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Abstract—Task parallelism has emerged as an important tool
to program heterogeneous resources that comprise manycore
CPUs and GPUs. Among various tools that support task-parallel
programming, visualization plays a key role in enabling devel-
opers to intuitively understand the execution profile of tasks
and threads. However, as the complexity of parallel programs
continues to increase, the need to efficiently visualize millions
of tasks in an interactive environment has become the major
bottleneck to developer’s productivity. In this paper, we introduce
TFProf, a web-based visualizer to assist developers to profile the
execution of task-parallel programs in an easy-to-use browser
interface. By leveraging modern D3 and C++ technology, TFProf
can quickly visualize millions of tasks in a hierarchical level of
detail. We have integrated TFProf into the popular task-parallel
system, Taskflow, and demonstrated its practical use in large-scale
parallel applications.

I. INTRODUCTION

Recent years have seen a great deal amount of task-based
computing systems (TCSs), such as oneTBB [1], StarPU [2],
TPL [3], Legion [4], Kokkos [5], PaRSEC [6], HPX [7], and
Fastflow [8], that aim to assist developers with the building
of parallel and heterogeneous applications. Among various
support tools, many TCSs provide visualizers for developers
to intuitively inspect the execution of tasks using graphics
libraries (e.g., OpenGL, Qt). However, visualization tools of
existing TCSs are short of dynamic and large-scale rendering
that allow developers to visualize multi-million tasks in an
interactive environment. This shortage has largely limited
developers’ productivity in using existing TCSs [9].

In this paper, we introduce TFProf, a web-based visualizer
to assist developers to intuitively understand the execution
profile of task-parallel programs in an easy-to-use browser
interface.1 TFProf is built on top of our TCS, Taskflow [10],
[11], that is being used by many academic and industrial
projects.2 By leveraging modern D3 [12] and C++ technology,
TFProf efficiently visualizes millions of tasks in a hierarchical
level of detail (LOD) and enables interactive analysis of task
execution for improved user experience. Figure 1 shows an
overview of TFProf for visualizing a Taskflow program. The
top half shows the execution timeline of tasks in a selected
window and the bottom half ranks these tasks in ascending
order of their runtimes. We summarize our contributions as
follows:

1TFProf website: https://taskflow.github.io/tfprof/
2Taskflow project website: https://taskflow.github.io/

• We introduce a new browser-based visualization framework
that combines the popular D3 JavaScript library and the
powerful C++ programming language to render large task
execution data at a multi-million scale.

• We introduce efficient clustering algorithms to explore task
execution data in a hierarchical LOD that can be inter-
actively rendered by existing browsers with silky-smooth
animations.

• We have integrated TFProf into a real TCS, Taskflow, and
demonstrated its capability in rendering millions of parallel
tasks that are difficult to achieve using mainstream TCS
visualization tools.

Fig. 1: An overview of TFProf for visualizing a machine-
learning taskflow program [13]. TFProf leverages D3 and C++
to enable smooth visualization of large task-parallel programs
in an easy-to-use browser interface.

We believe TFProf stands out as a unique visualization tool
given the design trade-off and software decisions we have
made. TFProf is open-source at [13] and [14] to facilitate
intuitive support tools for debugging, performance profiling,
and tuning of large-scale high-performance computing (HPC)
applications.

II. MOTIVATION

TFProf is motivated by our Taskflow project [14] to vi-
sualize large parallel programs that incorporate millions of
tasks in a heterogeneous computing environment. Taskflow is a
general-purpose parallel and heterogeneous C++ programming
system using a task graph-based approach. In Taskflow, a
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task is the basic unit of computation executed by a worker
thread on either a central processing unit (CPU) or a graphics
processing unit (GPU). A worker is spawned by an executor to
run dependent tasks in a work-stealing loop for dynamic load-
balancing. Unlike existing TCSs that target small or medium
task graphs, Taskflow is designed for large-scale parallel
applications that spawn millions of CPU-GPU dependent tasks
to compute irregular simulation and optimization workloads.
Figure 2 shows a partial Taskflow graph that implements a
VLSI placement optimization workload [15]. The complete
graph has 1.7M tasks.
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Fig. 2: A partial Taskflow graph for a VLSI placement
optimization workload. The complete graph has 1.7M tasks.

