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Abstract

As the complexity of deep learning accelerators and data center networks continues
to increase, traditional simulation tools struggle to meet the demands for scala-
bility, performance, and analytical fidelity. This thesis addresses these challenges
through two complementary approaches: a unified, compiler-driven framework
for accelerating RTL simulation, and an ML-assisted analytical methodology for
scalable network performance modeling.

The thesis first presents BatchSim, a parallel RTL simulator that leverages inter-
cycle batching and task graph parallelism to amortize simulation overhead and
improve runtime efficiency across large-scale designs. Building on this, ScaleRTL

introduces a compiler-based code generation flow that detects structurally repeated
components and reuses evaluation logic to eliminate redundant code generation.
By targeting both CPU and GPU backends using MLIR, ScaleRTL achieves dramatic
compilation speedups and scalable simulation performance. To support heteroge-
neous simulation platforms, HeteroRTL introduces architecture-aware partitioning
to map complex, control-heavy modules to CPUs and parallel processing elements
to GPUs. This hybrid execution model maximizes compute resource utilization
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and further accelerates simulation workloads.
Complementing the RTL contributions, MQL offers a machine-learning-assisted

analytical modeling technique for large-scale data center networks. By combining
queuing theory with the Maximum Entropy method and regression tree learning,
MQL achieves less than 3% modeling error while providing 100×–9000× speedups
over packet-level simulations like ns-3. It delivers detailed latency estimation at
scale, supporting rapid, accurate performance evaluation of distributed network
architectures.

In summary, these contributions advance the state of the art in simulation and
modeling across both RTL and network domains. Through compiler optimization,
structural reuse, parallelism, and lightweight learning, this dissertation provides
scalable solutions for high-performance simulation in modern hardware systems.
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Chapter 1

Introduction

As hardware systems continue to grow in complexity, ranging from deep learning
accelerators composed of thousands of replicated compute units to data center
networks with tens of thousands of interconnected nodes, simulation becomes
a critical bottleneck in both design and verification workflows. Register Transfer
Level (RTL) simulation remains the gold standard for functional validation, yet
existing tools are increasingly unable to keep pace with modern design scales due to
excessive runtime and compilation overhead. Meanwhile, packet-level simulation
of large-scale networks offers high fidelity but is prohibitively slow, making rapid
design space exploration impractical. This thesis tackles both challenges with
two distinct but complementary solutions: a unified, compiler-driven simulation
framework for RTL, and an ML-assisted analytical modeling methodology for
scalable network performance estimation.

RTL Simulation: Unified Compiler-Based Framework. RTL simulation is foun-
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dational in the verification of hardware designs, but conventional approaches suffer
from inefficiencies when scaling to large, hierarchical, and structurally repetitive
systems. Simulators like Verilator rely on cycle-accurate evaluation using C++ and
multithreading, which leads to high synchronization overhead and redundant code
generation. Deep learning accelerators, for example, frequently contain systolic ar-
rays and replicated cores that are evaluated independently, despite their structural
similarity.

To overcome these limitations, this thesis introduces a unified RTL simulation
framework built on the MLIR compiler infrastructure. The first component, Batch-

Sim, introduces inter-cycle batching to amortize simulation overhead and applies
task graph parallelism to achieve efficient execution across cycles. Next, ScaleRTL

extends the framework by identifying structurally repeated logic and reusing eval-
uation code to reduce both compilation time and binary size, supporting both CPU
and GPU targets. Finally, HeteroRTL introduces architecture-aware partitioning
to map control-heavy modules to CPU and parallel compute blocks (e.g., PEs) to
GPU, enabling hybrid simulation that maximizes hardware utilization. Collectively,
these techniques form a compiler-based pipeline that achieves scalable, parallel
RTL simulation across heterogeneous platforms.

Network Modeling: ML-Assisted Analytical Framework. While RTL simula-
tion targets low-level hardware verification, performance modeling of large-scale
data center networks (DCNs) presents a different challenge. Packet-level network
simulators, though accurate, are infeasible for evaluating networks with thousands
of nodes and complex routing schemes. Analytical modeling offers a lightweight
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alternative but struggles to maintain accuracy under realistic traffic conditions and
topologies.

To address this, the thesis introduces MQL, a machine learning-assisted queuing
latency modeling framework. MQL first constructs analytical latency estimates
using the Maximum Entropy method, and then applies regression tree learning to
correct systematic errors observed when compared with packet-level simulation.
This approach achieves less than 3% modeling error on average and up to 9000×

speedup over ns-3 simulations, while providing queue- and tier-level visibility for
network designers. Unlike the RTL framework, MQL does not rely on compiler
infrastructure, but instead combines analytical insight with lightweight supervised
learning for scalable and accurate performance prediction.

This dissertation contributes two distinct frameworks for accelerating simulation
and modeling at different layers of the hardware/software stack:

1. BatchSim: A parallel RTL simulation technique that employs inter-cycle batching
and task graph execution to reduce runtime overhead.

2. ScaleRTL: A compiler-based code generation flow that identifies structural re-
dundancy and emits reusable simulation code for CPUs and GPUs.

3. HeteroRTL: A hybrid simulation framework that partitions RTL designs between
CPU and GPU execution based on architecture-aware analysis.

4. MQL: An ML-augmented analytical modeling methodology for data center
networks that balances scalability and accuracy without relying on packet-level
simulation.
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Collectively, these contributions push the frontier of high-performance sim-
ulation by enabling faster design iteration, improved scalability, and practical
performance modeling for both compute-intensive accelerators and large-scale
communication networks.

The remainder of this dissertation is organized as follows: Chapters 2–5 provide
detailed descriptions of the four core contributions outlined above.
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Chapter 2

BatchSim: Parallel RTL Simulation

using Inter-cycle Batching and Task

Graph Parallelism

As the design complexity continues to increase, parallelizing Register Transfer Level
(RTL) simulation has become crucial for verifying the design functionality with
reasonable performance and turnaround time. State-of-the-art simulators focus on
exploring parallelism within a single simulation cycle. However, intra-cycle paral-
lelism does not scale well because its instruction volumes cannot offset the overhead
of multithreading. To overcome this challenge, we introduce BatchSim, a parallel
RTL simulator leveraging inter-cycle batching and task graph parallelism. Unlike
existing RTL simulators, BatchSim combines multiple cycles into a single simula-
tion workload, ensuring sufficient instruction volumes for effective parallelization.
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Since RTL simulation consists of many irregular patterns, BatchSim partitions the
simulation workload into a set of dependent subgraphs and parallelizes their execu-
tions using task graph parallelism. Compared with state-of-the-art RTL simulators,
BatchSim can achieve 11%–98% speed-up on large industrial RTL designs.

