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Abstract

Background: The use of artificial intelligence (AI) in the medical domain has attracted considerable research interest. Inference
applications in the medical domain require energy-efficient AI models. In contrast to other types of data in visual AI, data from
medical laboratories usually comprise features with strong signals. Numerous energy optimization techniques have been developed
to relieve the burden on the hardware required to deploy a complex learning model. However, the energy efficiency levels of
different AI models used for medical applications have not been studied.

Objective: The aim of this study was to explore and compare the energy efficiency levels of commonly used machine learning
algorithms—logistic regression (LR), k-nearest neighbor, support vector machine, random forest (RF), and extreme gradient
boosting (XGB) algorithms, as well as four different variants of neural network (NN) algorithms—when applied to clinical
laboratory datasets.

Methods: We applied the aforementioned algorithms to two distinct clinical laboratory data sets: a mass spectrometry data set
regarding Staphylococcus aureus for predicting methicillin resistance (3338 cases; 268 features) and a urinalysis data set for
predicting Trichomonas vaginalis infection (839,164 cases; 9 features). We compared the performance of the nine inference
algorithms in terms of accuracy, area under the receiver operating characteristic curve (AUROC), time consumption, and power
consumption. The time and power consumption levels were determined using performance counter data from Intel Power Gadget
3.5.

Results: The experimental results indicated that the RF and XGB algorithms achieved the two highest AUROC values for both
data sets (84.7% and 83.9%, respectively, for the mass spectrometry data set; 91.1% and 91.4%, respectively, for the urinalysis
data set). The XGB and LR algorithms exhibited the shortest inference time for both data sets (0.47 milliseconds for both in the
mass spectrometry data set; 0.39 and 0.47 milliseconds, respectively, for the urinalysis data set). Compared with the RF algorithm,
the XGB and LR algorithms exhibited a 45% and 53%-60% reduction in inference time for the mass spectrometry and urinalysis
data sets, respectively. In terms of energy efficiency, the XGB algorithm exhibited the lowest power consumption for the mass
spectrometry data set (9.42 Watts) and the LR algorithm exhibited the lowest power consumption for the urinalysis data set (9.98
Watts). Compared with a five-hidden-layer NN, the XGB and LR algorithms achieved 16%-24% and 9%-13% lower power
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consumption levels for the mass spectrometry and urinalysis data sets, respectively. In all experiments, the XGB algorithm
exhibited the best performance in terms of accuracy, run time, and energy efficiency.

Conclusions: The XGB algorithm achieved balanced performance levels in terms of AUROC, run time, and energy efficiency
for the two clinical laboratory data sets. Considering the energy constraints in real-world scenarios, the XGB algorithm is ideal
for medical AI applications.

(J Med Internet Res 2021;23(11):e28036) doi: 10.2196/28036
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Introduction

Machine learning (ML) methods have been successfully
employed in various medical fields [1-5], and energy
consumption during ML inference has been attracting increasing
attention [6-8]. The increasing focus on inference energy can
primarily be attributed to two reasons. First, energy constraints
constitute a major issue when ML is deployed into
battery-powered medical devices [9-11]. Second, to achieve
high predictive performance, the computation and memory
requirements of ML models have increased. The growth of
model size has been well reflected in neural networks (NNs)
over the last decade, which are considered as the main ML
algorithms implemented during this period.

An optimal ML model should achieve balanced predictive
performance and energy efficiency. However, most relevant
studies have only focused on comparing the predictive
performance of different ML algorithms [12-14] and have not
thoroughly explored the energy efficiency of different ML
algorithms in the medical domain. Data formats in the medical
field are diverse, and clinical laboratory data are a common type
of medical data. In real-world settings, single laboratory tests
must be subjected to strict validation procedures before their
clinical use. Thus, the data obtained from such tests usually
comprise features that are highly associated with the prediction
targets. The characteristics of clinical laboratory data sets are
unique, and the energy efficiency of different ML algorithms
for processing clinical laboratory data sets warrants
investigation.

A partial explanation for the poor understanding of energy
efficiency is that estimating energy consumption is more
difficult than estimating other metrics (eg, accuracy) [15].
Several methods exist for evaluating the energy consumption
of ML models. Computational complexity can be used for
theoretically approximating the number of operations; thus, it
can be used to estimate energy consumption (Multimedia
Appendix 1) [16-18]. Studies have established formulas for
estimating energy consumption; these formulas sum the energy
consumption levels of different elementary operations on the
basis of complexity theory and benchmark results [7,19].
However, these formulas are available for only specific ML

models and cannot be expanded to all algorithms. In addition
to the aforementioned estimation formulas, experimental
approaches can be used for estimating energy consumption.
Currently, simulation and performance counters are the two
main approaches for experimentally estimating energy
consumption [15]. Although simulations enable fine-grained
energy estimation at the architecture and instruction levels, the
use of simulations for large-scale ML tasks is not feasible due
to the considerable overhead involved [15]. By contrast,
performance counters, which are a set of registers in processors
that log specific hardware-related events, do not generate any
overhead; therefore, these counters are suitable for use in
different ML applications.