While Taskflow can scale to millions of tasks, a key funda-
mental challenge has emerged: How can we efficiently visual-
ize a large number of tasks such that developers can intuitively
understand the execution profile of tasks and threads? To
address this challenge, we have researched many visualization
techniques in existing systems, such as the TBB FlowGraph
Analyzer [1], Visual Trace Explorer (VTE) [16], Nvidia Visual
Profiler (NVVP) [17], and so on. However, we found most of
them fall short of our need due to three limitations: First,
existing visualization tools are good at small- or medium-
scale tasking rather than large numbers of tasks. For example,
NVVP can take hours to visualize the execution timeline of
6K kernels. Second, most visualizers are static and do not
support interactive analysis with smooth transitions. The la-
tency between rendering different zoom sizes can be very high
when the task count becomes large. Third, there exists a steep
learning curve for users to visualize their parallel programs.
There is no push-button solution that allows developers to
quickly visualize their programs using an out-of-box interface
in just a few minutes.

After years of research, we decided to leverage the pop-
ular web-based visualization library, data-driven documents
(D3) [12], to tackle the limitations of existing visualizers in
the HPC community. D3 is a JavaScript library for producing
dynamic, interactive data visualizations in web browsers. It
makes use of scalable vector graphics (SVG), HTML5, and
cascading style sheets (CSS) standards. While D3 can improve
user-side experience by making interactive visualization in an
easy-to-use browser, it cannot process large data efficiently.
Specifically, D3 maps each SVG element in a document object
model (DOM) node and uses operators to manipulate them

in a similar manner to jQuery. Most browsers can efficiently
visualize 500–2000 DOM elements in the typical 60 frames
per second (fps) budget. However, beyond 2000 elements,
the rendering process significantly slows down and can easily
cause the browser to hang forever. For instance, when drawing
1M elements, Firefox emits the error of allocation size over-
flow and Google Chrome hangs for several minutes. Figure 3
plots the D3 rendering time under different numbers of DOM
elements we have measured in three major browsers, Google
Chrome, Firefox, and Microsoft Internet Explorer (IE).
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Fig. 3: Comparison of D3 rendering time between three
browsers, Google Chrome, Firefox, and Internet Explorer (IE),
at different numbers of DOM elements.

The most effective solution for rendering large data is
presenting them hierarchically or with LOD. LOD is a concept
that has been widely applied to various computer graph-
ics applications, such as pyramid in image processing and
mipmapping in 3D gaming. Regardless of the application, the
concept is the same–we squeeze large data into a smaller
visual space by downsampling it to a lower resolution and
display that instead. If the number of elements is large, we
display multiple levels of detail, each providing a higher level
summary of the level below it. One familiar application of
this technique is Google Maps [18], which has a database
of hundreds of terabytes yet is capable of showing users us
different sections of the globe in just a few milliseconds.

III. TFPROF: TASKFLOW PROFILER

This section introduces TFProf, a web-based visualizer
to assist developers to profile the execution of a Taskflow
program in an easy-to-use browser interface. TFProf has two
modes, client mode and server mode, for visualizing small-
scale and large-scales Taskflow programs, respectively.

A. Client Mode

Client mode of TFProf is completely written in JavaScript
and takes input data in JavaScript object notation (JSON)
format. Client mode is the easiest way to visualize a Taskflow
program because it does not require a server to set up
for processing task execution data. All Taskflow programs
come with a lightweight profiling module to observer worker
activities in every executor. To enable the profiler, users set
the environment variable TF_ENABLE_PROFILER to a file
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name in which the profiling result will be stored. An example
is shown in Listing 1.

˜ $ TF ENABLE PROFILER= r e s u l t . j s o n . / my taskf low
˜ $ c a t r e s u l t . j s o n
[{

” e x e c u t o r ” : ” 0 ” ,
” d a t a ” : [{

” worker ” : 12 ,
” l e v e l ” : 0 ,
” d a t a ” : [

{
” span ” : [

72 ,
117

] ,
”name ” : ” 12 0 ” ,
” t y p e ” : ” s t a t i c ”

} ,
. . . more t a s k d a t a

]
. . . more worker d a t a

} ]
. . . more e x e c u t o r d a t a

} ]

Listing 1: Generate a JSON-based profile data from a Taskflow
program. The JSON file defines three sections, executor,
worker, and task, to describe the execution timeline of a
Taskflow program.

The JSON output contains three sections of execution
information for a Taskflow program, executors, workers, and
tasks, in this order of hierarchy. The executor section contains
the information of workers spawned from that executor and the
worker section contains the time series data of task execution
of that worker. Users can just past the output JSON data to the
textbox of the client-mode TFProf in a browser and TFProf
will render the data in pre-defined SVG regions using D3,
as shown in Figure 1. In the main timeline chart, users can
select a window (i.e., zoom-in) to visualize a particular range
task execution timeline or double click the mouse to go back
to the previously selected window (i.e., zoom-out), as shown
in Figure 4 and Figure 5. The rendering between successive
windows can be done with smooth transition. The bar chart
in the bottom of the browser page will update the ranks of
tasks based on a selected window. For example, the bar chart
in Figure 4 sorts 33 tasks in ascending order of their execution
times, and the bar chart in Figure 5 sorts 15 tasks in the
selected window. Additionally, users can mouse over a task to
open the tooltip and examine the statistics (e.g., type, name,
runtime) of the task, as shown in Figure 6.

