
Grand Challenge: MtDetector: A High-performance Marine
Tra�ic Detector at Stream Scale

Chun-Xun Lin∗
ECE Dept, UIUC, IL
clin99@illinois.edu

Tsung-Wei Huang∗
ECE Dept, UIUC, IL

twh760812@gmail.com

Guannan Guo
ECE Dept, UIUC, IL

guannan4@gmail.com

Martin D. F. Wong
ECE Dept, UIUC, IL

mdfwong@illinois.edu

ABSTRACT
In this paper, we present MtDetector, a high performance marine
tra�c detector that can predict the destination and the arrival time
of travelling vessels. MtDetector accepts streaming data reported
by the moving vessels and generates continuous predictions of the
arrival port and arrival time for those vessels. To predict the des-
tination for a ship, MtDetector builds a neural network for every
port and infers the arrival port for vessels based on their departure
port. For the arrival time prediction, we derive informative features
from training data and apply Deep Neural Network (DNN) to esti-
mate the traveling time. MtDetector is built on top ofDtCraft [1, 2],
a high-performance distributed execution engine for stream pro-
gramming. By utilizing the task-based parallelism in DtCraft, Mt-
Detector can process multiple predictions concurrently to achieve
high throughput and low latency.

CCS CONCEPTS
• Theory of computation → Distributed computing models;
• Computing methodologies→Neural networks; • Software
and its engineering→ Cloud computing;

KEYWORDS
Distributed System, Marine Tra�c,Machine Learning, Stream Pro-
cessing
ACM Reference Format:
Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin D. F.
Wong. 2018. Grand Challenge: MtDetector: A High-performance Ma-
rine Tra�c Detector at Stream Scale. In DEBS ’18: The 12th ACM In-
ternational Conference on Distributed and Event-based Systems, June 25–
29, 2018, Hamilton, New Zealand. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3210284.3220504

1 DEBS18 GC PROBLEM FORMULATION
In the 2018 DEBS Grand Challenge [3], the task is to predict the
destination and arrival time given the spatio-temporal streaming
data from vessels. The data is a sequence of tuples where each tu-
ple contains the ship ID, ship type, speed, longitude, latitude, course,
heading, time stamp, departure port and draught. A list of ports and
∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
DEBS ’18, June 25–29, 2018, Hamilton, New Zealand
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5782-1/18/06. . . $15.00
https://doi.org/10.1145/3210284.3220504

a set of training data are provided for building machine learning
models. The evaluation takes both the prediction accuracy (75%)
and the system performance (25%) into account. The formula to
calculate the accuracy of arrival port prediction for a trip is:

Accuracy =
The length of the last correctly predicted sequence

The total number of tuples in a trip

The formula to calculate the accuracy of arrival time:

Accuracy =

∑
|Predicted arrival time - real arrival time|

The total number of tuples

Here is an example demonstrating the accuracy calculation
of port prediction: Assume a trip’s destination is port A and
there are 10 tuples in this trip. If the predicted sequence is
{B,A,A,A,A,C,B,A,A,A}, the accuracy of the prediction is 3

10 =
0.3, even though the total number of correct labels is seven. There-
fore, the evaluation metric is the key that makes the contest chal-
lenging. The accuracy value of arrival port prediction is only com-
puted from the earliest correct point. One may generate 99% cor-
rect label prediction while making a wrong label near the end of
the sequence can cause the �nal accuracy to drop to 0%.

2 ARRIVAL PORT PREDICTION
2.1 Arrival Port Neural Network Classi�er
To predict the destinations of vessels, our idea is to build a neural
network classi�er to predict the arrival port. Because the port list
is known, MtDetector builds a neural network classi�er per port to
predict the destinations of ships departing from the port. The idea
comes from the observation that ships departing from the same
port only arrive at a speci�c subset of ports. Thus, separating the
models for ports can e�ectively reduce the solution space and im-
prove the prediction accuracy. Next we select features that are use-
ful for port prediction, including ship type, ship position (longitude
and latitude), speed, course, and o�set of longitude and latitude from
the ship’s positions to all the ports. The ship type is useful in the
sense that ships with same type might follow the same route. The
ship’s position and o�sets convey meaningful spatial information
such as how long the ship has travelled and the distance between
the ship and other ports. Speed is selected because a ship will grad-
ually slow down when approaching its destination and course re-
�ects the ship’s intended route direction.

