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Abstract—As a key routine in static timing analysis (STA),
path-based analysis (PBA) plays a very important role in refin-
ing the critical path report by reducing excessive slack pessimism.
PBA is also well known for its long execution time, which
makes it a hot topic for parallel computing in the STA com-
munity. However, nearly all of the parallel PBA algorithms are
restricted to CPU architectures, which greatly limits their scal-
ability. To achieve a new performance milestone on PBA, we
must leverage the high throughput computing in the graphics
processing unit (GPU). Therefore, in this work, we propose a
new GPU-accelerated PBA framework which contains compact
data structures and highly efficient kernels. By integrating with
GPU-accelerated preprocessing steps, our framework can also
effectively handle extensive critical path constraints. Besides,
we highlight many optimization techniques that can overcome
the execution bottleneck and further boost the performance.
In experiments, we demonstrate 543× speed-up compared to
the state-of-the-art PBA algorithm on the design with 1.6 mil-
lion gates, which outperforms 25×–45× over the state-of-the-art
parallel PBA algorithm on 40 CPU cores. A fully optimized
framework can achieve 3×–5× speed-up on top of that.

Index Terms—Graphics processing unit (GPU) acceleration,
static timing analysis (STA).

I. INTRODUCTION

PATH-BASED analysis (PBA) is a common practice to
remove path slack pessimism and obtain accurate timing

report in the static timing analysis (STA) tool [1]. Besides
the high accuracy, PBA is well-known for its high runtime
complexity, typically 10-1000× greater than the complexity of
graph-based analysis (GBA) [2]. Due to this high complexity,
PBA is very daunting to designers at the early stage of the
design closure flow, even though designers appreciate PBA’s
accuracy benefit.
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Fig. 1. Computational tradeoff between runtime and pessimism reduction
on path-based timing analysis.

We use Fig. 1 to illustrate the progress made by the timing
literature and we want to highlight that the computational chal-
lenges of PBA remain unsolved with CPU parallelism. Current
multicore CPU parallelism cannot provide groundbreaking
performance improvement to PBA in the STA engines. A
transformational performance milestone can only be achieved
with the power of heterogeneous parallelism or CPU-graphics
processing unit (GPU) hybrid computing. Nevertheless, it is
extremely challenging to offload the PBA process on GPU
for the following three reasons. First, PBA is graph-oriented
and contains highly irregular computational patterns. We need
to identify and dispatch the computation-intensive workload to
CPU and throughput-intensive workload to GPU. Second, path
generation process is highly dynamic, which requires specially
designed GPU kernels to generate critical paths and maintain
relative path priorities. Finally, to generate million of paths
on million-gate designs, we need efficient and compact data
structures to overcome the hurdle of limited GPU memory.

In this work, we propose a novel framework that suc-
cessfully resolves these challenges and accelerates PBA with
transformational speed. We focus on parallelizing the core pro-
cedure, critical path generation, which takes the majority of
the PBA execution time [1]. Specifically, in this procedure,
we identify a set of critical paths from an updated STA graph
and rank them in decreasing slack values. PBA algorithms or
frameworks can then perform path-specific update on this path
set. Our key contributions are listed as follows.

1) GPU-Accelerated Path Search Algorithm: We propose a
new iterative path search algorithm that maximize the
GPU computation throughput in each iteration. Before
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the iteration begins, we leverage thousands of GPU
threads to construct a forest that roots at circuit data-
path endpoints and unifies all path suffix informations.
In the main path search iteration, different GPU threads
are dispatched to alternate different critical path prefixes
from the previous iteration.

2) GPU-Efficient Data Structures: To efficiently utilize the
GPU memory, we maintain all explored critical paths
in a dense array structure. We leverage the implicit
path representation that saves each critical path in con-
stant memory complexity. Besides, we regularly verify
the number of explored path candidates and remove
path candidates with low priority. In this way, we also
improve the overall memory usage during the entire path
search process.

3) Scalable to Large Numbers of Critical Paths: We orga-
nize the search process such that there are no shared
memory conflicts between different GPU threads. The
path exploration workload is determined by the path
prefix. By dispatching GPU threads to different com-
bination of path prefixes, our critical path generation
process can scale to millions of paths.

4) Extensive Path Constraint Handling: Our path search
algorithm can efficiently support filter kernels to remove
unwanted paths that do not satisfy the given path con-
straints. We construct a special ranking array and a
scanning array to label regions in the constrained sub-
graph. These two arrays act as efficient filters and
maintain high data throughput for our iterative path
exploration algorithm.

An industrial standard timer [3] provides us the golden ref-
erence on real circuit designs to run our evaluations. We verify
our timing report matches the golden reference. We use state-
of-the-art path generation algorithm [4], [5] as baseline. In our
experiments, we achieve up to 543× speed-up over the base-
line. At the extreme case, we achieve 25×–45× faster than
the baseline running on 40 CPU cores. We also prove our
framework can handle extensive path constraints. We randomly
select common pin sequences in full timing report and choose
them as path constraints. Our algorithm can generate criti-
cal paths that fully satisfy the path constraints. Additionally,
we provide several fine-grained optimizations that can further
improve the performance of our framework. We believe our
framework can help designers to incorporate PBA earlier in the
design flow. By adopting our framework, STA engines could
improve quality of results (QoR) with reasonable turnaround
time.

II. PATH-BASED TIMING ANALYSIS

PBA plays a very pivotal role in STA [1]. Its goal is to
remove excessive slack pessimism introduced from GBA. In
STA, GBA is usually performed first to propagate the timing
information across the STA graph. These timing information
include slew, delay, required arrival time, and arrival time.
Since these timing values are propagated under the worst-
case scenario (i.e., early or late mode) [1], identified critical
paths often have very pessimistic slack values. Therefore,

Fig. 2. Example of pessimism reduction on critical paths [4].

STA requires PBA to make path-specific updates and remove
unwanted pessimism. For example, common path pessimism
removal (CPPR) and advanced on-chip variation (AOCV) are
both common PBA workloads to achieve this objective [4].
Fig. 2 illustrates an example that PBA can reduce the abso-
lute slack values by half with pessimism reduction on critical
paths reported by GBA. For all the PBA workloads, one core
routine is to generate a set of critical paths for reanalysis.
This routine is very time consuming and may take hours to
complete because the STA engine needs to search for critical
paths from an exponential number of path candidates. Thus,
the designers have emphasized that EDA vendors should seek
out new parallel paradigms to boost the runtime performance
of the PBA workloads [6].