B. Server Mode

Although the client-mode TFProf is very easy to use,
it cannot present large data due to the inherent limitation
of browsers and JavaScript. Table I compares the runtime
of processing different JSON file sizes between mainstream
browsers. Most browsers can process JSON files of 15–30 MB
efficiently but they start slowing down significantly beyond
100 MB. In our case, large Taskflow programs can incorporate
millions of tasks and add up to gigabytes of JSON files that
cannot be handled by the client-mode TFProf. As an example,

Fig. 4: Users can select a window of timeline (i.e., zoom-
in) to visualize the task execution, as highlighted in the blue
rectangle. Double clicking the mouse can go back to the
previously selected window (i.e., zoom-out).

Fig. 5: Visualization of task execution in the selected window
of Figure 4. The middle bar shows the overview of the selected
window (marked in blue) in the overall execution length.

Fig. 6: Users can mouse over a task to see the statistics of the
tasks, including task name, task runtime, and task type, in the
opened tooltip.

our Taskflow-enabled circuit timing analysis algorithm can
spawn eight million tasks to propagate timing information
through giant circuit networks, and the JSON file can be up
to three gigabytes [19], [20], [21], [22].

To overcome this challenge, we have designed a server-
mode TFProf that leverages the power of D3 and C++. On
the front-end browser, we use D3 to visualize the selected
dataset. On the back-end server, we use C++ to establish a
lightweight database atop an HTTP server that communicates
with the front-end D3 visualizer. When users apply a change to

3
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TABLE I: Comparison of JSON processing time between
mainstream browsers at different JSON file sizes

JSON Size Chrome Firefox Safari IE
150 MB 16.4 s 14.3 s 5.1 s failed
115 MB 12.2 s 13.8 s 3.8 s failed
76 MB 9.1 s 12.2 s 2.5 s failed
38 MB 3.0 s 3.1 s 1.6 s 4.9s
15 MB 1.2 s 1.6 s 0.4 s 1.7s
7.8 MB 512 ms 1.1 s 243 ms 801 ms
3.9 MB 255 ms 646 ms 169 ms 408 ms

Fig. 7: Overview of server-mode TFProf, which is designed
for visualizing large task execution data of millions of tasks.

the chart (e.g., select a new timeline range), the browser sends
the request to the HTTP server and the server starts to process
the data using powerful C++. When the C++ program finishes
data processing, it sends back the result in JSON to the browser
for visualization. Figure 7 gives an overview of the server-
mode TFProf which contains more powerful toolboxes than
the client mode for users to visualize large Taskflow programs.
The most prominent difference is the view box, in which we
introduce two LOD algorithms, criticality view and cluster
view, to visualize millions of tasks hierarchically.

1) Criticality View: Criticality view lets users to select a
range of tasks sorted by their runtimes. The maximum size of
the range, k. is pre-defined to a value that can be fine-tuned
for each browser to render with smooth transition. The default
value is set to 1000 which allows D3 to visualize up to 1000
tasks with small latency on existing browsers. Criticality view
visualize the top-k critical tasks in a selected timeline and
allows users to understand which tasks take the most of the
time. This is very useful and important for users to optimize
most time-consuming tasks in a local range of their interest.
Figure 8 shows a criticality view of a Fibonacci taskflow under
a maximum rendering size of 512 tasks.

Fig. 8: Criticality view of a Fibonacci Taskflow program under
a maximum rendering size of 512 tasks.

2) Cluster View: Cluster view lets users to select a range
of tasks sorted by their runtimes. Since the selected range
may contain many tasks that cannot be rendered efficiently
by D3, we introduce a clustering algorithm to group adjacent
tasks in ascending distance until the number of tasks and
clustered tasks is below a maximum rendering threshold. The
motivation of cluster view is to present high-level summary of
task execution using suitable resolution, allowing users to see
the scheduling maps in a global view. Then, users can select
ranges of interest in a top-down fashion and gradually zoom in
the selected ranges for more details. Figure 9 shows a cluster
view of a Fibonacci taskflow under a maximum rendering size
of 512 tasks. Similarly, Figure 9 shows a cluster view of the
same program but under a limit of 200 tasks, and we can
see more tasks are grouped together to reduce the number of
rendered DOM nodes.