2.2 Incremental Majority Filter
A stable prediction result is critical for the accuracy of arrival port
prediction. To prevent the prediction from changing frequently
due to the noise such as ship drifting or wandering, we design an

205

incremental majority �lter algorithm to reduce the variation in pre-
dictions. For each trip, we record the predictions made by the neu-
ral network up to the current time stamp. Then we select the most
frequently predicted port in the record as the new prediction. Con-
sider the previous example whose predicted sequence from neural
network is:

Predicted sequence = {B,A,A,A,A,C,B,A,A,A}

Then the sequence after applying the incremental majority �lter
becomes:

Predicted sequence = {B,A,A,A,A,A,A,A,A,A}

And the accuracy is increased from 30% to 90% in this case. The
rationale behind this is we only accept the prediction change
when there exists su�cient observations supporting the change.
In above example, the occurrence of B and C are both less than
A up to the current time stamp. Hence, they are treated as noise
and being rejected by the �lter. Although the algorithm does not
guarantee to derive better accuracy after �ltering, we �nd this al-
gorithm does improve the accuracy notably in our experiments.

3 ARRIVAL TIME PREDICTION
Several research [4] [5] have shown the e�ectiveness of machine
learning onmaritime tra�c arrival time prediction. MtDetector ap-
plies a Deep Neural Network (DNN)-based approach to estimate
the relationships among variables and �nd a network that pro-
duces the best prediction accuracy.

3.1 Feature Selection
Feature selection plays the most important role in the solution
quality of a DNN. Prior works assume data independence and hope
the DNN to dig out important information from the data. However,
we have found this insu�cient for generating a descent result, pri-
marily due to the large dependencies among data. For example, the
position (latitude, longitude), speed, and heading of a moving ship
all connect to each other between successive reports. Therefore, we
consider the following ten features in our DNN: time stamp, ship
type, speed, longitude, latitude, course, cumulative distance, cumula-
tive time, heading, and bearing. Figure 1 shows the DNN structure
of our default arrival time predictor.

Figure 1: MtDtector’s default arrival time predictor.

In addition to the features provided by the contest, we add three
more features to our model, bearing, cumulative distance, and cu-
mulative time. Bearing is de�ned as the angle between a ship’s
current position and the magnetic North. Cumulative distance is
the total moving distance from a ship’s departure to its current
time stamp, measured over the earth’s surface. Cumulative time
is the total traveling time of a ship from departure to its current
time stamp, measured in minutes. In fact, cumulative distance and
cumulative time contribute a lot to the �nal accuracy value. Intu-
itively speaking, the larger the two values, the sooner a ship will
arrive in its destination. These features are calculated on a per trip
basis. A trip is de�ned as a single travel between two ports.

3.2 Model Selection
As ships belong to multiple types, it is di�cult to have a universal
model estimating ships’ arrival times under distinct conditions, for
example, vessel size, speed, draught, and shapes. To mitigate this
problem,we apply di�erent DNNs for di�erent ship types. For each
ship type, we conduct grid search in terms of number of layers,
number of neurons, mini-batch size, and learning rate to obtain the
best DNN structure. In fact, we also tried other machine learning
techniques such as Recurrent Neural Network (RNN) and Logistic
Regression. DNN turns out to outperform others. The data is split
to two sets, 95% for training and 5% for testing/validation. Since
the training set contains only a limited number of ship types, we
generate a default DNN across all ship types. If during the online
benchmarking one ship type is not found, the default DNN is used
to predict its arrival time.

4 MTDECTOR ON THE HOBBIT PLATFORM
The MtDetector contains three parts: an adaptor, a command com-
ponent and a task component. Figure 2 shows the system archi-
tecture of MtDtector. The Hobbit Platform uses RabbitMQ to cre-
ate message queues for communication between systems and the
adaptor is used to set up connections to the queueswhen theMtDe-
tector activates. Once the queues are successfully connected, Mt-
Detector launches a command component and a task component
to handle the incoming messages from the command queue and
task queue respectively.

MtDetector is highly parallel as every component is executed
by an individual thread. The command component listens to the
command queue and reacts on di�erent system control commands
such as notifying the task component when receiving a task gen-
erator �nish signal. The task component listens to the task queue
and makes predictions for incoming tasks. A task can be either
predicting the arrival port or the arrival time of a ship and MtDe-
tector identi�es the type of task through examining the environ-
ment variables. Task components utilizes a thread pool to simulta-
neously handle multiple tasks to increase the throughput. When
a message arrives, the task component extracts the task from the
message and inserts the task into a work queue. The thread pool
has several threads monitoring the work queue and a thread will
be dispatched to process an awaiting task in the �rst-come-�rst-
serve manner. The work thread forwards the prediction result to

206

Figure 2: The system architecture ofMtDetector.MtDetector consists of three components: an adaptor, a command component
and a task component.Hobbit platform relies on queues to exchange data between systems, and the adaptor builds connections
to those queues (task, command, result). Once the connections are set up, the command component and task component will
be launched to handle the incoming messages. Both components are executed by individual threads to increase e�ciency.
When receiving a task message (i.e., ship data tuple), the task component extracts the task from the message and inserts the
task into a work queue. A thread pool then dispatches a thread to process an awaiting task in work queue and send the result
to the evaluation storage.

the task component after processing the task, and the task compo-
nent sends both the task ID and the prediction to the evaluation
module.