2.1 Overview

Register Transfer Level (RTL) simulation plays a crucial role in the overall design
flow because it verifies the functionality of a hardware design at the early stage [127].
Hence, RTL simulation is the cornerstone for various verification tasks, such as
functional testing, debugging, and design space exploration. As the system-on-
chip (SoC) complexity continues to grow, achieving industry-quality verification
sign-off demands a substantial and growing amount of compute resources to sim-
ulate RTL for dozens of different units within an SoC across many thousands of
stimuli. Therefore, RTL simulation can be very time-consuming in the verification
process. For instance, researchers have reported that RTL simulations can take
over 70% of the entire runtime when achieving coverage closure for a custom deep
learning accelerator [97, 99]. Speeding up RTL simulation runtime is thus crucial
for completing functional verification tasks with reasonable turnaround time and
performance.

Many new algorithms have recently been proposed to accelerate RTL simu-
lation. To give a few popular examples, Verilator[127], the leading open-source
RTL simulator, transpiles (source-to-source compiles) an input RTL source (Ver-



7

ilog) into optimized C++ simulation code through abstract syntax tree (AST)
traversals. ESSENT[8] enhances the simulation performance by partitioning an
input RTL graph into several subgraphs with similar activities for load balancing.
RTLflow[97] simulates multiple stimuli at one time by transpiling an input RTL
source into optimized C++ and CUDA code. By harnessing the power of GPU
task graph computing [95, 99, 22], RTLflow significantly improves the simulation
throughput performance. RepCut[134] improves simulation efficiency by repli-
cating specific nodes within an RTL graph to reduce synchronization overhead
among threads. Through this replication-aided partitioning, RepCut can divide an
input RTL graph into independent subgraphs that can completely run in parallel
(i.e., embarrassing parallelism). Khronos[146] optimizes the memory access pat-
terns during the simulation by proposing a queue-connected operation graph that
captures temporal data dependencies, reschedules operations, and merges state
accesses across cycles.

Despite improved simulation performance, existing simulators are largely lim-
ited to single-cycle simulation (see Figure 2.1), where the instruction volumes (e.g.,
simulation instruction, arithmetic operations) are typically not enough to parallelize
most of the computing tasks. Specifically, running parallel RTL simulation can incur
certain threading overhead at each cycle, such as scheduling tasks, synchronization,
and dynamic load balancing [93]. For a simulation workload with N cycles, the
overhead will accumulate N times. However, if we could simulate a batch of B

cycles simultaneously, we could reduce the overhead to N/B times while allowing
each thread to remain actively engaged in processing more instructions. This type
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Figure 2.1: BatchSim explores both intra- and inter-cycle parallelism to significantly
improve the performance of parallel RTL simulation.

of batch or inter-cycle simulation can bring significant yet untapped performance
advantages to parallel RTL simulation.

This chapter presents BatchSim, a parallel RTL simulator using inter-cycle batch-
ing and task graph parallelism. Unlike existing simulators that evaluate one cy-
cle per iteration, BatchSim simulates multiple cycles simultaneously by merging
consecutive RTL graphs and leverages task graph parallelism to parallelize the
simulation workload. We evaluate the performance of BatchSim on large industrial
RTL designs. Compared with state-of-the-art RTL simulators, BatchSim can achieve
11%–98% speedup. We believe this late-breaking result will inspire new simulation
research by exploring inter-cycle batch parallelism.
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2.2 Background and Motivation

2.2.1 Full-Cycle RTL Simulation

RTL simulation transpiles RTL design code (such as Verilog or FIRRTL) into soft-
ware code (such as C++ or LLVM IR), allowing compilers to optimize the simula-
tion code for improved performance and efficiency. The simulation evaluates the
design on a one-cycle per iteration basis, beginning each cycle by setting the clock
and input, as shown in Listing 2.1. The RTL design is structured as a directed acyclic
graph, known as an RTL computation graph. In each cycle, the simulator processes
inputs and traverses this graph to generate output values. The code within a full-
cycle simulator is relatively straightforward, simulating the entire design in every
cycle. This approach ensures remarkably consistent execution times for each cycle.
For smaller designs, this method typically achieves reasonably high instruction
throughputs. However, as the design and the RTL computation graph grow in
size, the demands on the host processor and memory can become overwhelming,
potentially leading to performance bottlenecks.

Design dut;

size_t cycle = 0;

while (cycle < max_cycle )

{

dut. set_clock ();

dut. load_input ();

dut.eval ();

dut.dump(cycle);

++ cycle;
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}

Listing 2.1: A C++ code snippet for full-cycle RTL simulation.

2.2.2 Motivation

State-of-the-art full-cycle RTL simulators have implemented various optimization
techniques to enhance performance at the intra-cycle level, as illustrated in Figure
2.1. Notably, ESSENT[8] and Khronos[146] operate on a single-threaded model,
whereas Verilator[127] and RepCut[134] employ multi-threaded simulations by
partitioning the RTL computation graph and managing intra-cycle communications.
Generally, larger computation graphs yield more significant benefits from paral-
lel simulation because the relative costs of multithreading and synchronization
overhead decrease as the scale increases. However, due to the fixed size of the com-

InputA[0]
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Output[0]

RegB[0]

InputB[0] InputA[1]

RegA[1]

Output[1]

RegB[1]

InputB[1]
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InputB[0] InputA[1]

RegA[1]

Output[1]

RegB[1]
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Iteration 0
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Iteration 1
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Figure 2.2: BatchSim batches consecutive cycle graphs and merges them into a
multi-cycle computation graph.
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putation graph inherent to the RTL design, small and medium-sized designs do not
benefit as much from parallel simulation. Recognizing this limitation, we propose
a novel approach as shown in Figure 2.2: batching consecutive cycle graphs and
merging them into a multi-cycle computation graph. This strategy allows multiple
cycles to be evaluated in a single iteration, potentially enhancing parallel perfor-
mance. By partitioning and scheduling multi-threaded operations more effectively,
this method reduces the relative multithreading overhead compared to the over-
all end-to-end simulation process, offering a promising direction for improving
simulation efficiency across various design sizes.

