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Abstract—Acquiring significant speedup in gate-level
simulation has proven challenging due to limitations such
as synchronization and partition overhead. As a result, se-
rial event-driven simulation remains the industry standard
despite its slow runtime performance. This paper presents
the utilization of Taskflow, a task-graph computing system,
to effectively enhance the speedup of gate-level simulation.
Taskflow provides solutions to challenges faced in previous
attempts at parallelizing gate-level simulation, such as
scalable pipelines, conditional tasking, and heterogeneous
work stealing. The focus of the paper is on improving
speedup within and-inverter graphs, which are used to
represent structural implementations of circuits at the
gate-level. Experimental results demonstrate significant
speedup within and-inverter graph benchmarks.

Index Terms—gate-level simulation, and-inverter graph,
scalable pipeline, event-driven simulation, Taskflow

I. INTRODUCTION

THE study of gate-level simulation (GLS) is a cru-

cial step in the design verification process of an

integrated circuit (IC). Research in functional verification

indicates that design verification can consume up to 70%

of the overall time spent in product development [2].

After logic synthesis is applied to a chip, a gate-level

simulation (GLS) is performed. A GLS provides a netlist

view of all gates within the circuit. The netlist view

contains a detailed summary depicting all gates with their

wiring and timing behaviors. One example of this view

is an And-Inverter Graph (AIG), which are commonly

used in design verification due to their universality in

representing any boolean logic generated by a netlist

[28]. GLS algorithms can be used to model AIGs and

examine the wiring and timing behavior within them.

This information is crucial for various aspects of the

VLSI design process such as verifying dynamic circuit

behavior, fault testing, and performance and power val-

idation. Due to the importance of GLS, recent research

has focused on areas such as accelerated simulation

using GPUs [29] and minimizing failure through fault

simulation [19].

However, there are significant limitations to current

implementations of GLS that hinder performance during

this crucial step. Current commercial implementations

of GLS are event-driven, meaning that larger circuits

result in higher costs and lower performing chips [9].

As circuits increase in size, more ”events” are created

for GLS to process. These events include gate delays and

wire delays, which are sub-optimally processed in single-

core simulation, which result in longer runtimes. In the

past, distributed parallel simulation has been proposed

as a solution to improve speedup and performance [1],

[6]. However, prior attempts to introduce parallelism

to GLS have been unsuccessful due to issues such as

difficulty in partitioning and load balancing, overhead

between partitions, synchronization overhead imposed

by the distributed environment, and lack of concurrency

in the design process [1]. To address these limitations,

this paper introduces the use of a light-weight task

graph computing system (TGCS) called Taskflow [15].

Taskflow overcomes these limitations and introduces

parallelism to GLS design by doing the following:

• Multi-Core Simulations - Previous attempts to in-

troduce parallel simulations to GLS was met with

a lack of concurrency in design [1]. Taskflow ad-

dresses this limitations by treating the netlist gen-

erated by GLS as a directed acyclic graph (DAG)

and enabling distributed parallel simulations using

features such as heterogeneous work-stealing [22],

in-graph control flow, and an expressive program-

ming model [15]. The dynamic task parallelism en-

abled by heterogeneous work-stealing adapts thread

workers to the GLS netlist, allowing for parallelism

in any netlist. Additionally, Taskflow’s conditional

tasking model allows for end-to-end parallelism in

almost any DAG file, including those generated by

GLS. These features are possible due to Taskflow’s

implementation of modern C++ closures, which en-

able efficient parallel simulations without overhead

[15].

• Linear Chain Partitioning Algorithm - To par-

tition efficiently, researchers have proposed using

a hierarchy-based approach for circuit design [3].

However, this method is not applicable to GLS
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due to the need for serial partitioning. In order to

partition a GLS netlist correctly, this paper presents

a new partitioning algorithm that identifies linear

chains of gates on-the-fly. These linear chains are

processed in a serial manner, allowing for the in-

troduction of dynamic parallelism to GLS through

the use of a task-parallel pipeline.