III. RELATED WORKS

To alleviate the time-consuming PBA workload, there are
various existing works [4], [5], [7], [8], [9], [10], [11],
[12], [13] that seek improvement. However, their improve-
ments are rather limited and all of them stay in the scope of
CPU parallelism. For example, the state-of-the-art PBA algo-
rithm [4], [7] proposes task-based parallelism to address the
workload dependency in the STA graph, but its performance
improvement stagnates at 16 cores. The PBA workload
becomes more dynamic and complicated if the path con-
straints are considered. Works [14] and [15] improve PBA
considering path constraints on CPU architectures, but their
algorithms are mostly sequential and lack parallelization bene-
fits. Recently, Guo et al. [16] proposed a new GPU-accelerated
PBA algorithm that leverages GPU’s high throughput com-
putation and boosts PBA to a new performance milestone.
Additionally, Guo et al. [17] also proposed GPU-friendly pre-
processing kernels to address the path constraint handling.
Both works greatly accelerate the process to explore criti-
cal paths, because exploring an exponential number of paths
can be highly throughput driven. GPU is built for throughput-
driven applications. It has many lightweight threads to com-
pute data vectors at one time. Multiple GPU threads can work
together to compute a block of data in a single or the same
instruction. However, since both works choose to mange the
critical path priority on the CPU, this workload becomes the
major bottleneck of the entire PBA application. To overcome
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Fig. 3. Overview of core GPU-accelerated PBA algorithm.

this bottleneck, we propose a new framework that maintains
the high path exploration throughput and manage priorities
completely on GPU. Compared to the previous works, our
framework completes the entire path generation process on
GPU that greatly reduces the execution and communication
cost on CPU.

IV. PROPOSED GPU-ACCELERATED PBA

The flow diagram of our core GPU-accelerated PBA algo-
rithm is shown in Fig. 3. We use an iterative approach to
explore the critical path candidates. Before the main iteration
begins, we unify all the path suffix information of an updated
STA graph in a suffix forest. The suffix forest is essen-
tially a shortest path forest where its roots are flip-flop inputs
and primary outputs. In the main iteration, we explore new
paths by alternating path prefixes with edges not belonging to
the suffix forest. We denote these edges as deviation edges.
We organize critical paths in levels which is equal to the
number of deviation edges in the path. We increment the
level for each iteration. One iteration is composed of three
steps: 1) look-ahead level allocation; 2) interlevel expansion;
and 3) intralevel compression. Details of each step can be
referred to later sections. We can stop the iteration either
when we reach the maximum level or we have sufficient crit-
ical paths for an accurate report. In the end, we will perform
path recovery to generate full path trace from our implicit
representation.

A. STA Graph Structure on GPU

In most STA engines, the circuit graph is modeled as a
directed acyclic graph (DAG). A pin and transition combina-
tion is modeled as a vertex. A pin-to-pin connection is modeled
as an edge. To make the STA graph as compact as possible,
we choose the compressed sparse row (CSR) graph represen-
tation. CSR is commonly used as a condensed graph format
in GPU applications [18]. It contains three linear arrays which
hold information for vertex offsets, edge destinations, and edge
weights, respectively. Given a directed graph with N vertices

(a)

(b)

Fig. 4. Shortest path forest generation on GPU. (a) STA graph. (b) Shortest
path forest.

and M edges, its CSR format requires N+2M memory. Since
we need to store both the fan-in STA graph G− and fan-out
STA graph G+ in CSR, the total memory requirement for two
directed STA graphs is 2N + 4M.

B. Suffix Forest Construction

Before we alternate path prefix for each critical path, we
hold all the path suffix information in a compact data struc-
ture, suffix forest or shortest path forest. The path prefix-suffix
representation has been explored in previous works [4], [5].
But instead of summarizing path suffix from all datapath
endpoints, an independent shortest path tree at each end-
point is constructed regardless of overlapped regions between
trees. These overlapped regions will lead to redundant tree
construction, which implies high runtime and memory cost.
Instead, we unify all shortest path trees into a forest that
includes a predecessor array forest[N] and a distance array
distances[N]. Our forest does not duplicate any vertex,
which eliminates redundant construction at the same vertex.
We illustrate our shortest path forest [Fig. 4(b)] in Fig. 4 given
the STA graph [Fig. 4(a)]. We can observe three shortest path
trees rooted at vertices J, K, and L. Their union forms the
shortest path forest. We do not fully grow trees rooted at J
and L to the start, because we have the tree K with smaller
cumulative distances at the overlapped vertices. We can stop
growing tree from root J at vertex D and stop growing tree
from root L at vertex I. With this simple example, we can
already demonstrate that our shortest path forest is much more
compact and computation-efficient, because we save the effort
to traverse the shared logic for different endpoints.

Moreover, we can utilize high GPU throughput to con-
struct our shortest path forest. Our GPU kernels are inspired
by the GPU-accelerated single-source shortest path algorithm
[19], [20]. In our kernel, all datapath endpoints are marked
as roots or destinations. We initialize these destinations with
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Algorithm 1: Distance Propagation Kernel

Input : fan-in STA graph G− in CSR with N vertices and
M edges: vertices[N], edges[M], weights[M]

Input : Distance buffer, distanceBuffer[N]
Input : Bitmap for recently updated vertices, bitmap[N]
Result: Distances array, distances[N]

1 threadid ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 if threadid ≥ N then
3 return;
4 end
5 if distanceBuffer[threadid] is false then
6 return;
7 end
8 bitmap[threadid] ← false;
9 edgeFront ← vertices[threadid];

10 edgeBack ← (threadid == N-1) ? M : vertices[threadid+1];
11 for edgeid ← edgeFront to edgeBack do
12 n ← edges[edgeid];
13 weight ← weights[edgeid];
14 newD ← distances[threadid] + weight;
15 atomicMin (&distanceBuffer[n], newD);
16 end
17 return;

required arrival time. Then we propagate the shortest distances
in parallel until distances converge. Algorithm 1 shows one
step of concurrent propagation. We first assigns each thread
a vertex (lines 1 and 2). If the assigned vertex has received
a recent update (line 5), we propagate new distances to
adjacent neighbors (line 15). We finalize the distance array
distances[N] if no entry in the array can be relaxed.
After all shortest distances converge by running Algorithm 1,
we launch another kernel that traces back edges which con-
tribute to the shortest distance array. We recover these edges
in the predecessor array forest[N]. In this way, we can
quickly construct the shortest path forest because the GPU
kernel updates thousands of vertices concurrently at each
iteration and we launch another one-time kernel to recover
the predecessor edges.