In this study, we estimated the power consumption of nine
algorithms during ML inference: logistic regression (LR),
k-nearest neighbor (kNN), support vector machine (SVM),
random forest (RF), extreme gradient boosting (XGB), and four
NN-based algorithms. These algorithms were used to classify
two clinical laboratory data sets: a large binary feature set and
a small integer feature set. The following performance measures
were recorded: accuracy, area under the receiver operating
characteristic curve (AUROC), time consumption, and power
consumption. The time and power consumption were determined
using performance counter data from Intel Power Gadget 3.5.
Finally, we performed statistical tests to validate our results.
The results indicated the energy efficiency of each investigated
ML algorithm in medical applications.

Methods

Study Design and Environmental Settings
Figure 1 illustrates the process flowchart of this study. We used
two preprocessed data sets to train ML models with the nine
considered algorithms: a mass spectrometry data set, based on
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry data of Staphylococcus aureus for predicting
methicillin resistance, and a urinalysis data set, based on
urinalysis data for predicting Trichomonas vaginalis infection.
Subsequently, we comprehensively evaluated the trained models
in terms of predictive performance, time consumption, and
power consumption using independent testing data.
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Figure 1. Process flowchart of this study. LR: logistic regression; kNN: k-nearest neighbor; SVM: support vector machine; RF: random forest; XGB:
extreme gradient boosting; NN1: one-hidden-layer neural network; QNN: quantized five-hidden-layer neural network; PNN: pruned five-hidden-layer
neural network; NN5: five-hidden-layer neural network; AUROC: area under the receiver operating characteristic curve.

All experiments were run on a Windows 10 personal computer
with 4 GB RAM and a 2.3 GHz Intel Core i5-8300H central
processing unit (CPU). All ML models were implemented using
Python 3.7.1 with the following Python libraries: scikit-learn
0.23.1 [20], xgboost 0.90 [21], and pytorch 1.8.1 [22]. Intel
Power Gadget 3.5 [23] was used to acquire time and power
measurements. Additional details regarding the power
measurement and Intel Power Gadget 3.5 are provided in the
“Time Consumption and Power Consumption” section below.
All statistical analyses were performed using the “rstatix”
package of R software (version 4.0.2).

Data Source

Data Set Characteristics
The mass spectrometry and urinalysis data sets adopted in this
study represent distinct feature patterns in ML; Table 1 presents
their characteristics. The mass spectrometry data set has a
relatively large feature set comprising 268 binary features. By
contrast, the urinalysis data set has a small feature set comprising
only nine features, almost all of which are integer features in a
larger range. These data sets have been applied and validated
in previous studies [24-26].

Table 1. Characteristics of the final mass spectrometry and urinalysis data sets.

Gini ImpurityPercentage of majority
class (Nmax/N)

Majority classInteger features, nBinary features, nFeatures, nCases, nData set

0.5053.0%Methicillin-resis-
tant Staphylococ-
cus aureus

02682683338Mass spectrometry

0.4957.1%Trichomonas
vaginalis-nega-
tive

7292898Urinalysis

Mass Spectrometry Data Set
The mass spectrometry data set comprises mass spectral
information on methicillin-resistant and methicillin-sensitive

S. aureus isolates. We collected routine mass spectrometry data
about S. aureus samples consecutively from Chang Gung
Memorial Hospital in 2016, and we identified the methicillin
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resistance of every S. aureus isolate by employing the paper
disk method with cefoxitin.

In the original mass spectral data, intensity values are a function
of the mass-to-charge ratio. We preprocessed these data using
a validated binning method [24]. After data preprocessing, every
feature in the mass spectrometry data set was determined to
correspond to a 10-Da interval of mass-to-charge ratio. All the
features are binary features, and the values 1 and 0 represent
the presence and absence of a peak, respectively (ie, the presence
and absence of a sufficient intensity, respectively), in a specific
interval. The final size of the mass spectrometry data set was
3338×268 entries, with no missing values.

Urinalysis Data Set
The urinalysis data set comprises routine urinalysis data
(including leukocyte esterase, nitrite, protein, occult blood, red
blood cell count, white blood cell count, and epithelial cell
count) and demographic data (age and sex) of patients with and
without T. vaginalis infections. The diagnosis of T. vaginalis
infection was made according to microscopic tests. The
urinalysis data set comprises the data of all patients who
received at least one urinalysis test at Chang Gung Memorial
Hospital between January 2009 and December 2013. The
original data set consists of 839,164 cases; because the outcome
distribution is imbalanced in the original data [26], we applied
random undersampling and the synthetic minority oversampling
technique [27]. The final size of the urinalysis data set was
2898×9 entries and the percentage of the majority class was
57.1%.