Frontends Multi-Level IR

RTL Graph Modeling

RTL Graph Batching

RTL Graph Partitioning 

Backend

LLVM IR

Taskflow

Parallel Runtime

Figure 2.3: Overview of BatchSim.
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2.3 BatchSim

Figure 2.3 illustrates the architecture of BatchSim, which comprises four main com-
ponents: frontends, multi-level IR, backend, and parallel runtime. BatchSim utilizes
the frontends and Intermediate Representations (IRs) in CIRCT[2] to accommodate
various RTL designs and generates MLIR[85] dialects to leverage existing code
generation and optimization passes. BatchSim incorporates the IR compilation in-
frastructure and RTL graph modeling from Khronos[146], integrates our inter-cycle
graph batching pass, and adopts the graph partitioning method from RepCut[134].
It also employs the code emitting capabilities of the LLVM backend. Additionally,
BatchSim utilizes the advanced parallel runtime, Taskflow[61, 55, 60, 23, 91, 93, 92],
to facilitate multithreading task scheduling and synchronization, enhancing its
efficiency and scalability.

2.3.1 Inter-Cycle Graph Batching

We utilize the internal data structure of the multi-level IR to handle the RTL design
evaluation, which in MLIR[85] is represented as a graph. This graph comprises
all operations and operands with their dependencies, forming a data dependency
computation graph. In this RTL computation graph, traditional control flows such
as if-else statements are absent. The computation graph is primarily focused on
updating the values of signals, which are allocated as global variables in memory
prior to launching the simulation. All input signals serve as graph ingress points,
while intermediate and output signals act as egress points. The computation graph
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is traversed and the signals are updated in each cycle. To implement the inter-
cycle batching method, we developed a pass that clones input and output signals,
appending suffixes like "_t0", "_t1" to them. Similarly, functions are cloned with
suffixes "_t0", "_t1" added. These cloned functions are then sequentially placed
within the main function according to their time order. An example of the output
from the inter-cycle graph batching is shown in Listing 2.2. Subsequently, we
utilize MLIR’s built-in inline pass to inline all the sub-functions into the main
function. Thanks to MLIR’s Single Static Assignment (SSA) properties, all registers
are automatically renamed, avoiding any naming conflicts.

def_queue @io_input_t0 depth 1 : i8 delay [0]

def_queue @io_output_t0 depth 1 : i1 delay [0]

def_queue @io_input_t1 depth 1 : i8 delay [0]

def_queue @io_output_t1 depth 1 : i1 delay [0]

func.func @Design_t0 (){

// evaluate design

}

func.func @Design_t1 (){

// evaluate design

}

func.func @Design (){

call @Design_t0 () : () -> ()

call @Design_t1 () : () -> ()

return

}

Listing 2.2: An RTL evaluation IR after the inter-cycle batching pass.
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init

while (cnt < max_cnt)

done

eval_partition_1()

++cnt

eval_partition_0()

back

Figure 2.4: A task graph for the RTL simulation, which is parallelized through
Taskflow.

2.3.2 Parallel Runtime

After completing the inter-cycle batching and graph partition passes, we build a
task graph to describe the simulation workload. Figure 2.4 shows a simulation task
graph example. Based on this task graph, we can initiate the multi-threaded sim-
ulation. In BatchSim, we utilize Taskflow[61, 55], a general-purpose task-parallel
programming system, to describe our simulation task graph. Taskflow is comprised
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solely of C++ header files, making it straightforward to integrate with the RTL sim-
ulator’s C++ wrapper. Given the task dependency graph, we employ Taskflow’s
conditional tasking method, as depicted in Listing 2.3. In the provided code snippet,
the partition_ functions, generated by BatchSim, are organized into independent
functions. These are then compiled to LLVM IR and subsequently to binary object
code. Taskflow’s runtime efficiently manages the scheduling and synchronization
of these partitions, launching them in parallel and minimizing runtime overhead.

init. precede (cond);

cond. precede (body , done);

body. precede ( task_eval_0 , task_eval_1 );

task_sync . succeed ( task_eval_0 , task_eval_1 );

task_sync . precede ( task_update_0 , task_update_1 );

task_print . succeed ( task_update_0 , task_update_1 );

task_print . precede ( increment );

increment . precede (back);

back. precede (cond);

executor .run( taskflow ).wait ();

Listing 2.3: Taskflow code for Figure 2.4.

2.4 Evaluation

2.4.1 Evaluation Setup

We evaluate BatchSim’s performance on large industrial designs, Gemmini[30],
SIGMA[122], RocketChip[6], and BOOM[143], as listed in Table 2.1. These designs
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range from deep-learning accelerators and SoC designs to RISC-V cores. The
complexity of these designs can be assessed by counting the number of IR nodes
and edges in the table. All experiments were conducted on an Ubuntu 22.04
x86_64 machine. The machine was equipped with a 20-core Intel i5-13500 processor
running at 4.8 GHz, with 128 GB RAM. We compile all the programs on clang++-17
and llc-17 with optimization flags -O2 enabled.

2.4.2 Baseline

We consider Khronos[146] as our baseline to evaluate the performance of Batch-
Sim in terms of inter-cycle batching and task graph parallelism. The simulation’s
performance with a single thread and a batch size of one serves as the baseline
value. We then calculate the relative speedup by varying the thread count from
one to eight and the batch size from one to four. Each configuration is run ten
times to compute the average performance. The baseline results are depicted under
"Batchsize 1" bars in Figure 2.5. Notably, for SIGMA and RocketChip benchmarks,
without inter-cycle batching, multithreading performs worse than single-threading
because the overhead of multithreading outweighs the advantages of parallelism.