• Scalable Pipeline - Taskflow offers composable

graph building blocks that enable efficient imple-

mentations of parallel algorithms based on design

input. This feature can be used to create a scalable

pipeline (also known as a task-parallel pipeline),

where pipes can be assigned dynamically rather

than instantiated at construction time. This approach

allows for linear chains to be constructed on-the-fly

for any GLS input, making the pipeline adaptable

to different designs.

To conduct this research, the AIG simulation algo-

rithm was tested on 18 different circuits represented

in DAG files, each with its own logic that needed to

be synthesized and optimized. The evaluation environ-

ment utilized three variables for testing: the number of

testbenches, the number of threads, and the number of

cycles. These variables were adjusted during the bench-

marking of the AIG simulation algorithm. The results

indicate that increasing parallelism through task-parallel

pipelining with Taskflow can significantly improve the

speedup of the AIG simulation algorithm, reaching up

to 79x in some cases. This reduction in synthesis and

verification times can greatly benefit gate-level simula-

tion and design verification as a whole.

II. MOTIVATIONS

This paper aims to address the need for introducing

parallelism to GLS as chip design continues to include

increasingly larger circuits. The research objective is to

advance very large-scale integration (VLSI) design by

incorporating heterogeneous parallelism in order to en-

hance speedup and decrease runtime. Unlike traditional

loop-parallel computing problems, many computer-aided

design (CAD) algorithms exhibit complex control flows

that can benefit from strategic task graph decomposition

and heterogeneous parallelism [15]. These advantages

can also be applied to GLS, as GLS also involves

complex control flows that have yet to fully leverage the

potential of heterogeneous parallelism using a traditional

TGCS.

III. RELATED RESEARCH

A. Using GPU Architecture

The utilization of Graphics Processing Units (GPUs)

as a tool to increase speedup through parallelization has

been increasingly popular in recent years [29]. GPUs

are used as parallel processing hardware platforms to

parallelize the design simulation, resulting in improved

speedup. Despite their potential for acceleration, GPUs

also present several challenges including communication

overhead between the CPU and GPU, inefficient task

scheduling, and suboptimal memory access patterns [1],

[29].

The benefit of using a TGCS like Taskflow as opposed

to GPUs is that it prevents communication overhead

between a host and device (CPU/GPU). Additionally,

Taskflow features efficient task scheduling which results

in an increase in speedup without the need for commu-

nication overhead.

B. Multi-core Simulations

Previous attempts to introduce parallelism in GLS

design have been made through multi-core machines [1],

[20]. The main concept behind multi-core parallelism is

to divide the netlist generated by GLS into sub-circuits

that can be propagated simultaneously. However, direct

applications of multi-core parallelism in GLS design

have been unsuccessful due to issues such as unbalanced

partitioning, lack of concurrency in the design partitions,

and communication and synchronization overhead [1].

Alternative ideas have been proposed to address some

of these challenges, such as using a prediction-based

model to minimize communication overhead [1], or

using temporal parallelism instead of spatial parallelism

to avoid design partitions altogether [20]. Despite these

methods showing some improvement in GLS design,

they only solve part of the problem. Therefore, event-

driven simulation remains the most widely used tech-

nique for design verification [20].

IV. IMPLEMENTATION DETAILS

This section discusses the four stages of implementa-

tion, baseline breadth-first search (BFS), basic taskflow
program, linear-chain partitioning algorithm, and scal-
able pipeline.

A. Baseline BFS

To evaluate the parallel effectiveness of Taskflow, a

basic Breadth-First Search (BFS) algorithm was imple-

mented in C++ to represent a serial GLS simulation. BFS

was chosen as the baseline because it is a widely used

and highly effective method for traversing graphs with

cycles. In this scenario, the BFS algorithm traverses all

successor gates from a starting node until all gates have

been successfully traversed.
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During the simulation, the program reads the input

stimuli (gates) provided by the GLS algorithm, as well

as user-defined inputs such as the number of cycles,

number of testbenches, and number of threads. In this

case, the GLS algorithm is the baseline BFS algorithm.

