
On Fast Timing Closure: Speeding Up Incremental Path-Based

Timing Analysis with MapReduce
Tsung-Wei Huang∗ and Martin D. F. Wong‡
∗twh760812@gmail.com, ‡mdfwong@illinois.edu

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA

Abstract—Incremental path-based timing analysis (PBA) is a pivotal

step in the timing optimization flow. A core building block analyzes the
timing path-by-path subject to a critical amount of incremental changes

on the design. However, this process in nature demands an extremely

high computational complexity and has been a major bottleneck in

accelerating timing closure. Therefore, we introduce in this paper a fast
and scalable algorithm of incremental PBA with MapReduce – a recently

popular programming paradigm in big-data era. Inspired by the spirit

of MapReduce, we formulate our problem into tasks that are associated
with keys and values and perform massively-parallel map and reduce

operations on a distributed system. Experimental results demonstrated

that our approach can not only easily analyze huge deisgns in a few

minutes, but also quickly revalidate the timing after the incremental
changes. Our results are beneficial for speeding up the lengthy design

cycle of timing closure.

I. INTRODUCTION

The lack of accurate and fast algorithms for incremental path-

based timing analysis (PBA) has been recently pointed out as a

major weakness in the timing optimization flow [4]. Among timing

analysis applications, timing-driven operations are imperative for the

success of optimization flows, such as logic synthesis, placement,

and routing. Optimization transforms change the design and therefore

have the potential to significantly affect timing information. The

timer must reflect to such changes and update timing information

incrementally and accurately in order to ensure slack integrity and

reasonable turnaround time and performance. However, such process

requires an extremely high complexity in particular when path-

specific update such as common-path-pessimism removal (CPPR) is

taken into account [7], [9]. A high-quality incremental PBA tool is

definitely positive for speeding up timing closure.

Unfortunately, current literatures are still short of novel ideas for

fast incremental PBA. As pointed out by 2015 TAU timing analy-

sis contest, algorithms that highlight multi-threaded and massively-

parallel accelerations are strongly encouraged [4]. Nonetheless, par-

allelizing incremental PBA is a tough challenge primarily because a

path can be prototypically various in an incremental environment. For

instance, a path can exhibit arbitrary lengths and span different logical

cones and physical boundaries, while such environmental properties

are hard to be quantified. Computations in this way are typically

difficult to be issued in parallel. Although a few prior works claimed

to have a solution, the results are usually either compromised with

accuracy or runtime, or incapable of incremental processing [5], [12],

[13]. These deficiencies severely restrain the capability of incremental

PBA in the timing optimization flow.

As a consequence, we introduce in this paper a fast incremental

PBA algorithm with MapReduce, a programming paradigm that was

recently introduced by Google for big-data processing [8]. As shown

in Figure 1, a MapReduce program applies parallel map operations to

input tasks and generates a set of temporary key/value pairs. Parallel

reduce operations are then applied to all values that are associated

with the same key in order to collate the derived data properly. Users

only program desired map and reduce functions while parallelization

details such as work distribution and fault tolerance are automatically

encapsulated in a MapReduce library [1], [2]. This programming

paradigm inspires us to rethink the incremental PBA problem as a

set of “map” and “reduce” operations. In other words, we transform

the incremental PBA problem into tasks with keys and values that

are solvable using massively-parallel map and reduce operations.

K2 V1 K1 V2 K3 V3 K2 V4

K1 V11 K2 V12 K3 V13

K3 V5

Data

K2 V6 K3 V8K1 V7 K2 V9 K3 V10

Reducer ReducerReducer

Mapper Mapper Mapper Mapper

Key (K) / Value (V)Ki Vj Input data set

Parallel map

(automatic)

Emitted data set

(temporary)

Parallel reduce

(automatic)

Output data set

Figure 1. The execution flow of a MapReduce program.