In the urinalysis data set, “sex” and “nitrite” are binary features,
which are represented by 1 and 0. “Leukocyte esterase,”
“protein,” and “occult blood” data are semiquantitative features,
which are represented on scales ranging from 0 to 4 (“negative,”
“trace,” 1+, 2+, and 3+), 0 to 5 (“negative,” “trace,” 1+, 2+, 3+,
and 4+), and 0 to 5 (“negative,” “trace,” 1+, 2+, 3+, and 4+),
respectively. “Age,” “red blood cell count,” “white blood cell
count,” and “epithelial cell count” are nonnegative integer
features with maximum values of 103, 501, 501, and 101,
respectively. The urinalysis data set does not contain missing
values, and we did not perform further feature selection for this
data set.

Model Training and Validation

Algorithms

LR Algorithm
LR is one of the simplest binary classification algorithms. In
the LR algorithm, the predictive outcome ŷ(x) of given data x
is defined as follows:

ŷ(x)=[1+exp(w0+wTx)]–1

where w and w0 represent the weight vector and bias of the LR
model, respectively. LR is an example of a generalized linear
model, and the output of the LR model represents the estimated
probability of a certain class [17].

kNN Algorithm
The kNN algorithm is a memory-based algorithm. Accordingly,
predictions of the kNN algorithm are directly based on the
training data set and no additional training is required [28].
Predictions of the kNN algorithm, which are denoted by ŷ(x),
are based on the voting results of the k most similar instances
in the training dataset [29]. The parameter ŷ(x) is defined as
follows:

where K denotes the set of k instances in the training data set
that are most similar to the given data x and w(xi) denotes the
weighted value of the corresponding x′ value. In the kNN
algorithm, the distance between two data points x and x′ is
typically defined as follows:

where q is a given positive number. The Manhattan distance
(for q=1) and the Euclidean distance (for q=2) are the two most
common distance metrics. In this study, the numbers of nearest
neighbors (k) were 27 and 7 in the final models of the mass
spectrometry and urinalysis data sets, respectively.

SVM Algorithm
The SVM algorithm is a commonly used binary classification
method. The purpose of the SVM algorithm is to find a
hyperplane that separates two classes of data with the maximum
margin in the feature space [29]. In the original linear SVM,
the output binary features are labeled as +1 and −1, and the
predictive outcome ŷ(x) of given data x is defined as follows:

ŷ(x)=sign(w0+wTx)

where w and w0 represent the weight vector and bias of the
SVM model, respectively.

The SVM algorithm is frequently applied with kernel
transformations. Kernel functions represent the similarity
between two data points. The radial basis function is one of the
most commonly used kernel functions and is defined as follows:

κ(x,x′)=exp(–||x–x′||2/2σ2)

where σ is the bandwidth. Through kernel transformations, the
original feature space can be mapped into a higher dimension,
which may improve the predictive performance of the SVM
algorithm. For a kernelized SVM algorithm, the following
equation is obtained:

where α is a sparse vector. For all nonzero αi values,
corresponding xi terms represent support vectors. Accordingly,
the final prediction ŷ(x) depends on only the support vectors
and is independent of the remaining training data. In this study,
we selected the kernelized SVM algorithm with the radial basis
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function kernel as our final SVM model according to its
validation performance.

RF Algorithm
RF is an ensemble decision tree classifier. The prediction of the
RF algorithm, namely ŷ(x), depends on the voting results of
numerous decision trees [12]. The parameter ŷ(x) is defined as
follows:

where T represents the set of decision trees in the RF and Ti(x)
represents the predictive outcome of a given decision tree.

RF training involves the “bagging” (ie, bootstrap aggregating)
technique [30]. Accordingly, each decision tree in the RF
considers only a subset of training cases to improve model
generalizability. In addition to the bagging technique, each split
of the decision trees only considers a subset of the input features
during training to prevent the growth of highly correlated trees
[31]. In this study, the number of trees was set to 1000 and 1500
in the final RF models for the mass spectrometry and urinalysis
data sets, respectively.

XGB Algorithm
The XGB algorithm is a type of ensemble algorithm, which
uses the “boosting” technique to reduce the overall bias by
sequentially combining weak classifiers into a model [32]. In
practice, shallow decision trees are typical weak classifiers. The
outcome ŷ(x) of XGB models represents the log odds ratio of
a certain class in binary classification tasks. The parameter ŷ(x)
is defined as follows:

where Ti(x) denotes the M decision tree regressors in the model.