C. Look-Ahead Level Allocation

Before exploring new path candidates, sufficient memory
should be allocated beforehand. Besides, the address of the
children paths can be assigned to avoid memory collision in
the later expansion step. Therefore, in this step, we compute
the children path number that each parent path can expand to
and perform a prefix sum computation. The result of the prefix
sum can be used as row offsets for memory writing, because
each path occupies a fixed size of memory. In our framework,
each path is implicitly represented by one deviation edge. The
deviation edges are fan-out STA graph edges not contained
in our suffix forest. Since there can be a sequence of devi-
ation edges in a path, we only use the last one to represent
the full path. The path represented by the second last devia-
tion edge is the parent critical path. We organize critical paths
by counting the number of deviation edges in the path. This
number is denoted as level. Paths with the same level are
maintained together in a compact linear array. Therefore, we
can use data fields in Table I to fully represent a critical path.

TABLE I
Deviation Edge DATA FIELDS

Algorithm 2: Children Path Number Computation Kernel

Input : Fan-out STA graph G+ in CSR with N vertices and
M edges, vertices[N], edges[M]

Input : Suffix forest, forest[N]
Input : thisLevel as current level of deviation edges
Input : levelLength as the number of deviation edges in

thisLevel
Result: Compute path numbers originated from current level

1 threadid ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 if threadid ≥ levelLength then
3 return;
4 end
5 v ← thisLevel[threadid].to;
6 /* Get deviation paths count originating

from vertex v in the suffix forest */
7 pathCount ← getPathCount(v, vertices, edges, forest);
8 thisLevel[threadid].childOffset ← pathCount;
9 return;

Besides level and parent that organize our data structures,
we use from and to to keep track of the deviation location,
childOffset to save the memory location of the children
paths, and slack for the path slack value.

Algorithm 2 shows the kernel to compute path count in next
level to prepare for expansion. We first assign each parent
deviation edge in current level with one GPU thread (lines 1
and 5). We use each thread to compute the number of child
deviations (line 7) and save the number in childOffset
(line 8) data field. We then launch prefix-sum kernels to obtain
the correct offset. After the prefix scan, we can find the size
of next level in the last offset value. This size of next level
can be used for dynamic allocation. All the other offset values
represent the memory locations of the children deviation edge.
After prefix scan, we make sure there are zero memory access
conflicts between different parent paths.

D. Interlevel Expansion

In this step, we expand children critical paths by completing
their corresponding deviation edge data fields. An example of
this process is shown in Fig. 5, where we expand our STA
graph in Fig. 4(a) from level 0 to level 1. We use level 0
to denote the set of shortest paths, {PAEHK, PBEHK, PCFK}.
An explicit representation for this path set is {e∅A, e∅B, e∅C},
where we use a leading empty set to represent a virtual edge
connecting to a datapath startpoint.

When we expand a parent path to its children, we pick
up the last vertex deviated by the parent and walk along the
suffix forest. We scan all the deviation edges in this traversal.
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Fig. 5. GPU expansion of the first level.

These deviation edges implicitly represent the children paths.
For example, if we expand parent path e∅B or PBEHK, we pick
up from vertex B and walk through BEHK. Along this way,
we encounter one deviation edge eHG. As shown in Fig. 5,
path eHG or PBEHGJ is the only child path of parent e∅B. This
expansion can run concurrently with other parent paths in the
same level. For each newly expanded child path evu, the slack
of child schild can be computed given the parent’s slack sparent

schild = sparent + distance(u)+ weight(evu)− distance(v).

As shown in Algorithm 3, we integrate the expansion rules
above in our new level expansion kernel. We launch the kernel
and assign each parent deviation edge to a single GPU thread
(line 1). We first locate the child path starting memory location
in the next level by using childOffset (lines 5, 17, and 24).
Then we pick up from the last deviated vertex of the parent
(line 8) and walk along the suffix forest (line 28). We collect all
the deviation edges (line 15) along the way and complete the
information for the children paths (line 17–23). Our kernel can
maximize the throughput for children path exploration, because
the memory writing locations are distinctly separated for differ-
ent parent paths. Therefore, no shared memory synchronization
is needed in our expansion kernel.

E. Intralevel Compression

In each iteration, we expand a new level of critical paths
based on previous critical paths. If we cascade these expan-
sions without any restriction, we will quickly exhaust the GPU
memory in a few iterations, because redundant paths in the
earlier level will certainly generate more redundant children
paths in the later expansion. To address the high memory con-
sumption, we remove redundant critical paths right after each
expansion so that they can no longer generate more children
paths. We can prove the path removal does not impact the
QoRs. Assume a path in the previous level should be removed,
but some descendant path in subsequent levels should be
included in the critical paths. The slack values from parent
to child paths are nondescending, because the child path has
one more deviation edge and each deviation edge adds a non-
negative delay value to the parent slack. Therefore, if some

Algorithm 3: New Level Expansion Kernel

Input : Fan-out STA graph G+ in CSR with N vertices and
M edges, vertices[N], edges[M], weights[M]

Input : Suffix forest, forest[N] as edge array, distances[N]
as distance array

Input : thisLevel as current level of deviation edges
Input : nextLevel as next level of deviation edges
Input : levelLength as the length of current level
Result: Explore children critical path candidates in next level

1 threadid ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 if threadid ≥ levelLength then
3 return;
4 end
5 offset ← (threadid == 0) ? 0:

thisLevel[threadid-1].childOffset;
6 level ← thisLevel[threadid].level;
7 slack ← thisLevel[threadid].slack;
8 v ← thisLevel[threadid].to;
9 while v is not endpoint do