Our contributions are summarized as follows. 1) We successfully

investigated the applicability of MapReduce to accelerate incremental

PBA. Our algorithm is very general in gaining massively-parallel

computations, imposing no physical and logic constraints. 2) Our

algorithm increases the productivity as designers can focus on timing-

driven turnaround, leaving all hassle of parallelization details to the

MapReduce library. 3) We have seen a substantial speedup from the

experimental results. On a large distributed system, millions of cells

subject to a critical amount of incremental updates can be easily

analyzed quickly and accurately. These features all add up to faster

design cycle of timing optimization, which can be beneficial for

speeding up the lengthy signoff timing closure.

II. INCREMENTAL PATH-BASED TIMING ANALYSIS

Static-timing-analysis (STA) is a crucial step in verifying the

expected timing behaviors of an integrated circuit [6]. During the

STA, both graph-based timing analysis (GBA) and path-based timing

analysis (PBA) are used. GBA performs linear scan on the circuit

graph and estimates the worst timing quantities at each endpoint.

GBA is very fast but the results are too pessimistic. Thus, PBA is

often performed after GBA to remove unwanted pessimism. Starting

from a negative endpoint, a core PBA procedure peels out a set of

paths in non-increasing order of criticality and applies path-specific

timing update such as CPPR and advanced-on-chip-variation (AOCV)

derating to each of these paths [7]. By analyzing the path with

reduced pessimism, many timing violations can be waived which in

turn tells better timing signoff.

In practice, timing-driven optimizations are ubiquitous along with

the entire design flow. Practical PBA tools must be adaptive to incre-

mental environment. In other words, whenever the design experiences

(a) Circuit network (b) Top two critical paths

(c) Insert a buffer (incremental change) (d) Top two critical paths

v1

v2

v3

v4

v5

v7

v6 v8

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v7

v6 v8

v9

v1

v2

v3

v4

v5

v6

v7

v8

v9

Circuit node Circuit edge Critical path trace

Figure 2. The incremental PBA problem. (a) Initial circuit network. (b)
Top two critical paths on < v1, v3, v6, v8 > and < v2, v5, v7, v8 >. (c)
Optimization transform by buffer insertion. (d) Top two critical paths on <
v1, v3, v6, v8 > and < v2, v4, v6, v8 >.

optimization transforms (e.g., gate sizing, wire sizing, etc.), the timing

information needs to be revalidated in order to guarantee the slack

integrity and legal optimization turnaround. A practical example of

the incremental PBA problem is demonstrated in Figure 2. In (a)–

(b), the timer is queried about the top two critical paths. In (c)–(d),

an optimization transform changes the design via a buffer insertion.

The timer updates the timing and reports the new top two critical

paths. Despite the importance of incremental PBA in the timing

optimization flow, few researches have been reported so far [3], [4],

[9]. We summarize the reason as follows.

• In contrast to GBA, PBA demands much higher complexity.

A careless incremental PBA algorithm might end up with

repeatedly enumerating all paths in a design.

• Efficient incremental PBA requires more complicated data ma-

nipulations. A specialized algorithm is necessary.

• Incremental PBA on a distributed system was barely discov-

ered. Programmers typically suffer from a unacceptably large

amount of development efforts for the hard-crafting of dis-

tributed/parallel infrastructure.

To sum up, an incremental PBA tool that supports massive par-

allelism, high scalability, and general flexibility is in demand when

we move to multi-core era. As reported in [14], nowadays up to

40% of the design flow are normally spent on timing optimizations.

If the runtime of incremental PBA can be significantly improved,

the design cycle of timing optimization is able to be shortened

substantially thereby making a breakthrough in timing signoff. As a

result, researchers must continue to provide viable parallel solutions

along with the rapid evolution of the computational power.

III. PROBLEM FORMULATION

The circuit network is input as a directed-acyclic graph G =

{V, E, T}, where V is the pin set of circuit elements, E is the edge

set specifying pin-to-pin connections, and T is the set of timing tests

to be analyzed. Each edge e is associated with a tuple of earliest

and latest delays. A path is an ordered sequence of nodes or edges

and the path delay is the sum of delays through all edges. In this

paper, we are in particular emphasizing on the data path, which is

defined as a path from either the primary input pin or the clock pin

of a launching flip-flop (FF) to the data pin of a capturing FF. A

test t ∈ T is defined with respect to (w.r.t.) an FF as either hold or

setup check on any data paths captured by this FF. The incremental

PBA problem deals with the following online (i.e., input disclosure

is prohibited) operations.