Table 2.1: Evaluated Benchmarks for BatchSim
Benchmark IR Nodes IR Edges Description

Gemmini 78k 135k Gemmini Matrix Multiplication
SIGMA 17k 29k Sparse and Irregular GEMM
RocketChip 35k 79k SoC consisting of Rocket Core
BOOM-Small 118k 214k 1-wide with 32 ROB BOOM Core
BOOM-Medium 170k 315k 2-wide with 64 ROB BOOM Core
BOOM-Large 230k 460k 3-wide with 96 ROB BOOM Core
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2.4.3 Performance Comparison

Figure 2.5 compares BatchSim’s performance enhancement over the baseline, ex-
ploring various thread counts from one to eight and batch sizes from one to four.
The results demonstrate significant performance improvements with multithread-
ing. For example, in the SIGMA benchmark, inter-cycle batching increases speedup
from 0.57× to 1.36× with six threads, and for the RocketChip benchmark, speedup
improves from 0.90× to 1.24× with four threads. This indicates that inter-cycle
batching effectively converts multithreading’s negative performance impacts into
positive gains. Additionally, in the Gemmini and BOOM series (Small, Medium,
and Large), using an optimal six threads, the speedup gains increase 11%–98%.
These results underscore BatchSim’s considerable effectiveness in boosting the
efficiency of RTL parallel simulations.
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Figure 2.5: Speedup improvement of BatchSim across varying thread counts and
batch sizes.
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2.5 Conclusion

This chapter introduces BatchSim, a parallel RTL simulator that incorporates inter-
cycle batching and task graph parallelism to enhance simulation efficiency. Batch-
Sim enables simultaneous multi-cycle simulation by merging the consecutive RTL
graphs and employs task graph parallelism to parallelize the simulation workload.
We evaluated the performance of BatchSim on several industrial designs. Compared
with state-of-the-art RTL simulators, BatchsSim can achieve a speedup of 11%–98%.
To further improve the performance, our future work will focus on optimizing
the memory layout to mitigate false sharing. Inspired by the recent success in
GPU-accelerated EDA workloads [40, 39, 35, 32, 38, 33, 36, 41, 34, 58, 59, 67, 94, 96],
we plan to also leverage the power of GPU to accelerate BatchSim.

In this work, Jie Tong was the primary contributor, leading the majority of the
research and development efforts. Liangliang Chang, Umit Y. Ogras, and Tsung-
Wei Huang supervised the project, offering guidance and oversight throughout
the project. All authors contributed to the preparation and review of the final
manuscript.
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Chapter 3

ScaleRTL: Scalable Code Generation

for RTL Simulation of Deep Learning

Accelerators with MLIR

As deep learning accelerators scale in complexity, efficient Register Transfer Level
(RTL) simulation becomes crucial for reducing the long runtime of hardware design
and verification. However, existing RTL simulators struggle with high compilation
overhead and slow simulation performance, particularly for large deep learning
accelerator designs, where components are heavily reused and hierarchically struc-
tured. This inefficiency arises because existing simulators repeatedly regenerate
and recompile redundant code, failing to leverage the structural parallelism inher-
ent in deep learning accelerators. To address this challenge, we propose ScaleRTL,
a scalable and unified code generation flow that automatically produces optimized
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parallel RTL simulation code for deep learning accelerators. Built on the MLIR
infrastructure, ScaleRTL identifies repetitive design patterns, reduces code size and
compilation time, and generates efficient simulation executables that exploit both
CPU and GPU parallelism. Compared to state-of-the-art RTL simulators, ScaleRTL
achieves a compilation speedup of three to five orders of magnitude and up to 15×

and 300× simulation speedup on CPU and GPU, respectively.

3.1 Overview

ASIC accelerators play a critical role in boosting the performance of deep learning
backbone applications, such as GEMM, DNNs, and transformers in the modern
AI industry [30]. To validate the functionality of a hardware design before phys-
ical implementation, Register Transfer Level (RTL) simulation plays a key role in
regression testing, debugging, and design space exploration. However, with the
rapidly increasing size and complexity of deep learning accelerators, RTL simula-
tion has become significantly more time-consuming. For instance, recent research
has reported that RTL simulation can take several hours to days to achieve coverage
closure for validating a deep learning accelerator [97]. Thus, accelerating RTL
simulation is critical for managing increasing design complexity and meeting short
time-to-market demands in the accelerator market.

To mitigate the runtime challenge of RTL simulation, researchers have proposed
various parallel RTL simulation algorithms. For example, Verilator [127], a widely
used open-source RTL simulator, transpiles Hardware Description Language (HDL)
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into C++ based on RTL abstract syntax trees (ASTs) and uses disjoint-set-based
partitioning to enable multithreading. RepCut [134] converts RTL source code to
FIRRTL [64] and introduces a replication-aided partitioning algorithm to reduce
synchronization overhead in parallel simulation. Khronos [146] and BatchSim [130]
parse RTL designs using MLIR and generate evaluation functions through LLVM
IR. RTLflow [97], built atop Verilator, transpiles RTL code into CUDA for GPU
execution but requires thousands of input stimuli to outperform CPU-based sim-
ulation. Despite improved performance, innovations of parallel RTL simulators
have evolved largely in isolation, and many shareable components have been largely
ignored. Consequently, designing new RTL simulation algorithms is extremely
time-consuming and error-prone due to numerous software fragmentations, dupli-
cated engineering efforts, and re-innovations of code optimizations.

On the other hand, prior research on parallel RTL simulation has primarily
focused on generic RTL designs, such as digital circuits written in SystemVerilog or
High-Level-Synthesis (HLS) languages. For a given RTL source, existing simula-
tors flatten the entire design into an RTL graph [127], where nodes represent logic
elements containing a set of instructions, and edges represent data dependency
between nodes. Then, these simulators partition the RTL graph into dependent
subgraphs for parallelism and generate evaluation functions. An evaluation function

simulates the graph for a cycle by consuming inputs and propagating them through
the graph. However, these approaches do not exploit structural information. Even
when partitions consist of homogeneous logic elements, they still regenerate the
same evaluation code for those elements. As shown in Figure 3.1(a) and (b), when
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a systolic array contains explicitly duplicated processing elements (PEs), existing
RTL simulators continue to regenerate evaluation functions for structurally identical
partitions. This results in inefficiencies, as these simulators repeatedly generate and
recompile redundant code instead of leveraging the structural parallelism inherent
in deep learning accelerators. Prior works such as Verilator [127] and Dedup [135]
offer limited support for deduplication in RTL simulation code generation. Ver-
ilator [127] focuses on small SystemVerilog statements and does not handle full
structural components, while Dedup [135] targets multi-core SoC-style designs that
emphasize heterogeneity and connectivity, rather than scalability of deep learning
accelerators.
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Figure 3.1: Comparison of existing RTL simulation approaches and ScaleRTL.