10 edgeFront ← vertices[v];
11 edgeBack ← (v == N-1) ? M : vertices[v+1];
12 for edgeid ← edgeFront to edgeBack do
13 n ← edges[edgeid];
14 weight ← weights[edgeid];
15 if edgeid is deviation edge then
16 /* Fill out child deviation edge

data fields */
17 childPath ← nextLevel[offset];
18 childPath.level ← level+1;
19 childPath.from ← v;
20 childPath.to ← n;
21 childPath.parent ← threadid;
22 childPath.childOffset ← 0;
23 childPath.slack ← slack + distances[n] +

weight - distances[v];
24 offset ← offset + 1;
25 end
26 end
27 /* Traverse along the suffix forest */
28 v = forest[v];
29 end
30 return;

descendant path in subsequent levels should be included in
the critical paths, then all its predecessors should be included,
which contradicts the assumption. Given an STA graph with
vertex number N, edge number M, graph diameter d, and
maximum fanout number f max

out , we expand each new level in
O(df max

out ) times larger size. Immediately after each expansion,
we sort the newly expanded level based on path slacks and
keep only top k candidates, where k represents the final num-
ber of critical paths in the report. Since we can expand no more
than diameter d iterations, the worst total memory complexity
is O(N+M+dkf max

out ). CSR graph format and final path report
requires static memory O(N + M + dk). Dynamic allocation
of new level requires O(dkf max

out ) memory during runtime.

F. Critical Paths Recovery

After the main iteration completes, we need to recover the
full path trace from the implicit deviation edge representation.
The number of iterations to expand is denoted as maximum
deviation level (MDL), we make MDL a tunable parameter
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to users based on different accuracy and runtime needs. To
ensure no loss of accuracy, users can always set MDL as the
graph diameter. As discussed in Section IV-E, slack values
from path to child paths are nondescending. Even with low
MDL value, we also ensure that paths with higher criticality
show up in the report. To obtain the final report, we merge
sorted arrays from all levels and pick k deviation edges with
worst slack values. For each deviation edge in the final report,
we backtrace parent until we reach the root. We collect
the list of prefix edges during backtracing. Then we comple-
ment these prefix edges with suffix edges in the shortest path
forest to recover the explicit path trace. For example, if we
select e∅C → eCE in Fig. 5 in our report, we recover the full
path trace with forest edges in Fig. 4(b) and recover the full
critical path CEHK. Given STA graph diameter d and report
path number k, critical path recovery only requires O(kd) time
complexity, which can run fast enough on CPU. We can also
use GPU to accelerate this process by assigning one thread to
recover one critical path.

V. EXTENSIVE PATH CONSTRAINTS HANDLING

PBA with path constraints is very common in the STA tool,
because optimization flows often invoke PBA repeatedly with
different path constraints to verify correct timing behavior
under certain logic cone. However, the path constraints make
the search process more irregular and dynamic, which is harder
to parallelize. In this section, we explain and demonstrate how
our GPU-accelerated PBA framework can consider extensive
path constraints by adding some key preprocessing steps. Our
framework can support multiple main path constraints, which
are listed as follows.

1) -max_path: The maximum number of critical paths
in the timing report, which is often denoted as k.
Optimization flows can control the number of paths to
examine by setting this number. In this work, we exper-
iment on a larger number of critical paths, compared to
previous works that only test on k < 32 [14], [15].

2) -from: This argument fixes the datapath starting pin or
location. The argument itself can be optional. We can
also pair it with an optional transition (rise or fall).

3) -through: Each occurrence of this argument specifies a
pin that the critical path must pass through. If a list of
this argument is given, then all reported critical paths
must contain the list of pins in the same order.

4) -to: This argument fixes the datapath ending pin or loca-
tion. The argument itself can be optional. We can also
pair it with an optional transition.

Constraints listed above are the most common and important
ones which are used in the STA tools. We also support other
constraint type like -split, which defines the corner (min
or max). We enable our GPU-accelerated PBA framework to
support these extensive constraints effectively by adding key
preprocessing steps that are scalable on GPU. An overview
of these preprocessing steps are shown in Fig. 6. The first
preprocessing step is global ranking, where we assign each
vertex with a rank value based on the vertex’s connectivity.
Then we use the rank values and sequence in path constraints

Fig. 6. Overview of preprocessing steps for path constraints handling.

(a)

(b)

Fig. 7. Global ranking on GPU. (a) STA graph example. (b) Global ranking
results.

to scan the STA graph. Based on scanned results, we label
the constrained subgraph and perform path generation process
under some filtering rules.

A. GPU-Accelerated Ranking

We implement a global ranking strategy to save the connec-
tivity information of the STA graph. We denote the rank value
as the maximum number of edges to reach one of the datapath
endpoints. We allow multiple vertices to share the same rank
values. Our ranking strategy preserves the property of topo-
logical orders. For any two vertices of an edge eu→v ∈ E, their
rank values follow the property rank(u) > rank(v).

Given an STA graph in Fig. 7(a), we rank its vertices and
obtain results in Fig. 7(b). We initialize all endpoints, H, I,
and J, with rank value 0. Then we let rank values propagate
backwards. As an example to this backward propagation, given
vertex F adjacent to the endpoint I, we assign the rank value
as rank(F) = 2, because the longest path to reach one of the
endpoints is F→ E→ H instead of F→ I.