• update edge(e, w): update the delay of the edge e to w.

• remove edge(e): remove the edge e ∈ E from the graph.

• remove node(v): remove the node v ∈ V from the graph.

• insert edge(e): insert an edge e /∈ E into the graph.

• insert node(v): insert a node v /∈ V into the graph.

• report path(t, k): report the top k critical paths for the test t.

• report path(k): report the top k critical paths across all tests T .

The above operations we have defined are in fact graph-level

abstraction of the incremental PBA problem. In reality, optimization

transforms are expressed as either gate-level, net-level, or pin-level

operations [4]. For algorithmic purpose, these optimization transforms

can be, without loss of generality, reflected as graph-level operations

so as to compute the timing in a systematical manner.

IV. MAPREDUCE PROGRAMMING PARADIGM

Since being first introduced by Google in 2004, MapReduce has

become a popular programming paradigm. It focuses on providing

users-friendly API for programming distributed algorithms whiel

managing the parallelization details invisibly [8]. The spirit of a

MapReduce program consists of “keys” and “values” which are

generated and manipulated by user-defined functions “mapper” and

“reducer” [8]. A key and a value are simply bytes of strings of

arbitrary length and thus can represent generic data types. The

MapReduce library automatically schedules parallel map and reduce

operations linking mapper and reducer to handle the input data on a

distributed system. State-of-the-art libraries for this purpose such as

Apache Hadoop and MR-MPI from Sandia National Laboratory are

available in the public domain [1], [2].

Algorithm 1: StandardForm(D, mapper, reducer)

Input: input data D, user-defined mapper and reducer

1 O ← new MapReduceObject;

2 {M | <tmp key : tmp value>} ← Map(O, D, mapper) ;

3 {C | <unique key : value list>} ← Collate(O);

4 {R | <key : value>} ← Reduce(O, reducer);

5 return R

A standard MapReduce program is presented in Algorithm 1. The

first is the map step, which takes a set of data and converts it

into another set of data produced by the function mapper, where

individual elements are represented as temporary key/value pairs.

The collate step aggregates across temporary key/value pairs where

each unique key appears exactly once and the corresponding value

is a concatenated list of all the values associated with the same

key. The reduce step then takes a single entry from the aggregated

key/value pairs and creates a new key/value pair which stores the

output generated by the function reducer. Parallelism is evident since

function calls by map and reduce are independent to each other and

can be executed on different processors simultaneously.

V. INCREMENTAL PBA WITH MAPREDUCE

We discuss in this section our incremental PBA algorithm with

MapReduce. In a rough view, we decompose the incremental process-

ing into a series of map and reduce operations. The map operation

is responsible for 1) the track of affected tests for which timing

information needs to be updated and 2) the generation of critical

paths. The reduce operation is responsible for peeling out the true

critical paths among tests.

2

A. Generation of Task Graph

We define the task graph gt for a test t as the subgraph that spans

from the launching FF (source FF) of the test to the capturing FF

(testing FF) of the test. The task graph gt is uniquely defined for

each test t and can be viewed as a connectivity graph that covers all

data paths feeding the testing FF of the test t. Figure 3 illustrates

an example of three task graphs that are derived from testing FFs

5, 7, and 8, respectively. In our MapReduce program, we create a

key/value pair for a task graph. The key indicates the test index to

which this task graph belongs while the value field is a string that

stores the user-defined data structure for graphs.

FF1

FF2

FF4

FF3

C1

C2

C3

FF5

FF6

FF8

FF7

FF1 C1 FF5

FF2

FF3

C2 FF7

FF4 C3 FF8

FF1

FF2

FF4

FF3

C1

C2

C3

FF5

FF6

FF8

FF7

(a) Circuit graph (b) Grouping (c) Task graphs

FFi Launching FF Ck Combinatorial blockFFj Capturing FF

Figure 3. An example formulation of the task graphs.