The program verifies the design by setting stimuli into

an output DOT (graph description language) file and

checking the output for correctness (as demonstrated in

Algorithm 1). The baseline implementation is a single-

threaded GLS simulation, which is then compared to a

multi-threaded Taskflow implementation. A timer is used

to measure various amounts of cycles and testbenches

for benchmarking the algorithm. The time measurements

are then recorded in a table for comparison and used to

calculate the speedup of the implementation. An example

of a table generated by the BFS implementation can be

seen in Table I.

Algorithm 1 Verifying Design

Require: c ≥ 0, b ≥ 0, g ≥ 0
for b in testbenches do

for c in cycles do
while g do � while a gate exists

set stimulus � GLS simulation algorithm

B. Taskflow

1) Logic Behind Using a TGCS: To incorporate het-

erogeneous parallelism into GLS design, a Taskflow

program was implemented. The concept behind this

approach is that a design netlist can be represented as

a directed acyclic graph, where each gate is a node

that can be propagated from one end to another. This

representation allows a Task-Graph Computing System

(TGCS) to create a task for each gate, enabling it

to be run through multiple worker threads to enable

parallelism.

2) Why Taskflow?: Taskflow provides unique solu-

tions to the known challenges of introducing parallelism

to design verification (as discussed in Section III.B)

that other TGCS programs do not offer, such as con-

ditional tasking and heterogeneous work-stealing [12],

[15]. These features allow for minimal communication

overhead between design partitions while maintaining

concurrency within the design partitions. To address the

challenge of unbalanced partitioning, Taskflow utilizes

a graph-based design instead of the loop-based design

commonly used in many TGCS programs. This feature

allows Taskflow to effectively parallelize and balance

partitions with the aid of a custom partitioning algorithm

and a scalable pipeline, which this paper introduces.

More importantly, Taskflow has been successfully ap-

plied to accelerate many circuit design problems [21],

[10], [16], [17], [26], [27], [8], [4], [30], [5], [7],

3) Taskflow GLS Algorithm: Similar to the baseline,

Taskflow takes the input stimuli from the input DAG file

and iterates through each gate. Since the input graph is

directed, the program iterates through levels (as shown in

Figure 1) to ensure that each gate is properly accessed.

This method requires tracking the dependencies of each

gate to ensure that the correct output is generated. For

each gate, a new Taskflow task is created. Once all gates

have been successfully iterated over, the dependencies

are rebuilt for each task (as demonstrated in Algorithm

2). The dependencies are rebuilt at the end of the

algorithm once all tasks are successfully generated.

Fig. 1: An example directed-acyclic graph that shows

levels by color.

Algorithm 2 GLS simulation Using Taskflow

for l in levels do
for g in gate do

for t in testbenches do
Emplace Task in Taskflow

track gate dependencies

build task dependencies

C. Linear-Chain Partitioning Algorithm

In order to create a scalable pipeline, a partitioning

algorithm is necessary that can partition a graph into sub-

graphs with minimal overhead. To achieve this, a custom

algorithm was developed that scans through edges and

vertices on-the-fly to detect linear-chains. A linear-chain

is a set of nodes that are serial, meaning a node only has

one predecessor or successor in a directed acyclic graph.

It is important to note that each node can only be part

of one linear-chain, otherwise there would be duplicate

nodes in the netlist. An example of this procedure can

be found in Fig. 2. Once a linear-chain is detected, the
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process of building a scalable pipeline on-the-fly can

begin.

Fig. 2: An example showing a correct linear-chain vs.

an incorrect linear-chain.