Algorithm 4 shows the rank propagation kernel on GPU. We
launch a 2-D kernel where we assign each thread in the x-axis
as a pin (line 1) and each thread in the y-axis as a transition.
We choose this thread assignment because two transitions of
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Algorithm 4: Rank Propagation Kernel

Input : fan-in STA graph G−in CSR with N vertices M as
edges: vertices[N], edges[M], weights[M]

Input : Previous rank values, ranks[N/2]
Input : Rank buffer, rankBuffer[N/2]
Input : Bitmap for recently updated vertices,

rankUpdated[N/2]
Result: Rank values array, ranks[N/2]

1 pinId ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 riseFall ← threadIdx.y;
3 threadid ← 2*pinId + riseFall;
4 if threadid ≥ N then
5 return;
6 end
7 if rankUpdated[pinId] is false then
8 return;
9 end

10 rankUpdated[pinId] ← false;
11 edgeFront ← vertices[threadid];
12 edgeBack ← (threadid == N-1) ? M : vertices[threadid+1];
13 for edgeid ← edgeFront to edgeBack do
14 neighborPin ← edges[edgeid]/2;
15 newRank ← ranks[pinId] + 1;
16 atomicMax (&rankCache[neighborPin], newRank);
17 end
18 return;

the same pin are stored in adjacent memory locations (line 3),
which can maximize memory coalescing. For all vertices with
recent rank updates (line 7), we propagate their rank values
plus one to their neighbors (lines 15 and 16). All the neighbors
who receive new rank values will validate the update taking the
maximum over its previous rank value. We increase the GPU
throughput by allowing different threads writing into multiple
memory locations. To ensure correctness, we enforce synchro-
nization by using the atomic operations (line 16). In this way,
atomic operations are distributed over different memory loca-
tions. This kernel introduces less thread contention compared
to topological sort which relies on a single shared counter to
distribute the unique value.

B. Constrained Subgraph Scanning

We reuse the ranking results to mark out the constrained
subgraph. We mark vertices with different labels to differen-
tiate the progress of meeting the path constraints. For high
memory efficiency, we use a 1-D array labels[N] for
all the label information. We define the following relation-
ship between label and rank values. For each adjacent pins
u, v in the constraints, the label value of vertex matching
pin v is the rank of pin u. For instance, if -through u
-fall_through v is our path constraints, we define the
following rule labels[2*v+1] = rank[u]. For the first
pin in the sequence of path constraints, we use the maximum
integer as its label.

Given the STA graph in Fig. 7(a) and path constraints
-through C -through E, we obtain the scanning results
in Fig. 8. For simplicity, we consider one pin as one vertex
in the graph. We initialize all labels as zeros first. All the
fanout pins of E (not including) get labels of the rank of last
through pin. As shown in Fig. 8, we assign vertices H and I

Algorithm 5: Subgraph Scanning Kernel

Input : Fan-in STA graph G−in CSR format with N
vertices and M edges, vertices[N], edges[M],
weights[M]

Input : Rank array, ranks[N/2]
Input : Label array, labels[N]
Input : Label buffer, labelBuffer[N]
Input : Bitmap indicating vertices with updated labels,

labelBitmap[N]
Result: Finalized label array, labels[N]

1 threadid ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 pinid ← threadid/2;
3 if threadid ≥ N then
4 return;
5 end
6 if labelBitmap[threadid] is false then
7 return;
8 end
9 prevRank ← labels[threadid];

10 labelBitmap[pinid] ← false;
11 edgeFront ← vertices[threadid];
12 edgeBack ← (threadid == N-1) ? M : vertices[threadid+1];
13 for edgeid ← edgeFront to edgeBack do
14 n ← edges[edgeid];
15 neighborPin ← n/2;
16 if ranks[neighborPin] < prevRank then
17 labelBuffer[n] ← prevRank;
18 end
19 end
20 return;

Fig. 8. Subgraph scanning results.

with labels 1. Similarly, we assign vertices from E up to C (not
including) with labels as rank value of C. All vertices C and
upward get labels INT_MAX. Since vertices G and J are not
contained in the constrained subgraph, their labels remain as 0.

Algorithm 5 outlines our scanning kernel. We propagate
labels to the fan-in neighbors until the rank of the fan-in neigh-
bor is less or equal to the propagated label. We assign each
thread to a vertex in the STA graph (line 1). For the recently
updated vertex (line 5), we propagate the label value to its fan-
in neighbors (line 16). We stop the propagation until the label
value exceeds the rank of the same vertex (line 15). To look
up the rank value of the vertex, we need to divide the vertex
index by 2 to find out the pin index (lines 2 and 15), because
we represent two transitions of the same pin as vertices with
adjacent indices. Our kernel requires no other synchroniza-
tion strategies because it involves no read-after-write opera-
tions. We can scan and label the constrained subgraph fairly
quickly.
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Fig. 9. Assume two additional edges exist which do not affect the ranking
and scanning results. Apply the filtering rules.

C. Critical Path Filtering and Searching

In this step, we generate all critical paths that satisfy the
extensive path constraints. Preprocessing steps in the previous
sections help us establish the rank and label information. We
reuse these information to drop the paths which fail the con-
straints. We enable a key filtering rule and integrate it into our
path expansion iteration. Different from unconstrained path
generation, we only construct suffix and prefix forests in the
concerned region. Therefore, we introduce the notion of suf-
fix subforest and prefix subforest, respectively. The fan-in edge
filtering rule is defined as follows: For each fan-in edge eu→v

label(u) = label(v) or rank(	u/2
) = label(v).

This filtering rule considers two cases. The first case checks
if edge eu→v connects two vertices in the same region. The
second case checks if the edge is connected from the boundary
region. Edge eu→v is permissible under constraints if it passes
either one of the tests.

To demonstrate the usage of our filtering rules, we illustrate
an example in Fig. 9. We add two edges eD→I, eD→F that do
not affect the preprocessing results. We can first remove ver-
tices G and J since they do not belong to the constrained
subgraph. Then we apply our filtering rules to each fan-in
edge. For example, fan-in edge eD→I have different labels
on two vertices. In other words, this fan-in edge is not con-
necting vertices in the same region. It also fails the second
case because rank(D) �= label(I), meaning vertex D is not the
boundary vertex before I. The diagram shows the only bound-
ary vertex prior to I is E. We apply the same tests to fan-in
edge eD→F and know it has to be filtered as well. We ignore
both edges during the path generation process.

While we enforce the filtering rules, we launch the dis-
tance relaxation kernel in Algorithm 1 to construct the suffix
subforest. Distances of all endpoints are initialized with the
required arrival time before the kernel launches. Whenever
a fan-in edge connects to a neighbor, we apply the filtering
rules to the fan-in edge. We stop the kernel launches until the
distances converge.