The generation of the task graph is presented in Algorithm 2. For

a given test, we first identify the testing FF. Starting at the data pin

of the testing FF, the task graph can be induced via either a backward

breadth-first search (BFS) or depth-first search (DFS) ending at any

source FFs of the testing FF (line 2:3). Each induced task graph is

emitted as a key/value pair in the end of the procedure (line 4).

Algorithm 2: Generator(t)

Input: a test t

Output: a key/value pair for the task graph gt

1 Ft ← testing FF of the test t;

2 d← data pin of the testing FF Ft;

3 gt ← subgraph induced from d backward to source FFs of Ft;

4 Emit make pair(t, gt);

B. Path Extraction and Peeling

Considering a task graph gt, we can apply any path ranking

algorithms to peel out a set of critical paths. The optimal and exact

path ranking algorithm proposed by the first-place winner in TAU

2014 CAD contest, UI-Timer, is employed as our path extraction

engine [10], [11]. The function of path extraction is presented in

Algorithm 3. Algorithm 3 takes one explicit input argument of path

count and one implicit input argument of a test index that is passed by

the MapReduce caller. We then apply the path extraction algorithm

by UI-Timer to the task graph and generate the set of top k critical

paths (line 1:2). Each of these paths is emitted as a key/value pair to

the MapReduce caller (line 3:5).

It can be inferred a MapReduce call of Algorithm 3 will produce

a set of key/value pairs. The value field stores the path trace and

the key indicates the test index to which this path belongs. After

the collate method, those paths having the same key will be grouped

together. Reporting the set of top k critical paths is identical to a

Algorithm 3: Extracter(k)

Input: a parameter k, a test index t (implicit)

Output: key/value pairs for top k critical paths for test t

1 gt ← task graph parsed from Generator(t);

2 P ← top k critical paths extracted from gt using Algorithm

by [10];

3 foreach path pi ∈ P do

4 Emit make pair(t, make string(pi));

5 end

reduce operation that peels out the top k critical ones from the path

group. This can be simply achieved by a simple sorting process as

presented in Algorithm 4.

Algorithm 4: Peeler(r)

Input: an unique key/value (value list) pair r

Output: an emitted key/value pair

1 key ← r.key;

2 P ← paths parsed from r.value;

3 sort(P);

4 P ′ ← {k frontmost elements in P};
5 value ← make string(P ′);

6 Emit make pair(key, value);

C. Incremental Graph Operations

Optimization transforms are reflected by a set of graph-level

operations that alter the graph incrementally. Whenever the graph

experiences an incremental change, the circuit timing must be kept

up-to-date for interactive queries. The idea of our algorithm is to

identify a subset of tests for which the timing is affected, and quickly

revalidate the slacks and critical paths for each of the affected tests.

As any incremental operation is applied to either a node or an

edge, identifying affected tests is equivalent to finding those tests

whose task graphs include such changes. As a result, we consider

the subroutine in Algorithm 5 that determines if a test is affected by

a given node or edge. Using the subroutine in Algorithm 5, finding the

set of affected tests can be carried out in parallel since the existence

of each task graph is independent to each other. As presented in

Algorithm 6, we create a new MapReduce object and conduct map

operation linking Algorithm 5 as the mapper to find the test set that

is affected by a given incremental change (line 1:3).

Algorithm 5: Affecter(v, e)

Input: a node v, an edge e

Output: a key/value pair for the test t if gt includes v or e

1 t← test idnex passed by MapReduce caller;

2 gt ← task graph of the test t;

3 if v ∈ gt or e ∈ gt then

4 Emit make pair(t, null);

5 end

On the basis of Algorithm 6, we develop the solution to incremental

graph operations. It is observed that a single operation insert node

produces no impact on the entire circuit graph unless it is connected to

any portion of the graph using the operation insert edge. Hence, the

operation insert node can be absorbed into the operation insert edge.

