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Accelerating Static Timing Analysis Using
CPU–GPU Heterogeneous Parallelism

Zizheng Guo , Tsung-Wei Huang , Member, IEEE, and Yibo Lin , Member, IEEE

Abstract—Static timing analysis (STA) is an essential yet
time-consuming task during the circuit design flow to ensure
the correctness and performance of the design. Thanks to the
advancement of general-purpose computing on graphics process-
ing units (GPUs), new possibilities and challenges have arisen for
boosting the performance of STA. In this work, we present an
efficient and holistic GPU-accelerated STA engine. We acceler-
ate major STA tasks, including levelization, delay computation,
graph propagation, and multicorner analysis, by developing
high-performance GPU kernels and data structures. By divid-
ing the STA workloads into CPU–GPU concurrent tasks with
managed dependencies, our acceleration framework supports
versatile incremental updates. Furthermore, we have extended
our approach to multicorner analysis by exploring a large amount
of corner-level data parallelism using GPU computing. Our
implementation based on the open-source STA engine OpenTimer
has achieved up to 4.07× speed-up on single corner analysis, and
up to 25.67× speed-up on multicorner analysis on TAU 2015
contest designs and a 14-nm technology.

Index Terms—Heterogeneous parallelism, static timing analysis
(STA).

I. INTRODUCTION

W ITH the advancement of design complexities and pro-
cess technology, the overall circuit design closure is

increasingly bounded by the timing analysis on circuit graphs
consisting of hundreds of process corners and billions of tran-
sistors. To ensure the timing correctness and performance of
the design, static timing analysis (STA) is frequently invoked
in the iterative and incremental updates inside optimization
algorithms [1]. In response to millions of design modifica-
tions performed by the optimization flow, the timer is required
to provide instant and accurate feedback on slack values and
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timing criticality changes. To achieve acceptable performance
and design turnaround time, it is crucial to have an efficient
STA engine.

A number of parallel STA algorithms have been proposed
in previous works, including both commercial tools and aca-
demic research [2], [3], [4], [5], [6], [7], [8], [9], [10], [11].
While each has their advantages and drawbacks, nearly all
of these algorithms are inherently bound by the multithreaded
parallelism on a platform with central processing units (CPUs)
and multicore architecture. While some of these attempts have
gained runtime benefits, most of them stop scaling beyond
8–16 CPU cores [11], without more scalable replacements
above that. With the increasing computing capacity of mod-
ern graphics processing units (GPUs), new possibilities have
arisen for boosting the performance of STA engines. However,
it is extremely challenging to develop an efficient STA engine
running on a CPU–GPU heterogeneous platform. Computing
the signal timing across a circuit graph involves both diverse
computational patterns and irregular memory access, including
dynamic data structures, graph-oriented computing, recursion,
and branch-and-bound, to name a few [3]. These patterns lead
to a vast and complex STA workload consisting of nontrivial
functional dependencies. We need very strategic data structure
models and decomposition algorithms to obtain a reasonable
STA runtime speed-up.

As design shifts to nanoscale, the timing effects from pro-
cess, voltage, and temperature (PVT) changes are more and
more tied to the successful tapeout of chips. The analysis of
such effects is done by multicorner STA engines that address
all combinations of PVT corners in independent STA runs,
which bear a large memory footprint and huge runtime. Most
previous research on multicorner STA acceleration [12], [13],
[14], [15], [16], [17] is limited to CPU-based parallelism
either within one or multiple STA processes. This organization
cannot efficiently explore large data parallelism exhibited by
multicorner settings.

In this work, we present a new STA implementation on a
CPU–GPU heterogeneous platform. We propose GPU-efficient
acceleration kernels and data structures to offload major STA
computing steps to GPU. We implement our algorithms based
on the open-source STA engine OpenTimer, designed by
Huang et al. [3]. Our algorithm’s core design philosophy is
universally applicable and can be applied to other STA frame-
works. The major contributions of this article are summarized
in the following.

1) We divide the STA workloads into CPU–GPU
concurrent tasks with managed dependencies by
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leveraging task-based parallelism, effectively hiding data
processing and memory latency.

2) We develop high-performance GPU kernels and data
structures tailored to GPU parallelism for all major STA
operations, including delay calculation, levelization, and
graph propagation.

3) We implement our GPU-accelerated STA algorithms
based on a real-world STA framework with support
to industrial design formats and incremental timing.
Our techniques provide valuable insight into CPU–GPU
performance tradeoff in realistic scenarios.

4) We extend our GPU algorithms to multicorner timing
analysis by exploring data parallelism across the cor-
ner dimension and proposing efficient memory mapping
under GPU memory constraints. We have demonstrated
a substantial extra performance benefit.

We evaluate our algorithm on the gate-level circuit netlists
from TAU 2015 Timing Analysis Contest benchmarks con-
sisting of large industrial designs [18]. We use a 14-nm
technology to provide realistic single-corner and multicorner
cell libraries. We have achieved a significant speed-up on
both single-corner and multicorner STA. As an example, on
two large circuit designs, netcard and leon2, we accelerate
OpenTimer by 4.05× and 4.07× using one GPU for single-
corner analysis. By computing 16 corners in parallel, we
achieved another 5.66× and 6.34× speed-up on these designs.
We also investigated the impact of several factors on incre-
mental timing performance, such as gate number, net count,
and incremental graph size, and provided recommendations
on when to use GPU or CPU. Given the composite of soft-
ware tradeoffs and architectural considerations we have made,
we believe our STA algorithm delivers a novel acceleration
methodology.