To collect path prefix information, we iteratively construct
the prefix subforest. We still enforce the filtering rules in
all the GPU kernels within each iteration. Since we explore
the prefix in the other direction, we define similar filter-
ing rule for each fan-out edge eu→v as well. In this way,
we make sure the explored prefix does not violate any path

constraint. We expand our prefix subforest in iterations until
current set of explored paths has good enough accuracy or we
explore all possible paths. By the end of iteration, we perform
path recovery to obtain full paths considering all the given
constraints.

VI. FINE-GRAINED OPTIMIZATIONS

The proposed GPU-accelerated PBA framework can sig-
nificantly reduce the long runtime of the critical path gen-
eration process. However, there is still room for improving
the performance of our GPU algorithms using fine-grained
optimization techniques. We highlight some performance
problems of our framework below:

1) Substantial Amount of Work is Performed on the Host
Side: Host handles level compression, which is essen-
tially an indirect sorting. Profiling shows this step
becomes the execution bottleneck and takes the major-
ity of the runtime. For example, compressing over ten
million path candidates into one million paths can take
above 90% of the runtime in each iteration.

2) Per Thread Block Workload Needs to Synchronize With
Each Other: All thread blocks needs to synchronize with
each other between each step. For example, the path
expansion cannot start until all thread blocks complete
the offset scanning step.

3) High Communication Cost for Path Information Between
Host and Device: Path information passing between host
and device has a relatively high cost compared to the
kernel computation. Host needs to wait for a full set of
newly expanded paths for compression, which takes over
80% of the memory communication cost. Device should
wait for the compressed set of paths before expanding
in the next iteration.

In this section, we propose several optimization techniques
to overcome these performance limitations. These optimiza-
tions include kernel fusion with dynamic parallelism, fine-
grained workload decomposition, fast merge sort strategy,
and merge with dynamic parallelism. We shall demonstrate
in experimental results that our optimized framework fur-
ther improved the performance of our GPU-accelerated PBA
framework 3− 5× for large circuit designs.

A. Optimization Design Overview

In this section, we describe the basic data structures and
overview of our new framework. Fig. 10 shows the flow of
our optimization techniques. Once a thread block is launched,
all threads in each thread block will be assigned with four
block-specific workload until we get blockwise-sorted critical
paths. We assign the thread block to multiple parent deviation
edges. Instead of simply assigning each thread to each par-
ent deviation edge, we assign each thread to parent deviation
edges that are evenly spaced in the memory. We leverage this
thread coarsening strategy to reduce the overhead to spawn
too many threads and maximize memory coalescing. After we
obtain the compressed and sorted results from each thread
block, we merge these results through a reduction tree strategy.
We leverage CUDA dynamic parallelism to remove memory
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Fig. 10. Example of new GPU-accelerated PBA framework with four thread
blocks.

management API and kernel calls on the host side. There are
two places in our framework where we use dynamic paral-
lelism. The first place is device memory allocation in kernel
after the blockwise offset computation. The second place is
reducing multiple sorted blocks into a single block. In the
next section, we will describe specific optimizations that we
have implemented in this optimized framework.

B. Optimization Strategies

We have implemented various optimizations for our new
GPU-accelerated PBA framework. We fuse multiple steps
together in a single kernel to reduce the number of kernel
calls on host. We implement a fast merge sort algorithm to
perform the blockwise sorting workload. In the blockwise sort-
ing, we leverage the parallel merging inspired by Kirk and
Wen-Mei [21]. We reduce blockwise-sorted results by using
dynamic parallelism.

1) Kernel Fusion With Dynamic Parallelism: There are four
block-specific workload. To reuse threads in each block for
next step’s workload, we first perform kernel fusion to steps
allocate and scan, and steps expand and merge. By fusing steps
allocate and scan, we compute the number of critical paths the
parent path will expand, then directly save that number into
shared memory, and finally perform a blockwise scan by using
either Kogge and Stone [22] or Brent and Kung [23] parallel
scan algorithms. By fusing steps expand and merge, we expand
the child paths required by next level of path candidates, and
then directly merge the expanded paths based on slack values.
We effectively reduce the kernel overhead by reducing the
number of necessary kernel calls. Besides, we further reduce
the number of global memory accesses by converting part of
the global memory access into shared memory accesses.

Based on our fusion strategy above, we have success-
fully reduced the number of kernel calls from four to two.
We can further reduce the number of kernel calls to one
by using dynamic parallelism. As shown in Listing 1, after
blockwise scan, we isolate a single thread for memory allo-
cation. We first obtain the total number of child paths in next
iteration for the current block. Then we use a single thread
to invoke cudaMalloc to allocate proper device memory of
DeviationEdge for blockwise expansion. In this way, no
host operations is involved between steps scan and expand.

Listing 1. Memory allocation with dynamic parallelism.

Listing 2. Top level kernel launch with dynamic parallelism.

Besides, threads in step expand can directly reuse the scan
result in shareMem. We further reduce the number of global
memory accesses as well. However, there are still some dis-
advantages when we fuse all kernels together with dynamic
parallelism. The most important issue is the difficulty to debug.
Because the kernel involves so much steps back to back, it is
extremely hard to know if intermediate data are correctly com-
puted. Besides, we need additional pointer arrays to save the
device pointers allocated within the kernel for future memory
management. Based on our experience, our recommendation
is to implement kernels with separate steps first and make sure
all steps can function correctly. Then an implementation with
dynamic parallelism can be put into practice.

2) Block Merging With Dynamic Parallelism: Based on our
previous optimization for blockwise merge sorting, we con-
tinue to merge sorted results in each block into a global set
of worst critical paths. Because the length of sorted blocks
may not be fully balanced, we want to concurrently launch
different number of threads to merge two sorted blocks that is
dynamically determined by the length of each block. CUDA
dynamic parallelism can exactly satisfy this need.

At the top level, as shown in Listing 2 we launch
very few parent threads, where the total thread number
equals to the number of blocks in previous fused kernel.
We perform indirect sorting because sorting over the entire
DeviationEdge is costly. We use the idea of structure
of arrays to keep track of path slacks, intrablock indices,
and interblock indices. The reason of this is to maximize
the cache utilization. We will reorder the original arrays of
DeviationEdge later based on deviceSortedIndices
and deviceSortedGridIndices to ensure minimum
times of data structure movements.