The discovery of affected tests in response to each of the four graph

altering operations, update edge, remove edge, remove node, and

insert edge, is presented in Algorithm 7, Algorithm 8, Algorithm 9,

3

Algorithm 6: GetAffectedTests(v, e)

Input: a node v, an edge e

Output: a set of affected tests T ′

1 O′ ← new MapReduceObject;

2 M ′ ← Map(O′, T , Affecter(v, e));

3 T ′ ← test set parsed from M ′;

4 return T ′;

Algorithm 10, respectively. Notice that in order to obtain the affected

tests correctly, these incremental graph operations will be applied to

the graph 1) after the function calls of Algorithms 7–9 and 2) before

the function call of Algorithm 10.

Algorithm 7: update edge(e, w)

Input: an edge e, new edge delay w

Output: a set of affected tests T ′

1 T ′ ← GetAffectedTests(null, e);

2 update the delay of the edge e to w;

3 return T ′;

Algorithm 8: remove edge(e)

Input: an edge e

Output: a set of affected tests T ′

1 T ′ ← GetAffectedTests(null, e);

2 remove the edge e from the circuit graph;

3 return T ′;

Algorithm 9: remove node(v)

Input: a node v

Output: a set of affected tests T ′

1 T ′ ← GetAffectedTests(v, null);

2 remove the node v from the circuit graph;

3 return T ′;

D. Incremental PBA Algorithm

Using Algorithms 1–10 as infrastructure, the overall algorithm of

incremental PBA with MapReduce is presented in Algorithm 11. In a

rough view, Algorithm 11 is executed in an interactive environment,

incrementally accepting one of the seven graph operations that were

defined in Section III. Except for the operation node insertion which

is directly applied to the graph (line 13:14), the other graph altering

operations are handled by Algorithms 7–10 so as to identify the set

of affected tests (line 5:12). The non-trivial part of Algorithm 11 is

the response to path report (line 15:46). For the sake of coding ease,

we manipulate two MapReduce objects O and O′. The MapReduce

object O stores the key/value pairs of paths that are generated by the

mapper call, while the MapReduce object O′ is mainly operated by

the reducer call for path peeling. The first step is to remove from O all

paths that were previously generated from a given set of affected test

over a series of incremental operations (line 16:17 and line 31:32).

Because multiple operations might query about different path counts,

any test with less number of paths in O than the present query of path

count is marked as affected test as well (line 19:21 and line 34:37).

The second step is to update the timing of affected tests by operating

parallel mappers on Algorithm 3 (line 23 and line 40). The final step

is to apply collate and reduce operations to the key/value pairs and

Algorithm 10: insert edge(e)

Input: an edge e

Output: a set of affected tests T ′

1 insert the edge e into the circuit graph;

2 T ′ ← GetAffectedTests(null, e);

3 return T ′;

Algorithm 11: IncrementalPBA(G)

Input: a circuit graph G = {V, E, T}

1 O ← new MapReduceObject;

2 O′ ← new MapReduceObject;

3 T ′ ← T ;

4 while op ← read operation() do

5 if op = update edge(e, w) then

6 T ′ ← T ′∪ update edge(e, w);

7 else if op = remove edge(e) then

8 T ′ ← T ′∪ remove edge(e);

9 else if op = remove node(v) then

10 T ′ ← T ′∪ remove node(v);

11 else if op = insert edge(e) then

12 T ′ ← T ′∪ insert edge(e);

13 else if op = insert node(v) then

14 insert the node v into the graph G;

15 else if op = report path(t, k) then

16 if t ∈ T ′ then

17 remove kv objects(O, t);

18 else

19 if num kv objects(O, t) < k then

20 remove kv objects(O, t);

21 end

22 end

23 Map(O, {t}, Extracter(k));

24 copy kv objects(O′, O, t);

25 Collate(O′);

26 Reduce(O′ , Peeler(k));

27 parse and report paths from kv objects(O′, t);

28 T ′ ← T ′ − {t};
29 else if op = report path(k) then

30 foreach key ∈ O do

31 if key ∈ T ′ then

32 remove kv objects(O, key);

33 else

34 if num kv objects(O, key) < k then

35 remove kv objects(O, key);

36 T ′ ← T ′∪ key;

37 end

38 end

39 end

40 Map(O, T ′, Extracter(k));

41 O′ ← O;

42 replace all keys(O′ , −1);

43 C′ ← Collate(O′);

44 Reduce(O′ , Peeler(k));

45 parse and report paths from kv objects(O′, −1);

46 T ′ ← φ;

47 else

48 break;

49 end

50 end

4

TABLE I
PERFORMANCE OF THE PROPOSED MAPREDUCE-BASED PBA ALGORITHM ON BENCHMARKS FROM TAU 2014 CAD CONTEST [3].

