about 10% of maximum
resident set size (RSS) due to the management of task graphs
(see Table IV).

C. Comparison With Parallax Software OpenSTA

We study the timing correlation between OpenTimer v2
and the commercial tool, OpenSTA, by Parallax Software

Fig. 12. Runtime profiling for task parallelism in OpenTimer v2 and loop
parallelism in v1.

TABLE IV
MEMORY OVERHEAD OF OPENTIMER V2

TABLE V
COMPARISON BETWEEN OPENTIMER V2 AND THE COMMERCIAL TOOL

OPENSTA [25] ON GENERATING THE TOP-1000 TIMING CRITICAL PATHS

OF EACH DESIGN

Inc. [19], [25]. OpenSTA is an open-source gate-level static
timing verifier that has been used by many design houses.
Over the past decades, OpenSTA has conducted thousands
of correlations with industrial sign-off timers. While it may
not be fair to compare an academic tool with a commercial
one due to many confidential infrastructures, we are partic-
ularly interested in establishing timing correlation between
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Fig. 13. Comparison of the top-1000 path slack distribution between OpenTimer v2 and OpenSTA on combinational circuits c1908, c2670, c3540, and
c7552, and sequential circuits usb_phy, tv80, des_perf, and vga_lcd.

Fig. 14. Comparison of all violation endpoints between OpenTimer v2 and
OpenSTA.

OpenTimer v2 and commercial tools. Perfect timing corre-
lation between tools leads to faster timing closure, and thus
reduction in cycle time.

The overall correlation data are shown in Table V. We
selected seven combinational circuits and four sequential cir-
cuits from TAU15 benchmarks and used OpenTimer v2 and
OpenSTA to report the top-1000 critical paths in a full timing
run. We compare the accuracy using the correlation coeffi-
cient ρ between the two slack vectors extracted from the path
reports. The two timing reports are positively correlated to
each other with ρ ranging from 0.93 to 0.99. We observed
a strong linear relationship between two reports. Fig. 13
visualizes the slack distributions between OpenTimer v2 and
OpenSTA on four combinational circuits and four sequential
circuits. The main reason for different slack values between
two tools is the modeling of net delay and effective capacitance
in RC networks. For path-based comparison, both tools pro-
duced almost identical results. For example, circuits vga_lcd
and c7552 both matched 100% paths. We observed consistent
correlation results also in violation endpoints. Fig. 14 com-
pares the graph-based slack distribution across all violation
endpoints on two circuits, c7552 and aes_core. The correlation
coefficients are 0.99 for both circuits. Results are consistent
in all other benchmarks with ρ in the range of 0.97 to 0.99
for violation endpoints.

V. CONCLUSION

In this article, we presented OpenTimer v2—a new par-
allel incremental timing analysis engine. Compared with the
previous generation, we have rewritten the codebase from
the ground up using modern C++17 and advanced paral-
lel computing techniques to facilitate the design of parallel
incremental timing. Our parallel decomposition strategy has
delivered new performance scalability and programming pro-
ductivity that were previously out of reach. For one particular
example, OpenTimer v2 achieved up to 5.33× maximum
speedup in one incremental timing iteration over v1. We
have also shown a strong linear correlation to an industrial
static timing verifier that has approached sign-off quality.
OpenTimer v2 is open source, and we are committed to free
sharing of our technical innovation to advance timing research.

Future work focuses on new GPU algorithms to speed up
STA, in particular, full timing analysis. One possible direction
is to leverage data-oriented design techniques for CPU–GPU
collaborative computing. Prior research has demonstrated sig-
nificant performance improvement in physical design and
simulation [27]–[29]. A key benefit of the task-based approach
is its extensibility. We can encapsulate the data-parallel GPU
kernel in a task and couple it together with other dependent
CPU tasks. Also, we plan to develop a conditional tasking
interface in our Cpp-Taskflow project to support early termi-
nation of tasks for implementing efficient pruning techniques
during the timing propagation [15]. Additionally, we are
interested in incorporating model-order-reduction strategies
into our task to speed up incremental delay calculation [30].
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