In each iteration, the training of decision trees in XGB is
equivalent to a process of minimizing a certain objective
function. Because XGB is a regularized algorithm [21], its
objective function is different from those of the original gradient
boosting algorithms. The objective function of a given decision
tree in the XGB algorithm can be expressed as follows:

where N denotes the number of leaf nodes in a decision tree
and γ and λ denote given positive numbers. The parameters Gj

and Hj are defined as follows:

where ŷi represents the predictive outcome of training data xi

after a certain number of iterations, l(yi,ŷi) represents a certain
loss function between the predictive and actual outcomes, and

Lj represents the set of data points xi belonging to the jth leaf
node.

In this study, we implemented the XGB model by using the
“xgboost 0.90” Python library.

NN Algorithms
NN is a type of ML model that is inspired by the human nervous
system. An NN consists of multiple layers of nodes (or neurons).
The layer that receives the initial data is the input layer and the
layer that exports the predictive results is the output layer.
Numerous hidden layers exist between the input and output
layers. The outputs of each node in an NN are obtained
according to the outputs of the nodes in the previous layer [12].

Several types of connection patterns are possible between two
adjacent layers. For example, in a classic fully connected layer,
a series of weighted sums of the inputs is first calculated
according to the given model parameters. These weighted sums
are subjected to nonlinear transformation to obtain the output
of the aforementioned layer. In practice, these steps are
implemented using vectorized expressions, and the output vector
of the nth hidden layer, namely an+1, is expressed as follows:

an+1=g(Θn·an+bn)

where an, Θn, and bn represent the input vector, weight matrix,
and bias vector of the hidden layer, respectively, and g
represents a nonlinear activation function (eg, the sigmoid
function or rectified linear unit activation function).

NNs are ML models that are flexible in terms of the numbers
of hidden layers and nodes in each layer. According to previous
studies, one hidden layer is sufficient for approximating most
continuous functions [33,34]. By contrast, NNs with more than
one hidden layer are called deep NNs, and they have superior
generalization ability to one-hidden-layer NNs [35,36]. With
improvement of the hardware, deep learning models have
become increasingly popular over the past few years. In this
study, we constructed two types of NNs, namely a
one-hidden-layer NN (NN1) and a five-hidden-layer NN (NN5),
as our underlying architectures. NN1 represents the simplest
form of NNs, whereas NN5 represents a deep learning model.

To determine the appropriate architecture of an NN model, some
previous studies offered theoretical heuristics regarding the
number of hidden units in an NN layer. However, the results
ranged widely according to different studies regarding the
optimal number of nodes in a hidden layer [37-40]. Accordingly,
in this study, we selected the final number of hidden units
according to the cross-validation results. After hyperparameter
tuning, we determined that the final sizes of the NN1 and NN5
a r c h i t e c t u r e s  w e r e  2 6 8 × 2 0 4 8 × 1  a n d
268×1024×1024×1024×1024×1024×1, respectively, for the
mass spectrometry data set and 9×128×1 and
9×512×512×512×512×1, respectively, for the urinalysis data
set.

Pruned NNs
Pruning is a method for eliminating redundant connections in
NNs [41]. In this method, an NN is converted into a sparse
model to reduce its size. Pruning methods can be unstructured
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or structured [42]. Unstructured pruning eliminates the
individual parameters in an NN, whereas structured pruning
eliminates the connections in large units such as hidden units
in a fully connected layer or channels in a convolutional layer.

In this study, we applied global unstructured pruning to
eliminate connections from the entire NN. The pruned NNs
displayed in the figures are NN5s with a sparsity of 50%.
However, we implemented pruning with sparsity values of 25%,
50%, and 75% for the NN1 and NN5 models. The detailed
results regarding other pruned NNs are provided in Multimedia
Appendix 2-5.

Quantized NNs
Quantization is a common method for model compression. In
this method, the model size is reduced by computing and storing
parameters with low bit widths [43]. Two main quantization
methods exist in the Pytorch framework: dynamic and static
quantization [22]. Dynamic quantization is the simplest
quantization method. In dynamic quantization, the weights of
the quantized layers in an NN are replaced with low-precision
data, and the activations are quantized just before entering each
quantized layer during inference. By contrast, in static
quantization, the parameters for activation quantization are
determined before the inference phase. Therefore, static
quantization requires an additional calibration with a data set
before inference.

In this study, the parameters of the original NN1 and NN5
models were tensors in the single-precision floating-point
format; the quantized models had a quantized 8-bit signed
integer data format. The quantized NNs displayed in the figures
are NN5s. However, we implemented dynamic quantization for
both the NN1 and NN5 models, and the detailed results
regarding quantized NNs are provided in Multimedia Appendix
2-5.