To tackle these challenges, we introduce ScaleRTL, a scalable code generation
flow that automatically generates optimized parallel RTL simulators for deep learn-
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ing accelerators. Figure 3.1(c) illustrates the ScaleRTL flow. Unlike prior works,
ScaleRTL introduces a structural-parallelism-aware partitioning method that iden-
tifies structurally parallel components in a deep learning accelerator design and
generates evaluation functions for these components. As a result, the generated
and compiled evaluation functions can be reused during simulation, avoiding re-
dundant code generation that traditional compilers and simulators fail to eliminate.
To unify the code generation flow for both CPU- and GPU-parallel simulation,
ScaleRTL builds atop the multi-level intermediate representation (MLIR) [85], which
supports versatile and customizable dialects and IR transformations. For CPU-
parallel simulation, ScaleRTL emits evaluation functions in LLVM IR, compiles
them into object files, and links them with a simulation wrapper containing the
CPU-parallel library. For GPU-parallel simulation, ScaleRTL emits evaluation func-
tions in PTX format, loads the kernel using the CUDA driver, and executes it using
CUDA Graph to reduce repetitive launch overhead. We summarize our technical
contributions as follows:

• We introduce a scalable code generation flow that exploits structurally parallel
components and eliminates redundant code in deep learning accelerator RTL
simulation.

• We develop a unified code generation flow that automatically generates CPU-
and GPU-parallel RTL simulators using MLIR, which enables simulation
across different architectures.

• We integrate CUDA Graph to reduce kernel launch overhead, further acceler-
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ating GPU-parallel RTL simulation.

We evaluate ScaleRTL on a set of deep learning accelerator RTL designs. Com-
pared to state-of-the-art RTL simulators, ScaleRTL achieves a compilation speedup
of three to five orders of magnitude and up to 15× and 300× simulation speedup
on CPU and GPU, respectively. To the best of our knowledge, ScaleRTL is one
of the earliest research efforts to explore the application of MLIR and GPUs in
deep learning accelerator RTL simulation. We open-sourced 1 ScaleRTL to support
hardware design and EDA-inspired compiler research.

3.2 Background and Motivation

3.2.1 RTL Simulation and Development Challenge

RTL design source code is typically written in hardware description languages
(HDLs) like SystemVerilog or Chisel. To enable simulation, these designs are
translated into C++ or LLVM IR, wrapped in a simulation framework, and compiled
into an executable. Full-cycle simulators, such as Verilator [127], Khronos [146],
and BatchSim [130], are widely used to capture cycle-accurate outputs and exploit
parallelism. In these simulators, the RTL design is transformed into a directed
graph, known as the RTL graph, where nodes represent logic elements and edges
denote data dependencies. Simulating each cycle corresponds to evaluating this
graph, where input values propagate through logic elements to produce outputs.

1https://github.com/TongJieGitHub/ScaleRTL

https://github.com/TongJieGitHub/ScaleRTL
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This evaluation process is repeated thousands to millions of times to validate the
design’s functionality [97].

The typical approach to building an RTL simulator involves representing the
RTL graph in an intermediate representation, applying optimizations, and generat-
ing efficient simulation code. For example, RTLflow [97] leverages an AST-based
IR to capture high-level RTL information, partitions the IR into macro tasks, and
schedules them across threads for parallel execution. Similar strategies have been
adopted by existing simulators [127, 134, 146, 99, 130, 50, 61]. However, innova-
tions in simulation IRs and parallel algorithms have evolved in isolation, leading
to software fragmentation, duplicated engineering efforts, and redundant code
optimization. This lack of modularity makes developing new RTL simulation
algorithms highly time-consuming and error-prone.

3.2.2 MLIR

MLIR [85] is a novel infrastructure designed to simplify the building of new com-
piler components atop the LLVM project. Specifically, MLIR provides a rich set of
composable abstractions, including operations, types, attributes, and regions, that
empower developers to represent programs at multiple levels of abstraction. Devel-
opers can also define custom dialects and transformation methods to achieve unified
code optimizations across diverse sources. To preserve designers’ intent and cap-
ture high-level information, we build ScaleRTL on top of the popular FIRRTL [64]
and CIRCT IRs, which directly models the RTL source. The primary benefit of
using MLIR is its capability to offer deeper insights at the IR level compared to the
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Figure 3.2: Overview of ScaleRTL.

source code, allowing for greater opportunities to exploit data parallelism.

3.3 ScaleRTL

Figure 3.2 illustrates the proposed ScaleRTL framework. At a high level, ScaleRTL
compiles RTL source code (FIRRTL) into RTL simulation executables for both CPU
and GPU targets. It is built atop MLIR [85] and CIRCT IR, which provide off-the-
shelf dialects and compilation passes for general-purpose compilation and hardware
modeling. ScaleRTL consists of three main components: Structural parallelism
analysis and partitioning, CPU-parallel code generation, and GPU-parallel code
generation. Additionally, we integrate CUDA Graph [95] to further enhance the
performance of GPU-based simulation.
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3.3.1 Structural Parallelism Analysis and Partitioning

The first step in RTL simulation code generation is to use CIRCT tools to convert the
FIRRTL source design into CIRCT dialects, such as Comb, Seq, and HW. Listing 3.1
provides an example of a GEMM design written in the HW dialect.
module {

hw. module @GEMM (% arg0: i32 , %arg1: i32 , ...) -> i32 {

...

%PE. io_data_2_out_bits , ... = hw. instance "PE" @PE(clock: %clock

: i1 , reset: %reset: i1 , ...) -> ( io_data_2_out_bits : i16 , ...)

%PE_1. io_data_2_out_bits , ... = hw. instance "PE_1" @PE(clock: %

clock: i1 , reset: %reset: i1 , ...) -> ( io_data_2_out_bits : i16 ,

...)

...