The organization of this article is listed as follows. In
Section II, we introduce the STA background, GPU archi-
tecture, and our problem formulation. In Section III, we
present details of our multicorner STA algorithm on GPU. In
Section IV, we demonstrate the experimental results on STA
runtime improvement. Section V summarizes this article.

II. STATIC TIMING ANALYSIS

In STA, circuits are represented as directed acyclic graphs
(DAGs), where nodes represent pins of circuit components and
edges represent pin interconnects. Fig. 1 illustrates an exam-
ple STA graph consisting of four logic cells, five primary
ports, and seven nets. In order to compute the signal arrival
times (ATs) on this timing graph, a graph-based STA engine
performs two major steps called forward and backward propa-
gation. In forward propagation, timing quantities such as delay,
slew, and RC are computed, and AT is accumulated according
to data dependencies. In backward propagation, timing con-
straints and slack statistics such as required AT (RAT) are
computed based on the forward propagation result. To keep
our discussion focused, we compute cell delays through the
nonlinear delay model (NLDM) based on 2-D lookup tables
(LUTs) with load and slew indices, and net delays through the
widely known Elmore delay model. These models are used

Fig. 1. STA graph of a circuit design. The blue nodes indicate pins of com-
ponents like gates and I/O ports. The arrows indicate pin-to-pin connections.
Delay values are quantified using best (min) and worst (max) scenarios.

in recent TAU 2014–2019 timing analysis contests [18], [19],
[20] with golden results available. The node criticality is quan-
tized by its slack defined as the difference between its AT and
RAT. Setup check and hold check, respectively, refer to the
late and early slack values.

A. Parallel STA Engines

The design complexity of modern VLSI systems is ever-
increasing, with millions to even billions of pins and
interconnect. Such a large amount of computation puts
unprecedented pressure on the analysis speed of STA engines
used to evaluate large designs. To shorten STA’s substantial
runtime, ongoing research has looked toward parallel and dis-
tributed STA frameworks [2], [3], [6], [7]. Huang et al. [3],
[5], [6], for example, developed OpenTimer, a timing analy-
sis engine that represents timing propagation jobs and their
precedence using a dependency graph of tasks. Their result
has demonstrated up to 2× runtime improvement over loop-
based parallelization using OpenMP. Another attempt on
parallel timing graph propagation for FPGA designs is per-
formed by Murray et al. and demonstrated 9× speed-up using
32 CPU cores. Besides, new challenges on timing macro-
modeling [21], [22], common path pessimism removal [8],
[9], [10], and incremental timing are also raised by recent
TAU contests [18], [19], [20].

The multithreading performance based on CPUs generally
saturates at roughly 8–16 threads, due to irregular computa-
tional patterns and threading overhead of STA [3], [7]. To
overcome the scalability challenge, timing analysis with GPU
acceleration is further investigated [7], [23]. Wang et al. [23]
have explored GPU acceleration of the LUT interpolation
step during cell delay computation while leaving other STA
steps like levelization and net delay computation on CPU.
Regarding the kernel runtime, a more than 10× speed-up has
been demonstrated compared to their CPU version. The work
by Murray and Betz [7] mentioned before also investigated
timing propagation on GPUs. While their kernel runtime has
been 6.2× faster, the overall propagation runtime has become
even 0.9× slower over CPU, due to the memory transfer over-
head not accounted for in kernel runtime. In addition to the
above works, acceleration of statistical STA (SSTA) is also
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Fig. 2. OpenTimer runtime decomposition (40 CPU cores) inside one full
timing process on a million-sized design.

attempted using GPUs and FPGAs, which is a different scope
of discussion [24], [25], [26].

To accurately address the runtime bottleneck of a real STA
run, we have profiled the widely adopted open-source STA
engine OpenTimer [3], [5]. As OpenTimer is reported to out-
perform commercial STA tools [3] in terms of speed, we
regard its runtime footprint as a common scenario in high-
performance STA engines. We draw its runtime decomposition
for a full graph-based timing analysis in Fig. 2. As we can
observe in the figure, the RC timing step, including RC trees
construction and slew parameter updates across nets, takes up
a large percentage (48%) of the runtime due to the vast amount
of SPEF data to process [18]. Another significant portion of
runtime (42%) is taken by constructing levelized task depen-
dency graphs with a size proportional to the circuit size, on
which timing propagation is conducted. Handling the signal
relations between pins is a common burden in all STA engines,
due to its difficulty to be parallelized.

B. Multicorner Timing Analysis in Advanced Nodes

With the continued increase of design complexity and
advancements in technology nodes, the timing behavior of
a circuit design is more and more involved with variations
introduced across design process, manufacturing noise, and
operating conditions (Fig. 3). Therefore, multicorner timing
analysis is proposed by repeatedly applying the STA engine
on different cell libraries characterized under different PVT
conditions. The number of such combinations is often tens or
hundreds to cover a large enough set of scenarios during sig-
noff, effectively magnifying the STA runtime by 10× or even
100×.