Circuit |V | |E| |C| |I| |O| # Tests # Paths

Baseline MapReduce-Base PBA

mem cpu mem cpu (hr)

(GB) (hr) (GB) Map Collate Reduce Total

combo2 260636 284091 171529 170 218 29574 62938 0.4 18.1 4.1 0.56 0.43 0.01 0.7

combo3 181831 215733 73784 353 215 8294 129854 0.3 21.1 7.3 0.69 0.20 0.02 0.9

combo4 778638 866099 469516 260 169 53520 19227963 1.3 23.1 8.7 0.89 0.18 0.02 1.1

combo5 2051804 2228611 1456195 432 164 79050 19227963 - > 24 29.3 1.46 0.28 0.02 1.8

combo6 3577926 3843033 2659426 486 174 128266 19227963 - > 24 42.6 4.11 0.61 0.05 4.7

combo7 2817561 3011233 2136913 459 148 109568 19227963 - > 24 40.9 2.88 0.51 0.03 3.4

|V |: size of node set. |E|: size of edge set. |C|: size of clock tree. |I|: # of primary inputs. |O|: # of primary outputs. # Tests: # of setup tests and hold tests.

Paths: max # of data paths per test. mem: max peak of memory usage (GB). cpu: program runtime (hours). -: unknown result due to runtime overhead.

derive the desirable path set (line 24:28 and line 41:46). We can see

the benefit of maintaining two MapReduce objects because reporting

the top k critical paths among all tests requires a reduce operation on

all key/value pairs. In this case, the key field of all key/value pairs

in O′ is replaced with a nominal value (line 42). The solution to the

path query can be retrieved and parsed from the key/value pair in the

MapReduce object O′ (line 27 and line 45).

VI. EXPERIMENTAL RESULTS

Our program is implemented in C++ language on a 64-bit linux

operating system. The C++ based MR-MPI API is used as our

MapReduce library [2]. Evaluation is taken on an academic cluster

which has over 500 compute nodes. Each compute node is configured

with 16 Intel 2.60GHz cores and 128GB RAM. The network infras-

tructure uses 384-port Mellanox MSX6518-NR FDR InfiniBand for

high speed interconnect between clusters. Due to the limited resource

per user, our communication world comprises 10 nodes with 10 cores

residing on each node. Evaluations are undertaken on the six largest

benchmarks, combo2–combo7 from 2014 TAU CAD contest [9].

In order to build up the incremental environment, we simulate the

optimization transforms (i.e., repower gate, replace gate, etc.) from

2015 TAU CAD contest and randomly and uniformly generate one

million incremental graph operations for each benchmark [4]. Table

I lists the benchmark statistics and the overall performance of our

MapReduce-based PBA algorithm.

For comparison purpose, we consider the UI-Timer as the baseline.

UI-Timer is the first-place PBA timer of TAU 2014 CAD contest and

its source code has been released to the public domain [3], [10]. The

core part of UI-Timer is the algorithm of path extraction and its

multi-threaded strategy for speeding up the process of multiple tests.

In order to enable incremental processing, we adopt the same method

as our MapReduce-based program. Whenever any graph altering

operations are applied, the set of affected tests is identified and will

be used for the subsequent path query. The baseline program is run

on a single computing node with a total of 16 cores that supports

multi-threading. In other words, we are interested in discovering

the performance difference of incremental PBA algorithms between

multi-threading and distributed MapReduce.