Model Construction
In this study, we selected the aforementioned supervised ML
algorithms according to their maturity and popularity. For every
ML model, we tuned the hyperparameters in each algorithm
through 5-fold cross-validation. The cutoff with the highest
Youden index was selected as the final cutoff in each model
[44].

Model Comparison on Deployment

Predictive Performance
We evaluated the predictive performance of all final models
using independent testing data sets. We selected accuracy and

AUROC as the predictive performance metrics. The 95% CIs
of both accuracy and AUROC were calculated.

Time and Power Consumption
We derived the inference time and power data from Intel Power
Gadget 3.5 [23]. This commercial product provides power data
on the basis of Intel Running Average Power Limit (RAPL)
interface estimation. RAPL is a driver that provides a set of
performance counter data on time, power, and energy [45,46].

We implemented the ML models using command lines and
logged the time and power data using PowerLog3.0.exe, a
command line version of Intel Power Gadget that allows users
to log the time and power data of a specific command line. In
addition, because Intel Power Gadget only provides the energy
data of the entire processor, all testing procedures were
performed without background programs. The measurement
for each algorithm was repeated 100 times.

Statistical Analysis
We initially employed the Shapiro-Wilk test to check for
normality. If the assumption of normality did not hold, we
subsequently adopted the Friedman test to compare the means
of different groups. The pairwise Wilcoxon signed-rank test
was used to identify which groups were different. P values were
adjusted using the Bonferroni multiple testing correction
method. All statistical tests were two-sided with an α error level
of .05.

Results

Predictive Performance of ML Algorithms
Figure 2 and Figure 3 display the classification accuracy rates
and AUROC values for the various ML models, respectively.
Almost all models had high accuracy rates. All algorithms,
except for the kNN algorithm, achieved an accuracy rate of at
least 70% for the mass spectrometry data set. Moreover, all
algorithms, except for the SVM algorithm, achieved an accuracy
rate of at least 70% for the urinalysis data set. As displayed in
Figure 3, the two tree-based methods, namely the RF and XGB
algorithms, achieved the two highest AUROC values for both
datasets (84.7% and 83.9% for the mass spectrometry data set,
respectively; 91.1% and 91.4% for the urinalysis data set,
respectively). In particular, the RF and XGB algorithms
exhibited significantly higher AUROC values than those of
most of the other algorithms (eg, kNN, SVM, pruned five-hidden
layer NN [PNN], and NN5) for the urinalysis data set. The
results regarding the algorithms’ predictive performance are
detailed in Multimedia Appendix 2 and Multimedia Appendix
3.
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Figure 2. Classification accuracy rates of different algorithms implemented on the mass spectrometry and urinalysis data sets. The black bars indicate
the 95% CIs of the classification accuracy. LR: logistic regression; kNN: k-nearest neighbor; SVM: support vector machine; RF: random forest; XGB:
extreme gradient boosting; NN1: one-hidden-layer neural network; QNN: quantized five-hidden-layer neural network; PNN: pruned five-hidden-layer
neural network; NN5: five-hidden-layer neural network.

Figure 3. AUROC values of different algorithms implemented on the mass spectrometry and urinalysis data sets. The black bars indicate the 95% CIs
of the AUROC. LR: logistic regression; kNN: k-nearest neighbor; SVM: support vector machine; RF: random forest; XGB: extreme gradient boosting;
NN1: one-hidden-layer neural network; QNN: quantized five-hidden-layer neural network; PNN: pruned five-hidden-layer neural network; NN5:
five-hidden-layer neural network; AUROC: area under the receiver operating characteristic curve.
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Inference Times of ML Algorithms
Figure 4 presents a comparison of the inference times of the
various ML algorithms. All algorithms completed the inference
process within 1 millisecond. The XGB and LR algorithms had
the shortest runtimes (0.47 milliseconds for both in the mass
spectrometry data set; 0.39 and 0.47 milliseconds, respectively,
for the urinalysis data set). The Wilcoxon signed-rank test results
revealed that the run times of these two algorithms differed
significantly (P<.001) from those of the other algorithms, except

for NN1. The SVM and RF algorithms exhibited the highest
time consumption for the mass spectrometry and urinalysis data
sets, respectively. In particular, the RF algorithm exhibited a
higher run time compared with that of all other algorithms,
except for the SVM algorithm, for both data sets (P<.001). The
results regarding the time consumption of the algorithms are
detailed in Multimedia Appendix 4-5, and the corresponding P
values derived from the Wilcoxon signed-rank test are presented
in Multimedia Appendix 6-7.