To reduce the runtime of the expensive multicorner anal-
ysis, researchers have proposed a number of approaches
recently [12], [13], [14], [15], [16], [17]. One direction is to
apply branch-and-bound during corner parameter selection and
STA. For example, [17] proposes to prune the search space
of multicorner exploration with delay upper-bound estima-
tions. This is further improved by [14] which runs different
branch-and-bound algorithms in parallel by CPU-based mul-
tithreading. Another direction is to approximate the corners
by incorporating prior knowledge like the clock tree update in
hold analysis [13] or the local linearity between similar corners
and modes [15], [16]. One recent direction applies machine
learning (ML) to multicorner STA by predicting unobserved

Fig. 3. PVT corners are combinations of PVT parameters. They can be
visualized as points in a 3-D cube.

corners given observed ones [12]. However, they still suffer
from about 10% maximum error due to the inherent stability
and explainability problem of ML models.

Despite extensive research on multicorner analysis, most
of them are limited to CPU-based parallelism. Worse still,
they introduce accuracy loss in the multicorner analysis
results in exchange for speed. Such accuracy loss can be
significant in more advanced nodes due to highly non-
linear timing effects and more complex timing models.
Since the circuit structure does not change across differ-
ent corners, a large amount of data parallelism remains
unused.

C. GPU-Accelerated STA Challenges

Hybrid compute systems with heterogeneous computing
resources like CPUs and GPUs are becoming increasingly
prevalent. Contrary to a CPU consisting of a few high-
performance big cores, a GPU is made up of thousands of
tiny cores arranged into streaming multiprocessors. It attempts
to achieve a high throughput through extensive parallelization
while minimizing threading costs. For instance, the RC tim-
ing computation for different nets can be done independently
because the RC delay and slew parameters can be isolated [18].
Furthermore, the GPU’s compute capability can also be used
to sort out dependent tasks by computing a topological order
in parallel. We highlight below three challenges for speeding
up these STA tasks.

1) Irregular Computational Patterns: Nearly all STA tasks
contain irregular computation patterns, including recur-
sive procedures, dynamic data structures, and graph
traversal.

2) Frequent Memory Access: Even though the RC delay
computation for different nets is independent, each
of them requires randomly accessing GBs of memory
on million-gate designs, due to detailed parasitics and
various local RC tree structures.

3) Large Multicorner Memory Footprint: In multicorner
analysis, memory access problems are worsened by an
additional 10×–100×, due to memory footprint propor-
tional to the number of corners. This gives even more
pressure on memory and cache management.

The above challenges require very strategic data structure
models and decomposition algorithms to obtain a reasonable
runtime speed-up.
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Fig. 4. Overall taskflow of our GPU-accelerated multicorner STA engine.
The green frame captures the tasks running in parallel for a batch of corners.

III. ALGORITHM

In this section, we present our GPU acceleration algorithm
details. Our overall taskflow is presented in Fig. 4, where each
arrow indicates a task dependency. There are three basic steps
in our taskflow: 1) RC delay computation; 2) timing propaga-
tion; and 3) levelization. The timing propagation step is further
decomposed to forward propagation and backward propaga-
tion. In Fig. 4, dark color indicates GPU-accelerated steps,
including RC delay computation, RC tree flattening, forward
propagation, and levelization. Because backward propagation
has a much lower workload and nearly negligible runtime, we
leave it on CPU. We focus on using GPU to address the major
scalability issues and runtime bottlenecks shown in Fig. 2.

A. RC Delay Computation

A majority of STA runtime is taken by the RC delay com-
putation step [18]. We begin by analyzing the model and
the equations for calculating the delay and slew parame-
ters through an RC network. Then we demonstrate how to
build GPU-friendly data structures and algorithms. We adopt
a variant of the Elmore delay model [18] to approximate
interconnect delay, which had been widely adopted by many
different STA engines [3], [8], [11]. We approximate the
interconnect delay based on an Elmore delay model vari-
ant [18] that had been implemented by many STA engines [3],
[8], [11]. As illustrated in Fig. 5, our goal is to calculate the
impulse and delay between the source pin (Port) and each sink
pin (Taps).

CPU Implementation [3]: Dynamic programming (DP) is
a standard approach to implementing RC delay calculation.
There are four stages in this algorithm.

(a)

(b)

Fig. 5. Example of a net RC tree model with parasitics. (a) Edge resis-
tance and node capacitance on parasitic RC tree. (b) BFS order of nodes is
represented as a 1-D flattened array with a list of parent indices.

1) Compute the pin load (i.e., the lumped capacitance) for
each node u, denoted as loadu

loadA = CapA + CapB + CapC + CapD

= CapA + loadB + loadD. (1)

2) Compute the delay between Port and u, denoted as
delayu

delayu =
∑

v∈nodes

CapvRPort→LCA(u,v) (2)

where LCA denotes lowest common ancestor

delayB = RZ→ACapA + RZ→ACapD

+ (RZ→A + RA→B)CapB

+ (RZ→A + RA→B)CapC

= delayA + RA→BloadB. (3)

3) Calculate the sum of capacitance and delay products in
subtrees of u, denoted as ldelayu, similar to step 1.

4) Calculate the beta and impulse parameters between the
source Port and the sinks u, based on the ldelay of nodes,
similar to step 2.