}

}

Listing 3.1: Example RTL Design in HW Dialect.

Unlike generic RTL designs, GEMM exhibits a highly homogeneous layout,
where most components, such as PEs and interconnects, are repetitively instantiated.
Additionally, from a hardware perspective, these subsequent lines of code are
semantically parallel. Thus, we can leverage structural parallelism in deep learning
accelerator designs to construct a highly parallel simulator. A key step in this process
is to analyze the code, identify and count repetitive components, and extract and
partition them from the original top-level design. To achieve this, we design a
pass in MLIR that performs these analyses. This pass examines hardware module
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hierarchies in MLIR by computing direct and flattened instance counts within a
hw::InstanceGraph. It identifies the top-level module using a heuristic, computes
direct instance counts, and recursively derives flattened counts–estimating the
occurrence of each module in a fully flattened design. The pass then returns these
counts as a mapping. With this analysis, we can partition the original design into
multiple instances and extract repetitive instances as separate modules.

3.3.2 CPU-parallel Simulation Code Generation

After analyzing repetitive components and decomposing the deep learning RTL
design into separate modules, we apply a set of IR transformations. This process
converts the design from the HW dialect to the LLVM dialect, enabling efficient
simulation of each module. An example of this MLIR-based transformation is
shown in Listing 3.2.
module attributes {llvm. data_layout = ""} {

...

llvm.mlir. global internal @shiftreg () : i1

llvm.mlir. global linkonce_odr @clock () : i1

llvm.mlir. global linkonce_odr @reset () : i1

...

llvm.func @PE () {

...

%25 = llvm.mlir. addressof @shiftreg : !llvm.ptr <i1 >

%25 = llvm.mlir. addressof @reset : !llvm.ptr <i1 >

%26 = llvm.load %25 : !llvm.ptr <i1 >

...
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llvm.store %7121 , %10412 : !llvm.ptr <i16 >

llvm. return

}

}

Listing 3.2: Example RTL evaluation code in LLVM Dialect.

In the LLVM dialect, signals and internal states are allocated as global variables
in the data segment. When lowered to LLVM IR and further to an object file,
the evaluation function @PE is bound to these global variables. For deep learning
accelerators with thousands of PEs, this approach leads to compiling identical code
thousands of times, resulting in a large executable with severe code redundancy.
To address this, we propose a new simulation paradigm that decouples data from
the evaluation function. Instead of binding to global variables, we define a struct
that holds all signals and states in a header file and pass a pointer to this struct as
an argument to the evaluation function. We refer to this as the Global-to-Struct

pass.
Listing 3.3 provides an example where the evaluation function takes a struct

pointer as an argument, with the struct defined in a header file. To correctly
determine memory locations within the struct, we record the byte offsets of all
data during the code generation phase. This ensures that the evaluation function
can accurately access the converted addresses without error. By separating data
from the function, we compile the evaluation function only once, while allocating
multiple instances of the struct at runtime. This allows multiple instances of the
function to be launched concurrently, reducing data hazards and synchronization
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overhead. With the function and header file prepared, we use a CPU-parallel library
(OpenMP) to perform parallel simulation for each cycle.
// LLVM Dialect

module attributes {llvm. data_layout = ""} {

llvm.func @PE (% arg0: !llvm.ptr <i8 >) {

%0 = llvm.mlir. constant (0 : i64) : i64

%1 = llvm. getelementptr %arg0 [%0] : (! llvm.ptr <i8 >, i64) -> !

llvm.ptr <i8 >

%2 = llvm. bitcast %1 : !llvm.ptr <i8 > to !llvm.ptr <i16 >

...

llvm. return

}

}

// C++ header file

typedef struct EvalContext {

// Field 0 - Original global : @mem_ext - Byte offset : 0

char mem_ext [8];

...

} EvalContext ;

void PE( EvalContext * ctx);

Listing 3.3: Example RTL evaluation code in LLVM dialect with a struct pointer as
an argument, and the corresponding struct defined in a C++ header file.

3.3.3 GPU-parallel Simulation Code Generation

Figure 3.3 illustrates the GPU code generation process in ScaleRTL. Unlike prior
work [132], which uses the GPU dialect to generate GPU-based simulation code,
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Figure 3.3: GPU code generation flow in ScaleRTL.

we found that relying solely on the provided GPU dialect limits control over kernel
management and optimization from the host side. To address this challenge, we
design a host-side CUDA code generator that automatically invokes CUDA driver
APIs to load modules, manage memory, and launch kernels. On the device side,
similar to CPU-parallel code generation, we generate the evaluation function in the
LLVM dialect. Since GPU supports launching thousands of threads that execute the
same kernel function in a SIMT fashion, we first allocate a chunk of device memory
for structs. For each thread, it is essential to compute the correct address and offset
to locate the corresponding struct that the thread will evaluate. To achieve this, we
precompute and map each data address during code generation by calculating the
base address of the struct and the offset of a given data field. Listing 3.4 shows an
example evaluation kernel using the NVVM dialect, where thread and block IDs
are retrieved and used to compute global memory addresses. Once the LLVM and
NVVM dialects are generated, we use the LLVM static compiler llc to lower the
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code to PTX. To reduce the overhead of just-in-time (JIT) compilation, where PTX is
offloaded to the GPU and compiled to SASS for the first execution, we use the PTX
assembler ptxas to compile PTX into architecture-specific binaries and package
them as a fatbin. This approach improves GPU performance while maintaining
compatibility across different GPU architectures.
module attributes {llvm. data_layout = ""} {

llvm.func @PE (% arg0: !llvm.ptr <i8 >) {

%0 = nvvm.read.ptx.sreg.tid.x : i32

%1 = nvvm.read.ptx.sreg.ctaid.x : i32

%2 = nvvm.read.ptx.sreg.ntid.x : i32

...

%10 = llvm. getelementptr %arg0 [%9] : (! llvm.ptr <i8 >, i64) -> !

llvm.ptr <i8 >

...

llvm. return

}

}

Listing 3.4: Example GPU-based RTL evaluation code in LLVM and NVVM Dielact.