Algorithm 3 Custom Linear-chain Partitioning Algo-

rithm

while successor count == 1 do � While serial

if successor has only 1 predecessor then
if gate not in any linear chain then

add to linear chain

D. Scalable Pipeline

1) What is a Scalable Pipeline?: A scalable pipeline

is a task-parallel software pipeline that allows for dy-

namic assignment of pipes using range iterators (as

shown in Fig. 3) [?]. The level of parallelism is depicted

by the number of lines (rows) in the pipeline. This

type of pipeline allows for user-defined variables to

be constructed on-the-fly, unlike other pipelines that

instantiate all pipes at runtime. For a GLS simulation,

a scalable pipeline is crucial as it allows for pipes to

be reset through successive runs. Each run represents

a different linear chain of varying gate size. It is also

important to note that each gate is represented as a pipe

in a scalable pipeline.

2) Constructing the Scalable Pipeline: The Taskflow

GLS algorithm starts by scanning through each gate and

checking whether a linear chain exists using a custom

partitioning algorithm (as demonstrated in Algorithm 3).

Once a linear chain is detected, a pipeline is constructed

on-the-fly (as demonstrated in Algorithm 4). The number

of pipes is dependent on the number of gates inside a

single linear chain. Since multiple testbenches can exist

from a single stimuli, it is imperative that the pipeline

keeps track of how many testbenches the program has.

The number of testbenches is a fixed number that is

defined by user input, which the pipeline divides into

groups called batches. This procedure allows for each

pipe to run a separate batch, allowing for multiple

testbenches to be run concurrently. Therefore, maximum

parallelism is defined by dividing the number of test-

benches by the number of gates within a linear chain (as

illustrated in Fig. 4).

In Taskflow, a pipeline is represented as a single

task, which enables any serial chain (linear chain) to

be parallelized in conjunction with other gates. If a gate

is determined not to be a part of a linear chain, the gate

is run through the default Taskflow GLS algorithm, as

described in Section IV.B.

Fig. 3: A sample code snippet of a task-parallel pipeline

constructed by Taskflow [15].

Fig. 4: An example scalable pipeline with 4 gates and

1024 testbenches.

Algorithm 4 Scalable Pipeline Algorithm

for gate in linear chain do emplace pipe
for line in lines do � pipeline lines

simulate pipe
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V. RESULTS

We implemented this work on a Ubuntu Linux 5.0.0-

21-generic x86 64-bit machine with 40 Intel Xeon CPU

cores at 2.00 GHz, 4 GeForce RTX 2080 GPUs, and

256 GB RAM. The program is compiled using g++

with C++17 standard with -O3 enabled. Each value is

an average of five runs. Five runs was selected since

the runtime deviation between each run was negligent

(standard deviation close to 1). Circuit benchmarks are

derived from real-world industrial designs in [18], [11].

A. Experimental Setup

TABLE I: Linear scalability of the serial baseline imple-

mentation

Testbenches 100 Cycles 1000 Cycles 10000 Cycles

1 0.004s 0.05s 0.3054s
10 0.048s 0.2989s 2.72s
100 0.31s 2.66s 25.65s

TABLE II: Multi-core analysis of Taskflow

Testbenches 1 Thread 4 Threads 8 Threads Speedup(8)

100 56.39s 21.32s 15.63s 3.6
1000 477.42s 134.26 74.153s 6.44

TABLE III: Benchmark metrics

Benchmark #Edges #Nodes #Linear Chains

sim01 12 11 2

sim02 12 11 2

sim03 12 11 2

sim04 1 3 0

sim05 25 16 2

sim06 10716 6451 1048

sim07 19069 9637 195

sim08 12 11 2

sim09 6695 3588 123

sim10 1433 754 1

sim11 6 7 2

sim12 18729 9364 1

sim13 166763 88411 3330

B. Experimental Analysis

1) Serial Baseline: The baseline implementation was

designed to simulate a typical event-driven scenario.

As per the data in Table 1, it was observed that the

runtime increased in a linear manner in accordance

with the number of cycles. Furthermore, as the number

of testbenches and cycles increased, the runtime also

increased significantly, as expected.