On CPU implementations, each parameter is typically com-
puted using several passes of RC tree traversals. This yields
a linear runtime complexity proportional to the tree size,
although it may not be GPU-efficient due to its irregular recur-
sions. Therefore, in our GPU implementation, we choose to
use breadth-first search (BFS) traversals. In our BFS imple-
mentation instead, we precompute once a node order for each
RC tree. This order ensures that every parent node is before
any of its children. In other words, a tree edge u→ v makes u
appear before v in the BFS order, as illustrated in Fig. 5. The
BFS order represents the structure of an RC tree concisely and
efficiently for GPU execution. All we need to do is to visit the
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Algorithm 1: Flatten RC Trees
Input: N as #nets, (M, E) as (#nodes, #es) in all nets
Input: roots[0..N − 1], the root indices of each net
Input: es[0..E − 1], the undirected edge {(a, b)}
Input: ndstart[0..N], the offsets of each net in node arrays,

with ndstart[N] = M
Input: estart[0..N], the offsets of each net in edge arrays, with

estart[N] = E
Input: dis[0..M] = ∞, cnts[0..M] = 0
Output: order[0..M − 1], the BFS order for each net
/* Process one net w/ blockDim.x threads */

1 netID = blockIdx.x; � gridDim.x = #nets
2 threadID = threadIdx.x; � blockDim.x = 64
3 nst = ndstart[netID]; � start node offset
4 nend = ndstart[netID+ 1]; � end node offset
5 est = estart[netID]; � start edge offset
6 eend = estart[netID+ 1]; � end edge offset
7 dis[nst + roots[netID]] = 0;
8 for d = 0, 1, 2,. . . , (nend − nst) do
9 for i = est + threadID to eend step blockDim.x do

10 (a, b) = edgelist[i];
11 if dis[a] == d and dis[b] >d + 1 then
12 dis[b] = d + 1;
13 atomicAdd(cnts[d], 1);
14 end
15 else if dis[b] == d and dis[a] >d + 1 then
16 dis[a] = d + 1;
17 atomicAdd(cnts[d], 1);
18 end
19 end
20 __syncthreads();
21 break when cnts[d] == 0;
22 end
23 countingSort(dis, cnts, order, threadID);

tree nodes forwardly or backwardly via the ordered sequence,
according to the DP update directions.

Algorithm 1 is our algorithm for GPU-accelerated RC tree
flattening. It computes the node BFS order of one net using an
input edge list in two stages: 1) computing distances to root
for each node and 2) sorting nodes by their root distances. The
time complexity of the first step is O(n2), where n denotes the
net size. Because of the limited net size (usually less than a
few hundred), such an O(n2) algorithm is efficient enough and
can be even better parallelized on GPU due to its simplicity.
A block of 64 threads is launched for each net to process its
edge list. The edge list would be traversed multiple times to
compute the order. In each iteration (lines 9–19), we obtain
a new batch of nodes with the same root distance. Finally,
we sort all nodes by their root distance using a GPU parallel
counting sort with O(n) time complexity.

Based on the computed BFS order, the pseudocode for
our RC computation GPU kernel is shown in Algorithm 2.
We launch one kernel thread for each unique combination
of Early/Late, Rise/Fall, net index, and corner index in a
corner batch. The details of multicorner parallelism are intro-
duced later in Section III-E. First, the netID and condID are
computed on lines 1–4. We compute the net data offsets in
parameter arrays on lines 5 and 6 and fill the output arrays with
initial zero values on lines 7 and 8. After the initialization, we
traverse and calculate the RC parameters load (lines 9–12),

Algorithm 2: Compute RC Delay for Corner Batches
Input: N as #nets, M as #nodes in all nets, BC as the batch

size of multi-corner settings
Input: st[0..N], the offsets of each net in arrays of nodes
Input: parent[0..M − 1], the index of parent of every nodes
Input: resp[0..M − 1], the resistance between nodes and their

parent
Input: cap[0..4M − 1][BC], the capacitance of nodes, each in 4

different combinations
Output: load[0..4M − 1][BC], delay[0..4M − 1][BC],

impulse[0..4M − 1][BC]: arrays of results of load,
delay and impulse, respectively

1 net = blockIdx.x × blockDim.x + threadIdx.x;
2 cond = threadIdx.y;
3 corner = threadIdx.z;
4 if net ≥ N then return;
5 offsetL = st[net]; � node offset start
6 offsetR = st[net + 1]; � node offset end
7 Initialize load, delay, ldelay to zero;
8 Initialize β = 0 as an auxiliary array;
9 for j = offsetR− 1 down to offsetL do

10 load[4j+ cond][corner] += cap[4j+ cond][corner];
11 load[4parent[j]+ cond][corner] +=

load[4j+ cond][corner];
12 end
13 for j = offsetL+ 1 to offsetR− 1 do
14 t = load[4j+ cond][corner]× resp[j];
15 delay[4j+ cond][corner] =

delay[4parent[j]+ cond][corner]+ t;
16 end
17 for j = offsetR− 1 down to offsetL do
18 ldelay[4j+ cond][corner] +=

cap[4j+ cond][corner]× delay[4j+ cond][corner];
19 ldelay[4parent[j]+ cond][corner] +=

load[4j+ cond][corner];
20 end
21 for j = offsetL+ 1 to offsetR− 1 do
22 t′ = ldelay[4j+ cond][corner]× resp[j][corner];
23 β[4j+ cond][corner] = β[4parent[j]+ cond][corner]+ t′;
24 impulse[4j+ cond][corner] =

2β[4j+ cond][corner]− delay[4j+ cond][corner]2;
25 end

delay (lines 13–16), ldelay (lines 17–20), beta and impulse
(lines 21–25).