At the bottom level, as shown in Listing 3, we dynamically
launch children threads to merge sorted blocks in a reduction
tree manner. We double stride for reduction access pattern
and figure out the start and mid offsets for merging. We
configure the grid dimension for each merge kernel based on
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Fig. 11. Maximum absolute error between timing reports from our algorithm and OpenTimer.

Listing 3. Bottom level kernel launch with dynamic parallelism.

number of elements per thread and number of threads per
block. After these preprocessing steps, we will dynamically
launch GPU merge kernel to merge two sorted blocks. We
also leverage double buffering in each iteration to reduce the
memory copy costs. The final merged arrays can be generated
fairly quickly with dynamic parallelism because we balance
the computation resources based on the size of workload.

VII. EXPERIMENTAL RESULTS

In this section, we demonstrate that our GPU-accelerated
framework can efficiently generate accurate path reports. Our
approach is scalable to thousands and millions of paths. We
conduct our experiments on a 64-bit Ubuntu Linux machine
with 1 GeForce RTX 2080 GPU and 40 2-GHz Intel Xeon
Gold 6138 CPU cores. Our compiler settings are CUDA
NVCC 11.0 device compiler and GNU GCC 8.3.0 host com-
piler, where optimization flag -O2 and C++17 standard

-std=c++17 are enabled. In terms of kernel configura-
tion, we use 1024 threads per block for 1-D kernel con-
figurations and 256 × 2 threads per block for 2-D kernel
configuration. We use one CPU core for all host operations.
We consider the state-of-the-art path generation algorithm [4]
as our baseline. To the best of our knowledge, the baseline
has the best time complexity and practical efficiency. The
baseline also supports critical path reporting with extensive
path constraint. It has been implemented in the open-sourced
STA tool, OpenTimer, as its core path generation algorithm
[5], [24]. We evaluate our algorithm on real designs with a
golden reference generated by an industrial standard timer [3].
To ensure fairness, we restrict our comparison to the PBA part
in OpenTimer.

A. Path Report Accuracy

Our GPU-accelerated PBA framework can generate accurate
timing report. To evaluate the accuracy, we compare separate
timing reports generated from our framework and the baseline
on the same number of paths. We measure the absolute slack
difference for each pair of critical paths in two reports. We save
the maximum absolute error and plot the error versus different
number of expansion levels in Fig. 11. Our experiments scale
from 10 K up to 1 M critical paths on million-gate designs. We
show the summary of each circuit design in Table II. As shown
in Fig. 11, our algorithm outputs almost identical critical paths
as OpenTimer by expanding to ten levels on all designs. We
keep generating highly accurate results even for 1 M critical
paths on million-gate designs leon2 (1.6 M gates), leon3mp
(1.2 M gates), and netcard (1.5 M gates). Additionally, Fig. 11
manifests tremendous accuracy improvement of our algorithm
in the first few levels. For example, from level 2 to level 3, the
maximum absolute error in 1 M critical paths is reduced by
over 1000 ps in most million-gate designs. Our report accu-
racy continues to improve in the subsequent level expansion.
Besides slack values, we can match the full path trace between
reports. After 15 deviation levels of expansion, our frame-
work can report 1 M critical paths with the same path trace
as baseline on these benchmarks.

B. Runtime Performance

In this section, we demonstrate our algorithm can acceler-
ate critical path generation process to a new milestone. We
compare runtime (ms) of our algorithm (one GPU) with run-
time (ms) of the PBA in OpenTimer (one CPU core) by
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TABLE II
RUNTIME PERFORMANCE (MS) COMPARISON BETWEEN OPENTIMER AND OUR GPU-ACCELERATED ALGORITHM (ONE GPU)

Fig. 12. Speed-up values of our algorithm over the baseline at different numbers of CPU cores.

reporting 100 K critical paths on the ten largest benchmarks.
We experiment with MDL 10, 15, and 20, where we demon-
strate the accuracy guarantee (see Section VII-C). Table II
shows our results and the runtime comparison. We can observe
that our algorithm achieves significant speed-up on million-
gate designs over OpenTimer. With MDL equal to 15, we
boost the baseline 543× on leon2 (1.6 M gates), 172× on
leon3mp (1.2 M gates), and 304× on netcard (1.5 M gates).
We also achieve over an order of magnitude speed-up on
medium benchmarks, such as 77.9× on vga_lcd, 88.3× on
vga_lcd_iccad, and 31.5× on des_perf_ispd.

To further demonstrate our performance advantage over the
baseline, Fig. 12 plots the speed-up curve of our algorithm
over the baseline across different numbers of CPU cores. We
observe that the performance of baseline continues to improve
as the number of cores increases but saturates at about 16
cores. We also notice there is always a significant performance
margin to ours. With the baseline at the maximum CPU con-
currency of 40 cores, our algorithms is still faster than the
baseline by 44.88×, 24.90×, 45.68×, and 35.27× on large
designs leon2, leon2mp, netcard, and b19_iccad, respectively.
In fact, according to our experiments, our GPU-accelerated
PBA algorithm is always faster than the baseline in all designs,
regardless of the number of CPU cores the baseline uses.

C. Runtime Performance With Path Constraints

In this section, we demonstrate our GPU-accelerated PBA
framework can maintain its high performance advantage when it
generates critical paths under constraints. We run our framework
and the baseline to report arbitrary numbers (k = 10 K, 5 K, 1 K)

TABLE III
RUNTIME PERFORMANCE (MS) CONSIDERING PATH CONSTRAINTS

of critical paths under various path constraints on the same
set of designs. We verify that all generated critical paths
meet the path constraints and the full path trace matches
the baseline report. We summarizes the performance com-
parison in Table III. Our GPU-accelerated PBA framework
is clearly faster than the baseline. Our framework demon-
strates significant speed-up over the runtime performance on
million-gate designs. For example, our framework is 53.7×
and 102× faster than the baseline on designs leon2 and
leon3mp, respectively. Our framework exhibits promising
performance advantages on medium-size designs as well. For
instance, our framework achieves 12×–28× speed-ups on
designs vga_lcd, vga_lcd_iccad, des_perf_ispd,
edit_dist_ispd, and mgc_edit_dist. We can observe
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Fig. 13. Runtime comparison between OpenTimer [15] and our algorithm on different sizes of constrained subgraphs.

relatively limited speed-up in a few designs like netcard and
mgc_matric_mult. This is due to highly constrained search
space that limits the amount of data parallelism. We have a
more in-depth discussion about the runtime performance versus
size of constrained search space in the subsequent section.