5 EXPERIMENTAL RESULTS
We discuss in this section the experimental results of MtDe-
tector on two data sets, debs18_training_fixed_3.csv and
debs18_training_labeled.csv, released by the o�cial contest.
The total number of ports is 40 in the Mediterranean sea.

5.1 Arrival Port Predictor
We �rst evaluate the port predictor on the given training data. The
experiment is conducted on a single machine with 4 CPUs and 24
GB memory. We split the training data into trips based on the time
stamp and departure/arrival ports and then categorize the trips
based on their departure ports. For each port, we use the corre-
sponding trips to build a neural network classi�er with a hidden
layer containing 90 neurons. The parameters of each neural net-
work: batch size is 32, learning rate is 0.0003 and the number of
epoch is 300. We take 95% of the tuples as training data set and 5%
trips as the testing data set and report the average of total correct
predictions made by neural network, the average prediction accuracy
without incremental majority �lter and the average prediction accu-
racy with incremental majority �lter.

Table 1 shows the results of our port predictor. For most of the
ports, our neural network classi�er obtains high accuracy consid-
ering the number of total correct prediction. However, the accu-
racy drops signi�cantly when being evaluated by the last correctly
predicted sequence, for example, for port GEMLIK the accuracy de-
creases to 0.001 even 90% of the tuples are correctly predicted. This
is expected as a wrong prediction zeros out the accuracy regardless
of the past predictions. This issue is substantially mitigated after
applying the incremental majority �lter. It is shown that in most

Table 1: Results of Arrival Port Prediction

Port Ratio of
correct labels

Accuracy
(w.o. IMF)

Accuracy
(w. IMF)

ALEXANDRIA 0.5 0.5 0.5
AUGUSTA 0.8165 0.5768 0.7462

BARCELONA 0.9665 0.5764 0.9574
CARTAGENA 0.9931 0.9931 0.9882

CEUTA 0.7907 0.6713 0.6667
DAMIETTA 0.9327 0.0 0.8969
DILISKELESI 0.2442 0.0 0.0
FOS SUR MER 0.6991 0.006579 0.4458

GEMLIK 0.9296 0.001675 1.0
GENOVA 0.9579 0.6634 0.9449

GIBRALTAR 0.8598 0.3675 0.7877
HAIFA 0.9099 0.8049 0.866

ISKENDERUN 0.8304 0.8164 0.6954
LIVORNO 0.8636 0.4577 0.7744

MARSAXLOKK 0.975 0.7543 0.9574
MONACO 0.9724 0.7793 1.0
NEMRUT 0.959 0.808 0.9702
PALMA DE
MALLORCA 0.8921 0.471 0.8832

PIRAEUS 0.9636 0.9178 0.9751
PORT SAID 0.9967 0.02455 1.0

TARRAGONA 0.8851 0.4215 0.844
TUZLA 1.0 1.0 1.0

VALENCIA 0.9451 0.9169 0.8934
VALLETTA 0.9921 0.9107 0.9862
YALOVA 1.0 1.0 1.0

cases the incremental majority �lter can keep the accuracy more
closer to the number of total correct predictions, preventing the

207

accuracy drop caused by the wrong prediction. We believe this is
due to the e�ective reduction of varying prediction.

5.2 Arrival Time Predictor
The second experiment is to evaluate the arrival time prediction
of MtDetector. Table 2 lists our DNN model parameters for ar-
rival time prediction. In each column, “Type" denotes the ship type,
“Layer" denotes the network structure, “Lrate" denotes the learning
rate, “Decay" denotes the rate we reduce the learning rate for every
10000 epochs, “B" denotes themini-batch size used during training,
“Epoch" denotes the number of training epochs, and “MAE" repre-
sents the Mean Absolute Error (MAE) in minutes across the whole
data set. We evaluated our model on an emulated environment of
two nodes using the DtCraft system [1], where one node sends the
ship data and another node performs the prediction. Each node has
4 CPUs and 28 GB RAM