Figure 4. Time consumed in single prediction for the mass spectrometry and urinalysis data sets. LR: logistic regression; kNN: k-nearest neighbor;
SVM: support vector machine; RF: random forest; XGB: extreme gradient boosting; NN1: one-hidden-layer neural network; QNN: quantized
five-hidden-layer neural network; PNN: pruned five-hidden-layer neural network; NN5: five-hidden-layer neural network.

Power Consumption of ML Algorithms
Figure 5 presents a comparison of the power consumption levels
of the ML algorithms. Algorithms of the same type consumed
similar amounts of power. For example, both tree-based
algorithms (RF and XGB) consumed limited power, whereas
all NN-based models (NN1, quantized five-layer hidden NN
[QNN], PNN, and NN5) consumed considerable power. The
XGB algorithm exhibited the lowest power consumption for
the mass spectrometry data set (9.42 Watts) and the LR
algorithm exhibited the lowest power consumption for the
urinalysis data set (9.98 Watts). According to the results of the
Wilcoxon signed-rank tests (Multimedia Appendix 6-7), the

LR and XGB algorithms exhibited lower power consumption
levels than did the kNN algorithm and all NN-based algorithms
for both datasets (P≤.001). The NN5, kNN, PNN, QNN, and
NN1 algorithms exhibited higher power consumption levels
compared with those of the other algorithms. Although pruning
and quantization reduced the power consumption levels of the
NN algorithms, the energy efficiency levels of the PNN and
QNN algorithms did not surpass those of all the non-NN–based
algorithms, except for the kNN algorithm. The results regarding
power consumption are detailed in Multimedia Appendix 4-5,
and the corresponding P values derived from the Wilcoxon
signed-rank test are presented in Multimedia Appendix 6-7.
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Figure 5. Power consumption levels of the different algorithms implemented on the mass spectrometry and urinalysis data sets. LR: logistic regression;
kNN: k-nearest neighbor; SVM: support vector machine; RF: random forest; XGB: extreme gradient boosting; NN1: one-hidden-layer neural network;
QNN: quantized five-hidden-layer neural network; PNN: pruned five-hidden-layer neural network; NN5: five-hidden-layer neural network.

Overall Comparison
Figure 6 and Figure 7 display scatter plots of the performance
of the various algorithms in predicting S. aureus methicillin
resistance and T. vaginalis infection. The horizontal and vertical
axes in these figures represent the AUROC and average power
consumption, respectively. The two dashed lines in the figures
represent the average AUROC values and mean power
consumption levels for the nine algorithms. Only the XGB and
RF algorithms had higher than average AUROC and power

consumption results for both data sets. Figure 6 and Figure 7
also illustrate the difference between the NN-based and
non-NN–based algorithms. All NN-based algorithms are located
in the lower half-plane in these figures and all the other
algorithms, except for the kNN algorithm, are located in the
upper half-plane in the figures. These results indicate that the
NN-based algorithms had higher power consumption levels
than those of the non-NN–based algorithms, even when model
compression was executed through methods such as pruning or
quantization.
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Figure 6. Predictive performance (AUROC)–power consumption plot of the nine algorithms for the mass spectrometry data set. The two tree-based
algorithms (RF and XGB) achieved a balanced predictive performance and power consumption. The horizontal and vertical dashed axes indicate the
mean energy consumption and mean AUROC of the nine predictive models, respectively. Each algorithm is located in one of the four quadrants. The
gray rectangle around each data point denotes the 95% CI of the AUROC and power consumption. LR: logistic regression; kNN: k-nearest neighbor;
SVM: support vector machine; RF: random forest; XGB: extreme gradient boosting; NN1: one-hidden-layer neural network; QNN: quantized
five-hidden-layer neural network; PNN: pruned five-hidden-layer neural network; NN5: five-hidden-layer neural network; AUROC: area under the
receiver operating characteristic curve.

Discussion

Principal Findings and Related Works
In this study, we compared the predictive performance, time
consumption, and power consumption of nine algorithms using
two clinical laboratory data sets. The XGB algorithm achieved
a balanced performance with respect to the aforementioned
metrics, indicating that the XGB algorithm is ideal for medical
artificial intelligence applications with energy constraints.

In addition to this study, previous studies have performed
comparative analyses of various ML algorithms in the medical
domain [12,13,47]. However, only few studies have considered
the inference efficiency in addition to the predictive
performance. Zhang et al [13] compared the simplicity of seven
algorithms by assessing their memory usage and training time
for 12 public biomedical data sets. In another study, Deng et al
[47] assessed the inference time of decision tree, SVM, RF, and
NN algorithms. In this study, we executed our efficiency
evaluation by directly exploring and comparing the power
consumption levels of ML algorithms. Furthermore, all power

consumption data were obtained according to real-time
experimental results from performance counters.