The performance of our MapReduce-based incremental PBA algo-

rithm is quantified in Table I. In terms of runtime value, distributed

MapReduce outperforms the baseline by more than an order of mag-

nitude across all benchmarks. In the first three benchmarks, combo2,

combo3, and combo4, the strength of distributed MapReduce is

clearly shown by ×25 faster in combo2, ×23 faster in combo3, and

×21 faster in combo4 than that of baseline. This runtime gap becomes

even pronounced in the three largest benchmarks, combo5, combo6,

and combo7, from which we can see the baseline method cannot

accomplish the incremental processing within 24 hours 1 while the

proposed method is able to reach the goal very fast by at most 4.7

hours in combo6. On the other hand, the higher memory usage of

our program is expected because distributed MapReduce requires a

unique and independent memory block for each process core. Extra

storages of key/value pairs and MapReduce objects are taken into

account as well. However, the amount of memory invoked by our

program is fairly reasonable. From the average point of view, each

core consumes less than 1 GB memory.

TABLE II
RUNTIME PERCENTAGE OF OUR PROGRAM ON DIFFERENT INCREMENTAL

OPERATIONS.

Operation

cpu percentage (%)

update remove remove insert report

edge edge node edge path

combo2 12.13 11.34 12.07 12.13 52.33

combo3 11.01 11.14 11.29 11.21 55.35

combo4 12.31 12.71 12.81 12.33 49.84

combo5 12.09 12.48 11.99 12.37 51.07

combo6 11.49 11.53 11.38 11.10 54.50

combo7 11.71 12.04 12.76 12.69 50.80

“report path” contains the two report path operations.

Next we disclose the individual runtime of each incremental

operation in Table II. The runtime of the operation insert node is

not listed since in our algorithm it is directly applied to the graph

and the corresponding runtime value is ignorable. It can be seen

that dealing with path report requires higher runtime than graph

altering operations (i.e., update edge, remove edge, remove node,

and insert edge). In most cases, the runtime percentage taken by

path report is more than 50% (except for combo4). In comparison

to path report, graph altering operations require simpler procedure,

that is, identifying the set of affected tests via the graph traversal.

It is also observed that the runtime percentage on the four graph

altering operations is uniformly distributed around 11%–12%. This

observation is predictable because each of the four graph altering

operations executes the same mapper call.

The performance details of our program under different numbers

of computing nodes (each configured with 10 cores) for the three

largest benchmarks, combo5, combo6, and combo7, are plotted in

Figure 4. We discover here different portions of runtime and memory

that are taken by map, collate, and reduce operations. In general, the

1Due to the user policy in our cluster, we are not allowed to run a program
in by more than 24 hours.

5

0 2 4 6 8 10
0

2

4

6

8

10

Total runtime v.s. Nodes

computing nodes

T
o

ta
l
ru

n
ti
m

e
 (

h
rs

)

combo5
combo6
combo7

0 2 4 6 8 10
1

2

3

4

5

6

7

8

9

Map runtime v.s. Nodes

computing nodes
M

a
p

 r
u

n
ti
m

e
 (

h
rs

)

combo5
combo6
combo7

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Collate runtime v.s. Nodes

computing nodes

C
o

lla
te

 r
u

n
ti
m

e
 (

h
rs

)

combo5
combo6
combo7

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Reduce runtime v.s. Nodes

computing nodes

R
e

d
u

c
e

 r
u

n
ti
m

e
 (

h
rs

)

combo5
combo6
combo7

0 2 4 6 8 10
5

10

15

20

25

30

35

40

45

Total memory v.s. Nodes

computing nodes

T
o

ta
l
m

e
m

o
ry

 (
G

B
)

combo5
combo6
combo7

0 2 4 6 8 10
5

10

15

20

25

30

35

Map memory v.s. Nodes

computing nodes

M
a

p
 m

e
m

o
ry

 (
G

B
)

combo5
combo6
combo7

0 2 4 6 8 10
0

2

4

6

8

10

12

14

Collate memory v.s. Nodes

computing nodes

C
o

lla
te

 m
e

m
o

ry
 (

G
B

)

combo5
combo6
combo7

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Reduce memory v.s. Nodes

computing nodes

R
e

d
u

c
e

 m
e

m
o

ry
 (

G
B

)

combo5
combo6
combo7

Figure 4. Performance plot of the proposed MapReduce-Based incremental PBA under different number of computing nodes. Each computing node is
configured with 10 process cores. Plots in the first row demonstrate (from left to right) the runtime of the program and the runtime portions of map operations,
collate operations, and reduce operations, respectively. Plots in the second row demonstrate the respective memory usage.

total runtime decreases as the number of computing nodes increases.