Our algorithm works on our optimized RC tree data struc-
ture on GPU memory, where we store parent indices in the
parent array for all RC tree nodes [Fig. 5(b)]. This concise
representation of parent–child relations on GPU ensures a bal-
anced workload during different DP update passes. We take
the recursive equation of load as an example

loadu = capu +
∑

v∈{children of u}
loadv (4)

as also illustrated in Fig. 6(a). Because we only keep parent
indices instead of a large adjacency list, we cannot enumerate
all children of the node u and compute the sum as the equation
requires. Instead, we equivalently regard the loadu as running
sums. Algorithm 2 amend the running sum at u on all children
of u (line 11), progressively arriving at the final result. Because
the children of u appear after u in the BFS order, and because
we scan the BFS order from backward, we would already
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(a) (b)

Fig. 6. Two different DP directions. (a) Upward recursive update, where
the value of children needs to be computed before the value of parents.
(b) Downward recursive update, where the parent values are computed before
children.

(a)

(b)

(c)

Fig. 7. Memory arrangement for Early/Late and Rise/Fall cases.
(a) Independent access. (b) Interleaved access. (c) Interleaved access with
multicorner optimization.

have processed all children of u before encountering u in the
sequence.

Another example is the recursive equation of delay, which
has a different direction

delayv = delayu + presv × loadv (5)

as shown in Fig. 6(b). Here, u denotes the parent of v. This
equation is straightforward to implement using our array of
parent indices and a forward BFS order scan (lines 14 and 15).
The updates of ldelay and beta share similar patterns with load
and delay and can be done analogously.

The bottleneck of RC computation is irregular global
memory access with a large number of nets and independent
analysis combinations. To address this, we design a data struc-
ture that is friendly for global memory access. We optimize
memory bandwidth usage by interleaving the memory for the 4
Early/Late Rise/Fall combinations, instead of arranging them
separately [Fig. 7(a) and (b)]. For multicorner analysis, we
interleave different corners by assigning the corner dimen-
sion as the innermost array indices. This creates more memory
coalescing capability as shown in Fig. 7(c). This arrangement

Algorithm 3: Levelization
Input: nodes, the set of graph nodes
Data: the current in-degree in and the adjacency list out
Output: a node level list

1 F← {f ∈ nodes : inf = 0};
2 while F is not empty do
3 output F;
4 F′ ← {};
5 Call advanceFrontiers on F and get F′;
6 F← F′;
7 end
8 Kernel Function advanceFrontier:

Input: the old frontier F
Data: the adjacency list out, in-degree array in
Output: the new frontier F′

9 nodeID← blockIdx.x × blockDim.x + threadIdx.x;
10 if nodeID ≥ size(F) then return;
11 for v in out[nodeID] do
12 oldvalue← atomicAdd(in[v], -1);
13 if oldvalue = 1 then
14 Add v to F′;
15 end
16 end
17 return G;

ensures that adjacent 4 threads emit adjacent memory requests,
which corresponds to the index equation 4i+ cond for the ith
node and the condth combination in Algorithm 2.

B. Levelization

Levelization is an STA step that constructs level-by-level
task dependencies for timing propagation tasks [3]. It takes up
nearly 40% of the full timing runtime (shown in Fig. 2). The
inefficiency is caused by its single-threaded nature. Existing
STA engines, including commercial tools like [11], perform a
single-threaded DFS or BFS on the circuit logic to construct a
level list and guide the parallelization of node tasks. This data
structure is very time-consuming to maintain. As a result, we
present a levelization algorithm with GPU acceleration.

Algorithm 3 shows our GPU-accelerated levelization pro-
cess. Our key idea is to keep a node set F at the cur-
rent level, called frontiers. Nodes that have no input edges
(i.e., circuit primary input pins) become the initial frontiers
(line 1). The algorithm repeats through lines 3–6 until we
have processed all nodes. On each iteration, a GPU kernel
advanceFrontiers is invoked to find the next frontiers
based on current ones in parallel.

The advanceFrontiers procedure accepts a list of cur-
rent frontiers and launches one thread to process a single
frontier. The output edges of frontiers (lines 11–16) are enu-
merated. We decrement the in-degree of a node v by one for
each output edge pointing to it. We push v to the next set of
frontiers once its in-degree drops to zero after a decrement.

In this algorithm, the edge explorations of different frontiers
are performed simultaneously, while the output edges from one
frontier are processed one by one. The workload among GPU
threads is proportional to the out-degree of nodes, which can
be very imbalanced. We have adopted a reverse technique to
tackle this problem by observing that the in-degrees of nodes
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Fig. 8. Resulting level list for the circuit graph in Fig. 1, as well as the
levelization process on GPU. Node names in bold indicate frontiers at the
current iteration.

are generally smaller and much more balanced. For example,
in netcard [18] with 1.5M of gates, the maximum out-degree
and in-degree are 260 and 8, respectively. We reverse the edge
directions before running the levelization on the graph, which
gives higher parallelism during the edge exploration. After
the levelization, we can retrieve the level orders of the origi-
nal graph by reversing back the level orders, as illustrated in
Fig. 8. The level list of large designs typically gives thousands
of independent node tasks in each level, leading to enough
parallelism for propagation.