Fig. 9: Cluster view of a Fibonacci Taskflow program under a
maximum rendering size of 512 tasks. Gray rectangles show
clustered groups of tasks.

Fig. 10: Similar to Figure 9 but under a maximum rendering
size of 200 tasks.

IV. VISUALIZATION RESULTS

In this section, we present three large Taskflow programs
and their visualization results using TFProf.

A. VLSI Placement

We applied Taskflow to solve a VLSI placement problem
and use TFProf to visualize the task execution. The goal of
VLSI placement is to determine the physical locations of
cells (logic gates) in a fixed layout region using minimal
interconnect wirelength. Modern placement typically incorpo-
rates hundreds of millions of cells and takes several hours
to finish [15]. To reduce the long runtime, recent work
started investigating new CPU-GPU algorithms. We consider
a matching-based hybrid CPU-GPU placement refinement
algorithm in ABCDPlace [15], that iterates the following
(see Figure 11): (1) a GPU-based maximal independent set
algorithm to identify cell candidates, (2) a CPU-based partition
algorithm to cluster adjacent cells, and (3) a CPU-based
bipartite matching algorithm to find the best permutation of
cell locations. Each iteration contains overlapped CPU and
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GPU tasks with nested conditions to decide the convergence.
Figure 2 shows a partial taskflow graph of one iteration. A
complete task graph can have up to 1.7 million CPU-GPU
dependent tasks to place a million-gate design. Figure 12
shows the execution result in a cluster view. The rendering
time for transitioning between successive windows is only
about 10 ms.
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Fig. 11: A heterogeneous matching-based placement algo-
rithm [15] that iterates the following three steps: Step 1
leverages a GPU-based maximum independent set algorithm
to discover a set of independent nets. Step 2 leverages a
CPU-based partition algorithm to cluster adjacent cells. Step
3 leverages a CPU-based bipartite matching algorithm to find
the best permutation of cell locations with minimal wirelength.

B. Parallel Sort

We apply Taskflow to design a parallel-sort algorithm based
on the quick sort algorithm and visualize the task execution.
The taskflow graph spawns about 3M tasks to sort multiple
large arrays of billions of elements. Figure 14 shows the task
execution in cluster view, and Figure 15 shows the task exe-
cution in criticality view (top-512 critical tasks). Both views
present the same program but in different views, allowing users
to profile the task execution at different interest.

C. Parallel Iterations

We apply Taskflow to solve a matrix-multiplication work-
load using parallel-for tasks and visualize the task execution.
The taskflow graph spawns about 5.1M tasks to multiply
thousands of matrices in parallel. Figure 16 shows a cluster
view of the execution result. The bar chart of the top-339 tasks
in that selected window is shown in Figure 17. Figures 18–19
show two zoom-in views of Figure 16.

Fig. 12: Visualization result of a VLSI placement workload
(partial taskflow graph shown in Figure 2) that incorporates
1.7M CPU-GPU dependent tasks [15]. The rendering time is
about 981 ms for each selected range of tasks.

Fig. 13: Bar chart of the top-50 tasks in Figure 12.

Fig. 14: Cluster view of a parallel sort taskflow graph that
incorporates 2991763 tasks to sort multiple arrays of billions
of elements. The rendering time is about 781 ms for each
selected range of tasks.
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VI. CONCLUSION

In this paper, we have introduced TFProf, a scalable
visualizer to assist developers to profile the execution of
large Taskflow programs in an easy-to-use browser interface.
By leveraging modern D3 and C++ technology, TFProf can
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Fig. 15: Similar to Figure 14 but in the criticality view. The
rendering time is about 431 ms for each selected range of
tasks.

Fig. 16: Cluster view of the task execution result of a taskflow
graph that incorporates 5.1M tasks to compute thousands of
matrix multiplication instances in parallel. The rendering time
is about 1.7 seconds for each selected range of tasks under a
maximum rendering size of 512 tasks.

Fig. 17: Bar chart of the top-339 tasks in Figure 16.

Fig. 18: Zoom-in of Figure 16. Most tasks are presented in
clusters because the total number of tasks in the selected
window remains large.

Fig. 19: Zoom-in of Figure 18. At this level of hierarchy, all
tasks can be successfully rendered.

quickly visualize millions of tasks in a hierarchical level
of detail. We have integrated TFProf into the tool chain of
Taskflow and demonstrated its practical use in many large task-

parallel programs that incorporate millions of tasks. Future
work will enhance TFProf to visualize hierarhical task graph
parallelism [23] and mapping the task graph to the scheudling
result [24].
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