Predictive Performance of ML Algorithms
The RF and XGB algorithms exhibited higher AUROC values
than did the other algorithms for both data sets. This finding is
similar to those of previous studies. In a study that considered
11 performance metrics, the RF algorithm and
probability-calibrated boosted trees exhibited the best
performance among 10 algorithms [48]. Other previous analyses
also indicated that the RF and XGB algorithms consistently
exhibit good performance for most biomedical data sets [13,14].
These algorithms have certain advantages; for example, they
exhibit adequate scalability to large data sets and are more robust
than other types of algorithms [17]. Medical data sets usually
comprise features with strong signals; this is because only
well-validated markers are routinely tested in clinical scenarios.
Under this condition, tree-based methods would not be inferior
to relatively complex models such as NN-based models.
However, one should remember the “no free lunch theorem”
[49], which suggests that no model exhibits superior
performance universally. This statement is true because every
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algorithm is proposed on the basis of different underlying
assumptions, which may fit only specific types of data.
Therefore, different algorithms should be investigated when the
predictive performance of a certain model does not match the
expectation.

Inference Time of ML Algorithms
In this study, the XGB and LR algorithms exhibited the shortest
run times (both 0.47 milliseconds for the mass spectrometry
data set; 0.39 and 0.47 milliseconds, respectively, for the
urinalysis data set). The SVM and RF algorithms exhibited the
highest time consumption levels for the mass spectrometry and
urinalysis data sets, respectively. Notably, although the XGB
and RF algorithms are ensemble algorithms based on decision
trees, the XGB algorithm consumed less time than the RF
algorithm. This finding is possibly due to differences in the
depth and number of trees between these algorithms. For both
data sets, the XGB model had shallower trees than did the RF
model (for the mass spectrometry and urinalysis data sets, the
maximum depths of the XGB decision trees were 6 and 10,
respectively, and the average depths of the RF trees were 29
and 21, respectively). An explanation for this finding is that
boosting reduces the bias of weak classifiers [17,50] and that
bagging reduces the variance of complex classifiers [51]. Thus,
the XGB algorithm may have shallower decision trees compared
with those of the RF algorithm for the same prediction task. In
addition to the depth difference, the number of trees may be
another cause of the run time difference between the two
tree-based algorithms (for the mass spectrometry and urinalysis
data sets, the XGB algorithm contained 120 and 32 decision
trees, respectively, and the RF algorithm contained more than
1000 decision trees). In an RF model, increasing the number of
decision trees does not engender overfitting [18,30]. However,
this characteristic may result in a final model with excessive
decision trees after conventional grid-search cross-validation.
By contrast, because an excessive number of decision trees
results in overfitting in an XGB model, an XGB model with
optimal predictive performance would have an appropriate
number of trees. Furthermore, to identify the suitable tree
numbers, the early stopping technique is frequently used during
training of XGB models in practice [52]. In conclusion, the
shorter run time of the XGB algorithm compared with the RF
algorithm is possibly due to the different characteristics of these
algorithms.

Power Consumption of ML Algorithms
The NN algorithms (NN1, QNN, PNN, and NN5) and the kNN
algorithm exhibited the highest power consumption levels in
this study, and the two tree-based algorithms (ie, RF and XGB)
exhibited the lowest power consumption levels. Tree-based
algorithms use the data structure of search trees for making
inferences. The inference process mainly involves comparison
operations at tree nodes and irregular memory access operations
for subtree retrievals. In contrast to several other ML algorithms,
tree-based algorithms typically do not use multiplication
operations. The comparison and memory access operations in
tree-based algorithms consume less energy than do

multiplication operations [53,54]. The experiments in this study
were run on a general-purpose CPU. Therefore, if necessary,
the energy efficiency of tree-based algorithms can be increased
using specialized hardware accelerations [55-57].

NNs have been regarded as the main tools for implementing
ML in the last few years. The development of different NN
architectures (eg, convolutional NNs and recurrent NNs) has
contributed to considerable improvements in unstructured data
analyses [35,55]. However, NNs have high power consumption.
Thus, NNs should not always be considered as the preferred
algorithm for implementing ML, unless they exhibit superior
predictive performance compared with other algorithms. In this
study, the adopted NNs consumed considerable power because
of their high computational and communication demands. The
computational demand of an NN refers to the large number of
multiply-add operations in the forward propagation process,
and the communicational demand of an NN refers to the energy
cost of moving large quantities of data frequently between the
processor and memory [7,58].