C. Timing Propagation and LUT

According to the runtime decomposition in Fig. 2, the tim-
ing propagation step is efficient on CPU because of the
small LUT size. Despite this, we managed to obtain a mod-
est speed-up, especially for million-gate circuit designs, by
migrating it to GPU. In the NLDM model, the delay and
slew for cell arcs are modeled by a piecewise linear 2-D
function with input slew and output capacitance as its inputs.
This function is characterized by around 7× 7 sample points
obtained from circuit simulations and queried by bilinear
interpolation.

We present our GPU-accelerated LUT table lookup algo-
rithm in Algorithm 4. We calculate 2-D bilinear interpola-
tions using three 1-D linear interpolations of sample points
(lines 18–20). Given a single x, each 1-D linear interpola-
tion finds the y of a piecewise linear polyline at x. When the
given x exceeds the range of sample points, an extrapolation is
performed instead of interpolation, which introduces a branch
divergence on GPUs. To this end, we generalize the process
to cover both extrapolation and interpolation under the same
code, as illustrated in Fig. 9. The idea is to locate the line
segment (or half-line) where x locates and then use a unified
equation to solve y. We deal with the cases where LUT degen-
erated to a row, a column, or a single value, by setting i′ = i in
these cases. A linear search is performed to find these indices
because of the small size of LUTs.

Algorithm 4: Multicorner LUT Interpolation

/* Input: line (x1, y1)--(x2, y2) */
/* Input: the x value queried */

1 Function interpolate(x1, x2, y1, y2, x):
2 if x1 = x2 then return y1;
3 else return d1 + (d2 − d1)

x−x1
x2−x1

;
4 end
/* Input: n× m look-up table with corner

batch BC */
/* Input: the point queried (x, y) and the

corner index corner */
5 Function lut_lookup(n, m, X, Y, mat, x, y, corner):
6 i′ ← 0;
7 i← min(1, n− 1);
8 while i+ 1 < n and X[i] ≤ x do
9 i′ ← i;

10 i← i+ 1;
11 end
12 j′ ← 0;
13 j← min(1, m− 1);
14 while j+ 1 < m and Y[j] ≤ y do
15 j′ ← j;
16 j← j+ 1;
17 end
18 ri′ ←interpolate(Y[j′], Y[j], mat[i′, j′][corner],

mat[i′, j][corner]);
19 ri ←interpolate(Y[j′], Y[j], mat[i, j′][corner],

mat[i, j][corner]);
20 r←interpolate(X[i′], X[i], ri′ , ri);
21 return r;
22 end

Fig. 9. Example of 1-D LUT query. This 1-D LUT is essentially a piecewise
linear function with three segments s1, s2, and s3. There are two queries
q1 (that hits s1) and q2 (that hits s3). We get the result by evaluating the
queried x-value on the specific segment, regardless of interpolation (like q2)

or extrapolation (like q1).

D. Device-to-Device Data Bridge Between STA Steps

During the STA process, consecutive STA steps need to
exchange intermediate timing analysis data. For example,
the RC delay step computes net delay, capacitive load, and
impulse, which are used in propagation to compute the signal
AT. However, such communication is difficult to handle due to
the data-structural difference between flattened RC trees and
levelized arc tables. In STA engines like OpenTimer [3], a
CPU is used to “translate” the timing data between different
structures. In the multicorner case, this is no longer scalable
due to the data size proportional to the number of corners.

To solve the above problem, we present Algorithm 5 as
our device-to-device data transfer algorithm that bridges the
gap between RC delay computation and timing forward prop-
agation. The algorithm makes use of both CPU and GPU.
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Algorithm 5: Device-to-Device Data Transfer
/* CPU code */

1 arcid2flatpos← [];
2 for every net i do
3 r← driver pin of net i;
4 L, R← the range of net i’s flattened RC storage;
5 for every sink pin p in net i do
6 t← the index of arc r→ p;
7 t′ ← the position of p in [L, R];
8 arcid2flatpos[t]← t′;
9 end

10 end
11 copy arcid2flatpos to GPU;

/* GPU code */
12 delay, impulse← the GPU RC delay/impulse array;
13 arcdelay, arcimpulse← the GPU flattened arc table;
14 arcid← blockIdx.x × blockDim.x + threadIdx.x;
15 elrf ← threadIdx.y;
16 corner← threadIdx.z;
17 arcdelay[arcid, elrf , corner]← delay[arcid2flatpos[arcid],

elrf , corner];
18 arcimpulse[arcid, elrf , corner]← impulse[arcid2flatpos[arcid],

elrf , corner];

On CPU, the algorithm preprocesses a mapping of memory
offsets between flattened RC trees and the flattened arc table
(lines 1–10). The mapping itself is small in size because it is
set up only once for every single net arc, regardless of the
number of corners and signal rise/fall conditions. After the
mapping is ready, the algorithm copies it to GPU (line 11),
where it is used to move groups of timing data to their destined
locations (lines 12–18).

E. Multicorner GPU Parallelization

For each PVT condition under multicorner STA, the STA
engine computes the circuit delay and slack using a unique cell
library with its own set of pin loads and LUTs. Parallelization
between corners can exceed tens or even hundreds, with the
following properties.

1) While pin loads and LUTs are remodeled, the cir-
cuit topology remains unchanged across different cor-
ners. The topology-related computation (including RC
tree flattening in Section III-A and levelization in
Section III-B) can thus be cached and reused.

2) The computation across different corners have similar
patterns and almost no branch divergence. This leads
to efficient GPU-friendly single-instruction–multiple-
thread (SIMT) behavior.