Table 2: Results of Arrival Time Prediction
Type Layer Lrate Decay B Epoch MAE (m)
0 10x20x1 0.01 0.95 32 7000 267.886
20 10x10x1 0.01 0.95 16 5000 124.287
30 10x8x1 0.01 0.95 32 7000 263.289
32 10x14x1 0.01 0.95 32 8000 98.9761
34 10x20x1 0.01 0.95 64 9000 90.0325
36 10x30x1 0.01 0.95 32 9000 300.879
37 10x18x1 0.01 0.95 16 8000 621.656
51 10x32x1 0.01 0.95 32 10000 82.5672
52 10x30x1 0.01 0.95 16 7000 502.426
60 10x32x1 0.01 0.95 64 7000 126.394
66 10x12x1 0.01 0.95 64 4000 51.90
69 10x30x1 0.01 0.95 32 9000 186.153
70 10x24x1 0.01 0.95 32 50000 827.382
71 10x22x1 0.01 0.95 64 50000 392.387
72 10x30x1 0.01 0.95 64 50000 83.3375
73 10x12x1 0.01 0.95 16 50000 38.6481
74 10x26x1 0.01 0.95 32 50000 113.232
76 10x30x1 0.01 0.95 64 8000 19.4973
79 10x30x1 0.01 0.95 64 8000 278.228
80 10x22x1 0.01 0.95 32 50000 443.919
81 10x16x1 0.01 0.95 16 50000 543.749
82 10x32x1 0.01 0.95 64 50000 13.1808
83 10x20x1 0.01 0.95 32 50000 35.3363
84 10x20x1 0.01 0.95 16 10000 26.4493
85 10x20x1 0.01 0.95 32 7000 24.7699
89 10x22x1 0.01 0.95 64 9000 189.787
90 10x24x1 0.01 0.95 16 10000 137.897
99 10x8x1 0.01 0.95 16 10000 51.2497

The results indicate two strengths of MtDetector: (1) Having
di�erent models for ship types can e�ectively estimate the arrival
time with MAE less than one day. In many cases, the MAE can
be less than 1 hour. (2) Our feature selection method e�ciently
reduces the DNN size. One layer is su�cient for all cases, which
would otherwise take more than three layers to generate similar
results by using only the raw features.

In addition to DNN, we have tried Recurrent Neural Network
(RNN)-based regression to estimate the arrival time. RNN is a pop-
ular method that has shown great promise in many Natural Lan-
guage Processing (NLP) tasks. The idea is to extract trips from each
ship and use a trip as the basic unit during the training. A trip is a
route ordered by time stamp between two ports.

Table 3: Comparison between DNN and RNN
Method Layer Lrate Train MAE (m)
DNN 10x32x1 0.01 >10 hr 234.217
RNN 10x32x1 0.01 1 hr 767.044

Unfortunately, RNN cannot generate a good quality result as
DNN. As presented in Table 3, the solution quality of RNN in terms
of MAE is much worse than DNN in an example data set. Also, the
complexity to train a RNN is much higher than a DNN (>10 hr
vs 1 hr). With the information provided in the contest dataset, it
is very di�cult to correctly identify trips out of each ship. Even
though there are heuristics to mitigate this problem, most of them
compromise on accuracy. Besides, RNN faces the problem of van-
ishing gradient and exploding gradient problem in training a long
trip. These issues make it critical to apply RNN to solve this prob-
lem.

6 CONCLUSION
In this paper, we introduce MtDetector, a high-performance ma-
rine tra�c detector to predict the arrival port and arrival time of
vessels. For arrival port prediction, we build a neural network clas-
si�er for each port which e�ectively reduces the solution space.
Furthermore, considering the evaluation method, we develop an
incremental majority �lter to enhance the prediction accuracy. For
arrival time prediction, we propose to build deep neural network
regressors based on the ship type as ships with the same type have
more similar characteristics. The experimental results demonstrate
the high prediction accuracy of MtDetector in both the port and
time prediction.

7 ACKNOWLEDGMENT
We appreciate all reviewers’ e�orts on reviewing this work. Special
thanks go to contest organizers (Zbigniew Jerzak, Pavel Smirnov,
Martin Strohbach, Holger Ziekow, and Dimitris Zissis) for their
hard work on helping contestants resolve various technical issues
throughout the contest.

REFERENCES
[1] DtCraft. http://dtcraft.web.engr.illinois.edu/.
[2] T.-W. Huang, C.-X. Lin, and Martin D. F. Wong. DtCraft: A High-performance

Distributed Execution Engine at Scale. In IEEE TCAD, 2018.
[3] Vincenzo Gulisano, Zbigniew Jerzak, Pavel Smirnov, Martin Strohbach, and Hol-

ger Ziekow. The DEBS 2018 grand challenge. In Proceedings of the 12th ACM Inter-
national Conference on Distributed and Event-based Systems, DEBS 2018, Hamilton,
New Zealand, June 25-29, 2018, 2018.

[4] Andrius Daranda. A neural network approach to predict marine tra�c. Techni-
cal Report MII-DS-07T-16-9-16, Vilnius University, Institute of mathematics and
informatics, Lithuania, Oct 2016.

[5] Ioannis Parolas. ETA prediction for containerships at the Port of Rotterdam using
Machine Learning Techniques. Master’s thesis, Delft University of Technology,
the Netherlands, 2016.

208