TABLE IV: Runtime comparison between scalable

pipeline and baseline using 16 threads and two batches

Benchmark Testbenches Baseline(s) Pipeline(s) Speedup

sim01 10k <1s <1s -
sim01 30k <1s <1s -
sim01 65k <1s <1s -

sim02 10k <1s <1s -
sim02 30k <1s <1s -
sim02 65k <1s <1s -

sim03 10k <1s <1s -
sim03 30k <1s <1s -
sim03 65k <1s <1s -

sim04 10k <1s <1s -
sim04 30k <1s <1s -
sim04 65k <1s <1s -

sim05 10k <1s <1s -
sim05 30k <1s <1s -
sim05 65k <1s <1s -

sim06 10k 1.74 <1s 13x
sim06 30k 10.2 <1s 30x
sim06 65k 21.4 <1s 30x

sim07 10k 2.82 <1s 28x
sim07 30k 13.3 <1s 49x
sim07 65k 35.2 <1s 66x

sim08 10k <1s <1s -
sim08 30k <1s <1s -
sim08 65k <1s <1s -

sim09 10k <1s <1s -
sim09 30k 2.56 <1s 18x
sim09 65k 7.5 <1s 28x

sim10 10k <1s <1s -
sim10 30k <1s <1s -
sim10 65k <1s <1s -

sim11 10k <1s <1s -
sim11 30k <1s <1s -
sim11 65k <1s <1s -

sim12 10k 2.79 <1s 28x
sim12 30k 14.98 <1s 60x
sim12 65k 35.46 <1s 69x

sim13 10k 60.92 <1s 79x
sim13 30k 217.43 3.76 57.8x
sim13 65k 558.13 8.35 66.8x

2) Scalable Pipeline Speedup: Table 3 illustrates the

metrics used to evaluate the performance of the GLS im-

plementations. The benchmarks selected for testing were

diverse in terms of size, in order to comprehensively

evaluate the GLS algorithm. It is worth noting that even

though some benchmarks may have the same number

of edges and vertices, their graph structure may not be

identical. These benchmarks were chosen to also cover

edge cases. Additionally, the table tracks the number of

linear chains within each benchmark, as determined by

the custom partitioning algorithm.

Table 4 demonstrates significant speedup in all cases

when compared to the serial baseline GLS algorithm.

It is important to note that the speedup for small cases

was not considered since the runtime was deemed too
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Fig. 5: Runtime Scalability of Four Largest Benchmarks Using a Scalable Pipeline

insignificant to be relevant. In larger cases, the speedup

is shown to be between 13x and 79x. Additionally, it

can be seen that as the benchmark and testbench size

increases, the speedup between the baseline and pipeline

implementation also increases. Given that circuit size is

rapidly increasing over time, it is expected that using

Taskflow for GLS will significantly reduce the time

required for design verification.

3) Runtime Scalability Using a Scalable Pipeline:
Figure 5 offers a detailed examination at the runtime

scalability of the scalable pipeline implemented by

Taskflow. For the four largest benchmarks, the runtime

scalability remained relatively consistent across each

benchmark. As the number of threads increased, the

runtime was shortened in all cases. The most substantial

improvement in performance was observed between 1-

4 threads. While using more than four threads does

result in further reduction of runtime, the speedup is

considered insignificant when taking into account the

overhead costs.

VI. CONCLUSION

In this paper, we proposed the use of a task-graph

computing system named Taskflow to enable hetero-

geneous parallelism in gate-level design. Our approach

is validated using and-inverter graphs, which serve as

a structural representation of gate-level designs. We

explore the concept of event-driven simulation and the

requirement for parallelism in GLS design. We have

developed a GLS algorithm that significantly improves
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speedup by up to 79x. The speedup is achieved due

to parallel techniques such as conditional tasking, het-

erogeneous work stealing, and scalable pipelines. We

have also compared this new parallel GLS algorithm

to a serial baseline implementation to demonstrate the

superiority of our approach over the standard industry

implementation. For future work, we plan to leverage the

new CUDA Graph execution model [23], [24], [25] or

distributed computing to handle large-scale designs [13],

[14].
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