Fully utilizing these properties, we develop a GPU-
accelerated multicorner STA flow. Storing all intermediate
results for hundreds of corners is impractical on the limited
GPU memory. Moreover, the thread block size proportional
to the number of concurrent corners poses inefficient restric-
tions on GPU thread block scheduling. As such, we split the
PVT corners into equal-sized batches with BC corners each,
and compute the batches iteratively. In order to maximize
data parallelism and SIMT performance, we put the corner
iteration into the most inner loop, i.e., the last index of the
3-D CUDA thread group. Meanwhile, we also arrange the

Fig. 10. Runtime breakdown of the circuit leon2 (21M nodes).

memory structure similar to Fig. 7 so that memory requests
from consecutive corners are interleaved and thus coalesced.

IV. EXPERIMENTAL RESULTS

We implemented our GPU-accelerated STA algorithm on
top of OpenTimer [3] and evaluated the results using TAU15
contest benchmarks [18]. We resynthesized all the bench-
mark netlists under an industrial 14-nm technology. This gives
realistic multicorner cell libraries under different operating
conditions. We do not compare with commercial tools (e.g.,
PrimeTime and OpenSTA) because they do not support GPU.
Also, such a comparison may not be fair because of dif-
ferent application scopes. All experiments are undertaken on
an Ubuntu Linux machine with 40 CPU cores at 2.10 GHz,
512-GB RAM, and 1 Nvidia A40 GPU. We configured the
kernel execution with about 128 threads per block for all GPU
kernels. Our algorithms are implemented using the parallel
task programming framework, Taskflow [5], [27] to schedule
CPU–GPU dependent tasks. We measured the end-to-end STA
runtime including both GPU kernels and memory preparation
operations.

A. Single-Corner Full Timing

Table I lists the benchmark statistics and the over-
all performance comparison between our approach and
OpenTimer. We measure the runtime to complete one iteration
of full-timing update on 15 benchmarks. The netlists of these
benchmarks were used in TAU15 Contest to evaluate contes-
tants’ entries at a large scale. The gates of these netlists are
remapped to a new cell library under 14-nm technology. We
ran both OpenTimer and our algorithm using the maximum
hardware concurrency of 16 CPUs and 1 GPU on our plat-
form. Our runtime is faster than OpenTimer across all but the
smallest benchmarks. The three largest speed-up values we
observed are 4.05× on netcard (1.5M gates), 4.07× on leon2
(1.6M gates), and 3.51× on leon3mp (1.2M gates). The speed-
up values become remarkable at large designs when generated
STA graphs contain tens of millions of nodes and edges.

Fig. 10 shows the runtime breakdown of OpenTimer and
our algorithm for notable items (>1000 ms) on the largest
benchmark, leon2. OpenTimer spends 9742 ms to sort out the
pin dependency, due to its unavoidable overhead on additional
data structures and sequential nature. In our implementation,
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TABLE I
PERFORMANCE COMPARISON BETWEEN OPENTIMER (16 CPUS) AND OUR GPU-ACCELERATED IMPLEMENTATION (1 GPU) TO COMPLETE ONE

ITERATION OF FULL TIMING ON LARGE DESIGNS (>10K GATES) OF TAU 2015 CONTEST BENCHMARKS UNDER 14-NM TECHNOLOGY

Fig. 11. Runtime values at different numbers of CPUs. Our runtime under
2 CPUs and 1 GPU is faster than OpenTimer of 16–40 CPUs.

we use GPU to levelize the graph and run multiple tasks (e.g.,
update RC timing) in a single batch. We do not need as many
tasks as OpenTimer but a single kernel to establish the topo-
logical dependency, which leads to just 2157-ms runtime. We
observe a large amount of runtime reduction from updating
RC timing. It takes 11 066 ms for OpenTimer to finish RC
timing whereas we reach the goal by 7.16× faster. Our run-
time for updating the graph timing is a bit faster (1460 ms
versus 2433 ms), due to our GPU-based LUT interpolation.

Fig. 11 draws the runtime scalability versus increasing num-
bers of CPUs on the two largest designs, leon2 and netcard.
Increasing the number of CPUs can speed up our overlapped
CPU–GPU tasks with faster data transforms. We observe both
methods scale up to 10 CPUs. Regardless of CPU numbers,
our runtime is always faster than OpenTimer, and there exists
a remarkable gap. The largest speed-up occurs at 40 CPUs,
where ours is faster than OpenTimer by 4.81× on leon2. These
results clearly demonstrate the strength of our approach that
unleashes the computing power of GPUs beyond the limitation
of CPU-based parallelism.

B. Single-Corner Incremental Timing

The success of GPU acceleration relies on a large enough
data size and computation, which is abundant in the case of

Fig. 12. Runtime values at different problem sizes. Beyond about 60K
propagation candidates, our runtime is always faster than OpenTimer at any
CPU numbers.

full timing updates on STA graph. During incremental timing,
computation varies and may scope to a small local region
or the entire timing landscape. Pins in this region are called
propagation candidates which are the union of fan-in and fan-
out cones spanned by frontier pins in incremental timing [3].
Considering the distinct performance characteristics between
CPU and GPU, the most effective approach to incremental
timing is a mixed strategy. When the number of propagation
candidates is large, we use GPU; or we fall back to the exist-
ing CPU version of OpenTimer when propagation candidates
are scarce.