Several methods are available for reducing the power
consumption of NNs. NNs have diverse architectures, and
constructing an NN with a small architecture is an effective
method for improving energy efficiency, as reflected by the
difference in power consumption between the NN1 and NN5
models in this study (see Multimedia Appendix 3 and 5). In
addition to constructing a small model, a given NN model can
be compressed to reduce power consumption. In this study, we
implemented and evaluated two common methods for NN
compression, namely pruning [10,41] and quantization [59].
According to the obtained results, these model compression
methods reduced the power consumption levels of the NNs.
However, the NN-based algorithms did not exhibit higher energy
efficiency levels compared with those of the non-NN–based
algorithms, even after model compression. Furthermore,
although energy optimization methods such as quantization are
frequently used for NNs, these methods are not specific to NNs
[60,61]. Thus, quantization can be feasibly applied to other ML
algorithms if their power consumption must be decreased.

Overall Comparison
In summary, the XGB algorithm achieved balanced predictive
performance and energy efficiency levels. Figure 6 and Figure
7 display the predictive performance–power consumption plots
of the nine algorithms for the mass spectrometry and urinalysis
data sets, respectively. In these figures, the two tree-based
algorithms, namely the XGB and RF algorithms, are located in
the right-upper quadrant, which indicates that they had higher
than average predictive performance and lower than average
power consumption. However, the XGB algorithm consumed
less time than the RF algorithm (P<.001, according to the
Wilcoxon signed-rank test; Figure 4 and Multimedia Appendix
6-7). Thus, the XGB algorithm achieved a higher energy
efficiency level than the RF algorithm because the overall energy
consumption for ML inference depends on not only power
consumption but also on inference time.
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Figure 7. Predictive performance (AUROC)–power consumption plot of the nine algorithms for the urinalysis dataset. The two tree-based algorithms
(ie, RF and XGB) achieved a balanced predictive performance and power consumption. The horizontal and vertical dashed axes indicate the mean
energy consumption and mean AUROC of the nine predictive models, respectively. Each algorithm is located in one of the four quadrants. The gray
rectangle around each data point denotes the 95% CI of the AUROC and power consumption. LR: logistic regression; kNN: k-nearest neighbor; SVM:
support vector machine; RF: random forest; XGB: extreme gradient boosting; NN1: one-hidden-layer neural network; QNN: quantized five-hidden-layer
neural network; PNN: pruned five-hidden-layer neural network; NN5: five-hidden-layer neural network; AUROC: area under the receiver operating
characteristic curve.

Deep learning models are the main ML algorithms applied
currently. These algorithms achieve state-of-the-art predictive
performance for unstructured data sets (eg, data sets for
computer vision and natural language processing) [55].
However, deep learning algorithms may be unnecessary for
making predictions based on clinical laboratory data sets. In
Figures 6 and 7, all of the NN-based algorithms are located in
the lower half-plane, signifying that the NN-based algorithms
consumed more power than did most of the other algorithms.
Pruning and quantization increased the efficiency levels of the
NN-based algorithms; however, the increase was limited, and
the energy efficiency levels of these algorithms did not surpass
that of the XGB algorithm. Moreover, the NN-based algorithms
did not exhibit higher AUROC values compared with those of
the simple tree-based algorithms. The experimental results
indicate that for data analysis in the clinical laboratory domain,
simpler models such as the XGB model may be sufficient to
achieve state-of-the-art predictive performance. Deep NNs are
unsuitable for such data sets due to the high power consumption
of these networks.

Limitations
This study has some limitations. First, because Intel Power
Gadget 3.5 only provides the energy consumption of the entire
processor [15], one should focus on the comparison of the
investigated ML algorithms and not on the absolute power
consumption obtained. Second, this study considered only two
clinical laboratory data sets. Because energy consumption varies
between data sets, a large-scale study based on a variety of
medical data sets is essential for confirming the results of this
study. Finally, the results were obtained using a general-purpose
CPU; however, energy consumption may vary across different
processors. Currently, ML is frequently implemented using
hardware acceleration techniques. Although hardware devices
such as discrete graph processing units or tensor processing
units are not ubiquitous equipment in clinical settings, their
energy efficiency levels are worth investigation. Energy
efficiency is a major issue in embedded systems, and studies
have been performed on the energy optimization of different
algorithms [6,11,19]. Executing a fair comparison of energy
efficiency under different hardware implementations is difficult.
Hence, a well-designed comparative analysis of energy

J Med Internet Res 2021 | vol. 23 | iss. 11 | e28036 | p. 12https://www.jmir.org/2021/11/e28036/
(page number not for citation purposes)

Yu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


efficiency across different optimized methods is essential for
obtaining general conclusions.

Conclusions
This study comprehensively compared various ML algorithms
in terms of their predictive performance, time consumption, and

power consumption when implemented on two clinical
laboratory data sets. According to the results, the XGB algorithm
attained balanced performance levels in terms of the
aforementioned parameters for the two data sets. Thus, the XGB
algorithm is ideal for application in real-world clinical settings.
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