RTL simulation typically runs for thousands of cycles. If we use stream-based
execution, repetitive kernel launches will accumulate significant overhead. To
mitigate this issue, we leverage CUDA Graph [95] to merge successive kernel calls
into a single simulation task graph to reduce kernel launch overhead and improve
GPU-based simulation performance.
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3.4 Experimental Results

We evaluate the performance of ScaleRTL on four deep learning accelerator RTL
designs: Conv2D [65], GEMM [65], Gemmini [30], and SIGMA [122]. Experi-
ments are conducted on a 64-bit Linux machine with an Intel i5-13500 CPU and
an NVIDIA RTX A4000 GPU. CPU code generation utilizes LLVM 17’s clang and
llc compilers, while GPU code generation employs CUDA Toolkit 12.6, targeting
compute capability 8.6. All code is compiled with the -O2 optimization flag. In the
following sections, we refer to ScaleRTL with CPU code generation as ScaleRTLC

and ScaleRTL with GPU code generation as ScaleRTLG. We consider Verilator [127],
Khronos [146], and BatchSim [130] as baseline CPU-based simulators. Verilator
and BatchSim are configured with 4 threads, while Khronos runs in single-threaded
mode as it doesn’t support parallelism. All simulations use a single input stimulus;
therefore, we do not include the GPU-based RTL simulator RTLflow [97], as it is
designed for batch-stimulus scenarios, which is a different scope of work. We also
exclude ESSENT [8] and its successors [134, 135], as they encounter out-of-memory
errors during code generation. To ensure consistency, all simulation results are
averaged over five runs.

3.4.1 Code Generation and Compilation Results

Table 3.1 presents the end-to-end compilation time and generated executable size
for Conv2D, GEMM, Gemmini, and SIGMA across different RTL simulators. The
end-to-end compilation time includes the transformation from RTL source code to
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Table 3.1: Comparison of compilation time (T) and generated executable size for
Conv2D, GEMM, Gemmini, and SIGMA among different RTL simulators.

Design #PEs Verilator Khronos BatshSim ScaleRTLC ScaleRTLG
T(s) Size(MB) T(s) Size(MB) T(s) Size(MB) T(s) Size(MB) T(s) Size(MB)

Conv2D
27 9 0.4 6 0.2 3 0.6 2 0.08 4 1.1
29 13 1.1 103 0.8 20 2.4 2 0.08 4 1.1
211 39 3.8 2633 3.5 302 9.6 2 0.08 4 1.1
213 163 15 41428 14 7796 39 2 0.08 4 1.1

GEMM
27 25 0.3 2 0.1 3 0.4 1 0.05 4 1.1
29 48 0.9 27 0.5 11 2 1 0.05 4 1.1
211 224 3.1 1135 2.3 139 7.7 1 0.05 4 1.1
213 2053 12 72477 9 2751 31 1 0.05 4 1.1

Gemmini
25 83 2.3 118 0.7 38 0.8 25 0.3 4 1.2
27 380 8.5 1897 3 592 3.3 33 0.3 5 1.2
29 1621 34 26183 12 9439 13 33 0.3 5 1.2
211 17893 132 357498 47 92673 52 32 0.3 5 1.2

SIGMA
25 41 0.7 7 0.2 9 0.3 3 0.1 8 1.4
27 94 2.3 99 0.9 59 1.3 3 0.1 10 1.4
29 443 8.7 1552 3.9 1053 5 3 0.1 10 1.4
211 4920 35 22248 16 10969 20 4 0.1 11 1.4

simulation code (C++ or LLVM IR) and the subsequent compilation and linking
process to generate the final binary. For baseline simulators (Verilator, Khronos,
and BatchSim), their inability to detect repetitive components leads to significant
redundant code generation and compilation overhead. As the number of PEs
increases, both compilation time and executable size grow proportionally. Even
worse, compiling designs with thousands of PEs can take several hours to days,
which could significantly hamper the turnaround time of hardware designs.

In contrast, ScaleRTLC and ScaleRTLG complete compilation in just a few seconds,
achieving up to 70,000× compilation speedup compared to the baselines. This
improvement comes from ScaleRTL’s ability to detect repetitive components in
deep learning accelerator designs, generating evaluation functions only for PEs and
other critical units, and invoking them with the corresponding data structures at
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Figure 3.4: Compilation time of Gemmini and SIGMA accelerators among different
RTL simulators as the number of PEs increases exponentially.

runtime.
To demonstrate the scalability of ScaleRTL’s compilation time, Figure 3.4 shows

the compilation time of Gemmini and SIGMA on different RTL simulators as
the number of PEs increases. The results clearly indicate that ScaleRTL achieves
sublinear overhead growth, even as the design size increases exponentially. This
trend highlights ScaleRTL’s efficiency and scalability in handling deep learning
accelerator RTL simulations, even for large-scale designs.

3.4.2 Overall Simulation Performance Comparison

Figure 3.5 shows the simulation speedup of Conv2D, GEMM, Gemmini, and SIGMA
on different RTL simulators, over the baseline Verilator. For small-scale designs,
ScaleRTLC and ScaleRTLG do not outperform other simulators, as the baseline
simulators can fit the RTL design within the cache and apply optimizations for
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Figure 3.5: Overall simulation speedup of Conv2D, GEMM, Gemmini, and SIGMA
on different RTL simulators as the number of PEs increases exponentially. Speedup
is measured relative to the baseline Verilator.
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higher efficiency. However, for mid-scale to large-scale designs, ScaleRTLC and
ScaleRTLG exhibit increasing speedup as the design size grows. This is because
ScaleRTLC evaluates components by passing pointers to structs, improving data
locality and reducing synchronization overhead. Additionally, ScaleRTLG employs
a block of threads to evaluate identical components, which exploits highly parallel
SIMT execution on the GPU. Consequently, ScaleRTLC achieves a 12×–15× speedup,
and ScaleRTLG achieves an 11×–300× speedup at the largest design sizes.