Figs. 12–14 compare runtime at different sizes of problem
candidates, nets, and gates, respectively, between our GPU
algorithm and OpenTimer under different CPU concurrency.
For problem size smaller than 10K, we run slower than
OpenTimer but the runtime difference is negligible (< 80 ms).
Beyond the threshold of 67K propagation candidates, our run-
time is always faster than OpenTimer. The performance margin
becomes bigger as we increase the problem size. In terms
of the number of nets, the threshold is about 40K nets. We
observe little benefit at small net counts due to the data and
kernel overheads, but we are consistently faster at larger net
counts. The threshold of gate numbers is roughly 45K, which
corresponds to 360K LUTs. As LUT interpolation is less

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 14,2024 at 19:24:42 UTC from IEEE Xplore.  Restrictions apply. 



4982 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

TABLE II
PERFORMANCE COMPARISON BETWEEN OUR SINGLE-CORNER STA ENGINE [28] AND OUR MULTICORNER STA ENGINE UNDER DIFFERENT

MULTICORNER BATCH SIZE BC = 2, 4, 8, 12, 16 TO COMPLETE A 128-CORNER TIMING ANALYSIS ON GIVEN DESIGNS

Fig. 13. Runtime values at different net counts. Beyond about 40K nets, our
GPU-accelerated RC computation is always faster than OpenTimer, regardless
of CPU numbers.

Fig. 14. Runtime values at different numbers of gates (∼LUT numbers).
Beyond about 45K gates, our GPU-accelerated LUT interpolation becomes
faster than OpenTimer.

data- and compute-intensive than other tasks, the performance
margin is expected to become closer with increasing number
of CPUs. To sum up, the performance benefits of our GPU-
accelerated STA algorithm are remarkable when applications
define large numbers of propagation candidates, for example,
timing-driven placement and routing [29], [30].

C. Multicorner Analysis

In this section, we present our results on multicorner
STA acceleration. Our industrial 14-nm technology includes

Fig. 15. Runtime values at different corner batch sizes (BC) for analyzing
128 corners. The data point at BC = 1 comes from our GPU-accelerated
single-corner STA engine, which is our conference version [28]. Other data
points are collected using our multicorner STA engine.

a diverse range of cell libraries under voltages ranging in
[0.66, 0.99], temperatures ranging in [−40c, 125c], and three
different process corners (ff, ss, and tt). We choose 128 cor-
ners from all available libraries for testing. Table II shows a
detailed runtime comparison between our single-corner and
multicorner analysis, with multicorner batch size set to BC =
2, 4, 8, 12, and 16. Despite both running on GPU, our multi-
corner algorithm outperforms our original single-corner algo-
rithm by a large amount. On large designs like leon2, leon3mp,
and netcard, we can achieve 3.85×–3.90× speed-up by com-
puting 4 corners in parallel, compared to computing corners
one by one. A larger batch size gives better performance.
By computing 16 corners in parallel, the speed-up on leon2,
leon3mp, and netcard is enlarged to 5.66×–6.34×. These
results have proven the efficiency of our GPU-accelerated mul-
ticorner STA algorithm on exploring data parallelism across
corners.

Fig. 15 visualizes the runtime with respect to BC on the
two largest designs, leon2 and netcard. With our multicorner
acceleration techniques, a drastic speed-up can be obtained
compared to the state-of-the-art GPU-accelerated single-corner
STA engine (BC = 1 in Fig. 15). A larger batch size leads to
a better performance, which saturates at around BC = 16.
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Note that regarding data parallelism, a batch size of 16
already fulfills the half-warp SIMT dispatching scheme of
the current CUDA architecture and can eliminate branch
divergence completely.

Note that when compared with the original CPU-based
OpenTimer, a speed-up ratio in Table II should be multi-
plied with the GPU acceleration speed-up in Table I, which is
itself 3.51×–4.07×. This yields an overall speed-up of 22.14×
–25.67× compared to running OpenTimer repeatedly for all
corners. We also note that the speed-up ratio is larger for
smaller designs. For example, on cordic_ispd, des_perf_ispd,
and tip_master, the multicorner speed-up ratio is more than
8×. Such counterintuitive results may come from their smaller
memory footprint, due to our extensive GPU memory usage
proportional to the batch size BC used.

V. CONCLUSION

In this article, we have presented a new GPU-accelerated
STA algorithm to go beyond the scalability of existing meth-
ods. We have developed GPU-efficient data structures and
algorithms to speed up essential tasks, including leveliza-
tion, delay computation, and timing propagation in updat-
ing an STA graph. We have leveraged task parallelism to
describe dependent CPU–GPU tasks such that data process-
ing and kernel computation are efficiently overlapped. We
have scaled our GPU acceleration to the analysis of multiple
PVT corners, which yields further runtime improvements.
Compared to the state-of-the-art STA engine, OpenTimer,
we achieved up to 4.07× speed-up on a large design
of 1.6M gates and 1.6M nets using 1 GPU. By com-
puting 16 corners in parallel, we achieved another 5.66×
speed-up.

Our future work includes developing GPU-accelerated algo-
rithms for different delay calculators, including current source
cell delay models and reduced-order wire delay models.
We also plan to incorporate GPU task parallelism using
CUDA graph feature [31] to reduce the overhead of CUDA
streams and enable multiple GPUs acceleration for other time-
consuming STA tasks (e.g., path-based analysis [32], [33]).
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