D. Runtime Versus Constrained Search Space

In this section, we discuss and analyze how the con-
strained subgraph size affects the runtime performance of
our GPU-accelerated PBA framework when we report under
path constraints. We run our framework and the baseline
on designs leon2, leon3mp, netcard, b19_iccad,
vga_lcd, vga_lcd_iccad, des_perf_ispd, and
edit_dist_ispd under different set of path constraints.
Each set of path constraints defines a different constrained
subgraph. The size of the subgraph is represented by the
number of pins. We plot the logarithmic runtime of our
framework and the baseline versus the size of constrained
subgraph in Fig. 13. In general, our framework is faster
than the OpenTimer baseline at different sizes of constrained
subgraph, from 4.3 K to 2.3 M. Our framework has more
promising advantage on a larger constrained subgraph,
because it can utilize higher data parallelism. For example,
our framework has 4.61 logarithmic runtime advantage
(100.5× speed-up) over the OpenTimer baseline at subgraph
size of 2.3 M pins, while the advantage is much smaller
for subgraphs of sizes 5.3 K–7.2 K. We can observe sim-
ilar performance patterns in other designs. We revisit the
netcard benchmark. Since all constrained subgraphs have
sizes below 10 K, our framework can hardly benefit any data
parallelism to achieve higher performance improvement.

E. Performance With Fined-Grained Optimizations

We demonstrate our fine-grained optimizations can improve
the performance of our GPU-accelerated PBA workload.
We use the original GPU-accelerated PBA framework as

Fig. 14. CUDA runtime and API breakdown comparison. (a) CUDA runtime
and API breakdown of framework prior to optimizations. (b) CUDA runtime
and API breakdown of framework after optimizations.

baseline. As shown in Fig. 14(a), to generate 100 K crit-
ical paths in leon2, over 90% of CUDA runtime is spent
on CUDA APIs, including cudaMemcpy, cudaMalloc,
cudaDeviceSynchronize, and cudaFree. Within the
CUDA API, 59% runtime is spent on the memory transfer
or cudaMemcpy. More specifically, due to the high volume
of path candidates before compression, memory copy from
device to host takes about 82%.

With our optimizations, we successfully reduce this source
of communication cost. The CUDA runtime breakdown after
optimizations in Fig. 14(b) demonstrates this improvement.
The GPU participates more in the computation since we move
the compression step to the GPU. The communication cost
due to memory transfer has dropped to 27%. We can also
see the effectiveness of our optimization techniques by com-
paring the performance on the same set of circuit designs
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TABLE IV
RUNTIME PERFORMANCE OF PREVIOUS GPU-ACCELERATED PBA FRAMEWORK AND OPTIMIZED FRAMEWORK

used in the previous framework. We conduct the same set of
experiments on 1 GeForce RTX 2080 GPU and 2-GHz Intel
Xeon Gold 6138 CPU Core. We enable dynamic parallelism
in NVCC by adding the compilation flag -rdc=true.

A summary of experiments on the optimized framework
is shown in Table IV. For each of the design circuit, we run
both our framework and the baseline with expansion levels 10,
15, and 20. We first verify that our framework can correctly
generate 100 K critical paths with ordered slack values. Then
we document and compare the performance difference. As a
comprehensive study, we also provide the peak GPU memory
usage of both frameworks in the last column of Table IV. As
demonstrated in Table IV, our framework can achieve 3×–
5× speed-up on large designs with over 1 million gates, such
as leon2, leon3mp, netcard, and b19_iccad. To gain
a better understanding of the optimized framework, we also
measure the runtime breakdown in the initial iterations on
leon2, since the initial iterations have the largest numbers
of deviation paths. On average, we spend 42.75% on the
block-specific step, 30.82% on block merging, and the rest
26.43% on CUDA API. Besides decent speed-up on large
designs, we still have relatively good improvement, 1.77×–
4.70× speed-up, on the rest of medium designs. This can
make a great impact to PBA acceleration, because, in leon2
for example, we can achieve 5.00× faster on top of 611×
speed-up compared to state-of-the-art CPU algorithm. We also
run fine-grained optimizations considering path constraints
and compare with Section VII-C. With relaxed constraints in
leon2 and leon3mp, we continue to obtain 3×–5× speed-
up. With very strict constraints in netcard, the speed-up is
limited due to the tiny level of deviation edges. In this set of
integrated experiments, we demonstrate that we can alleviate
the performance bottleneck in previous work with our new
GPU-accelerated framework.

VIII. CONCLUSION

In this article, we have introduced a novel GPU-accelerated
PBA algorithm to overcome the runtime bottleneck of CPU-
based PBA. We decompose the critical path generation into
multiple GPU-accelerated kernels and leverage the implicit

path representation method to design GPU-efficient data struc-
tures. We successfully utilize the high computation throughput
for large-scale path reporting on large-scale circuit designs.
We also demonstrate how we can enable guided critical
path reporting with extensive path constraints. We can effec-
tively report critical paths that satisfy path constraints while
maintaining high scalability. Furthermore, we propose several
fine-grained optimizations on top of this GPU-accelerated PBA
framework. In this new optimized framework, we overcome
the performance bottleneck in host computation and communi-
cation. Experiments show that, without further optimizations,
our algorithm achieves up to 543× speed-up on an 1.6 M-
gate design over the state-of-the-art PBA algorithm. At the
extreme, our algorithm is 25×–45× faster than the baseline
of 40 cores on million-gate designs. While reporting with path
constraints, we can maintain up to 100× speed-up on million-
gate design. With fine-grained optimizations, we can achieve
even higher performance, about 3×–5× speed-up compared to
the previous framework. We believe our algorithm can promote
PBA in the earlier stage of design closure flow to improve QoR
and turnaround time.
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