However, the rate of runtime reduction does not scale linearly but

tends to be gradually saturated after 5 nodes. The reason comes

from the cost of process communication. We can see the runtime

portion spent on the collate operation begins growing as the number

of nodes increases. At a more detailed view, it is observed that the

map operation takes the majority of runtime while the runtime spent

on the reduce operation is almost negligible. This is because the

map operation is responsible for the generation of task graphs and

extraction of critical paths, which is more time-consuming than the

sorting process in the reduce operation. Exact runtime values can

be referred to Table I. As aforementioned, the more the number

of computing nodes we use, the larger the amount of memory our

program invokes. This property is reflected on all map, collate, and

reduce operations.

VII. CONCLUSION

In this paper we have presented a fast incremental PBA algorithm

with MapReduce. To the best knowledge of the authors, this work

is the first attempt to deal with the incremental PBA problem

using distributed MapReduce. We have successfully formulated the

incremental PBA problem into key/value tasks that are solvable by

the popular MapReduce programming paradigm from big-data com-

munity. The experimental results have demonstrated the promising

performance of our approach whereby million-scale circuit graphs

subject to a critical amount of optimization transforms can be quickly

and accurately analyzed on a computer cluster. Our work can be

beneficial in assisting designers in speeding up the lengthy design

cycles of timing optimizations and timing closure.

REFERENCES

[1] Apache Hadoop: http://hadoop.apache.org/

[2] MapReduce MPI Library: http://mapreduce.sandia.gov/

[3] TAU 2014 CAD Contest on Common Path Pessimism Removal:

https://sites.google.com/site/taucontest2014/

[4] TAU 2015 CAD Contest on Incremental Timing Analysis:

https://sites.google.com/site/taucontest2015/

[5] S. Bhardwaj, K. Rahmat, and K. Kucukcakar, “Clock-

Reconvergence Pessimism Removal in Hierarchical Static

Timing Analysis,” US patent 8434040, 2013.

[6] J. Bhasker and R. Chadha, “Static Timing Analysis for Nanometer

Designs: A Practical Approach,” Springer, 2009.

[7] S. Cristian, N. H. Rachid, and R. Khalid, “Efficient exhaustive path-

based static timing analysis using a fast estimation technique,” US

patent 8079004, 2009

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Process-

ing on Large Clusters,” CACM, vol. 51, no. 1, 107–113, 2008

[9] J. Hu, D. Sinha, and I. Keller, “TAU 2014 Contest on Removing

Common Path Pessimism during Timing Analysis,” Proc. ACM

ISPD, pp. 153–160, 2014.

[10] T.-W. Huang, P.-C. Wu, and M. D. F. Wong, “UI-Timer: An

Ultra-Fast Clock Network Pessimism Removal Algorithm,” Proc.

IEEE/ACM ICCAD, pp. 758–765, 2014.

[11] T.-W. Huang, P.-C. Wu, and M. D. F. Wong, “Fast Path-Based

Timing Analysis for CPPR,” Proc. IEEE/ACM ICCAD, pp. 596–

599, 2014.

[12] T.-W. Huang and M. D. F. Wong, “Accelerated Path-Based Timing

Analysis with MapReduce,” Proc. ACM ISPD, pp. 103–110, 2015.

[13] O. Levitsky, “Sign Off Quality Hierarchical Timing Constraints:

Wishful Thinking or Reality?” TAU workshop, 2014.

[14] R. Molina, “EDA Vendors should Improve the Runtime Perfor-

mance of Path-Based Timing Analysis,” Electronic Design, 2013

6