3.4.3 CPU and GPU Simulation Runtime Analysis

Figure 3.6 shows the simulation time of Gemmini and SIGMA on different RTL
simulators as the number of PEs increases exponentially. All CPU-based simulators,
including ScaleRTLC, exhibit linear or superlinear simulation growth because CPU
threads are limited, and the total executed instructions scale proportionally with
the design size. In contrast, ScaleRTLG exhibits sublinear growth. For instance, the
simulation time for Gemmini remains around 0.1 seconds, even as the size increases
from 24 to 211. This is because GPU consists of multiple streaming multiprocessors
(SMs), each capable of managing thousands of threads. As a result, GPU-based
simulation benefits from latency hiding through context switching and achieves
higher concurrency. This underscores ScaleRTL’s efficiency and scalability in deep
learning accelerator RTL simulation, especially for large-scale designs.
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Figure 3.6: Simulation time of Gemmini and SIGMA accelerators on different RTL
simulators as the number of PEs increases exponentially.

3.4.4 Performance Result of CUDA Graph

Figure 3.7 compares the performance of CUDA Stream-based and CUDA Graph-
based execution. Since GPU-based simulation involves consecutive kernel calls,
connecting these kernels into a graph is crucial to reducing kernel launch overhead.
Figure 3.7b and 3.7c illustrate simulation time over increasing cycles for both GPU-
based approaches on the large Gemmini and SIGMA designs. CUDA Graph-based
simulation consistently outperforms stream-based simulation across all evaluated
scenarios. For instance, in the Gemmini design, CUDA Graph-based simulation
reduces execution time by a consistent 60 milliseconds compared to stream-based
execution.
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Figure 3.7: Simulation results comparing CUDA Stream-based and CUDA Graph-
based execution.

3.5 Conclusion

This chapter presents ScaleRTL, a scalable and unified code generation flow that
automatically produces optimized parallel RTL simulations for deep learning ac-
celerators. Built atop the MLIR infrastructure, ScaleRTL identifies repetitive design
patterns, reduces code size, accelerates compilation, and generates efficient parallel
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simulation executables for both CPU and GPU targets. Compared to state-of-the-art
RTL simulators, ScaleRTL achieves a compilation speedup of three to five orders
of magnitude and up to 15× and 300× simulation speedup on CPU and GPU,
respectively.

In this work, Jie Tong was the primary contributor, leading the majority of
the research and development efforts. Wan-Luan Lee, Umit Y. Ogras, and Tsung-
Wei Huang supervised the project, offering guidance and oversight throughout
the project. All authors contributed to the preparation and review of the final
manuscript.
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Chapter 4

HeteroRTL: A Scalable Code

Generation Flow for Heterogeneous

Parallel RTL Simulation using MLIR

As hardware design complexity increases, efficient Register Transfer Level (RTL)
simulation becomes critical for reducing the long runtime of design and verifica-
tion. Although several parallel RTL simulators have been developed, they often
suffer from long compilation times and slow simulation performance, especially for
large-scale heterogeneous architectures and deep learning SoC designs that exhibit
repetitive and hierarchical structures. These limitations arise because existing simu-
lators fail to effectively map heterogeneous architectures onto CPU-GPU platforms,
resulting in underutilized compute resources. In addition, they repeatedly regener-
ate and recompile redundant code, missing the opportunity to exploit the structural
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parallelism inherent in deep learning accelerators. To address these challenges,
we propose HeteroRTL, a scalable code generation flow that produces hybrid CPU-
GPU parallel RTL simulators for heterogeneous deep learning accelerator SoCs.
Built on the MLIR infrastructure, HeteroRTL analyzes RTL designs, partitions the
simulation between CPU and GPU targets, identifies structural repetition to reduce
compilation overhead, and generates efficient simulation executables. Compared
to state-of-the-art simulators, HeteroRTL achieves compilation speedups of three
to five orders of magnitude and delivers up to 9× and 122× simulation speedups
across various designs.

4.1 Overview

Domain-specific accelerators are essential for enhancing the performance of deep
learning workloads, including DNNs and transformer models, in today’s AI-driven
industry [30, 70]. Register Transfer Level (RTL) simulation is a critical step in
hardware design and verification, used to validate functionality prior to physical
implementation through tasks such as regression testing, debugging, and design
space exploration. As accelerators evolve, their design complexity continues to
grow. For instance, the systolic array size in Google’s TPU has increased from
128×128 to 256×256 in the latest TPU v6e [1]. Consequently, RTL simulation
has become increasingly time-consuming. Recent studies report that simulation
can take several hours to days to achieve coverage closure when validating deep
learning accelerators [97]. Therefore, accelerating RTL simulation is essential for



43

managing growing design complexity and meeting the fast-paced time-to-market
requirements of the accelerator industry.

To overcome the prohibitive runtimes of RTL simulation, researchers have
introduced various parallel simulation techniques. One prominent example is
Verilator [127], a widely adopted open-source RTL simulator that transpiles hard-
ware description languages (HDLs) into C++ using abstract syntax trees (ASTs),
and employs disjoint-set-based partitioning to enable multi-threaded execution.
RTLflow [97], built on top of Verilator, targets GPU acceleration by translating RTL
code into CUDA, but requires thousands of input stimuli to outperform CPU-based
simulators. RepCut [134] converts RTL designs into FIRRTL [64] and introduces
a replication-aided partitioning algorithm to reduce synchronization overhead
during parallel simulation. Khronos [146] and BatchSim [130] utilize the MLIR
framework to analyze RTL designs and generate evaluation functions in LLVM
IR. Dedup [135] introduces deduplication techniques in RTL simulation code gen-
eration, targeting the structural patterns of multi-core SoC designs. While these
approaches improve performance, they have largely evolved independently, result-
ing in fragmented toolchains and missed opportunities for shared infrastructure. As
a result, developing new RTL simulation algorithms remains time-consuming and
error-prone, often involving redundant engineering efforts and reimplementation
of common optimization techniques.

However, prior research on parallel RTL simulation has primarily focused on
generic RTL designs, without addressing the unique characteristics of large-scale
heterogeneous architectures and deep learning SoCs. These approaches suffer from
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two major limitations. First, they do not effectively map heterogeneous architectures
onto CPU-GPU simulation platforms, resulting in underutilized compute resources.
As illustrated in Figure 4.1, a deep learning SoC typically features a heterogeneous
architecture composed of multicore host CPUs and a systolic array of duplicated
processing elements (PEs). Running such a simulation on CPUs alone fails to exploit
the fine-grained parallelism well-suited to GPUs. Conversely, executing the entire
simulation on GPUs underutilizes the hardware for complex CPU cores, which are
fewer in number than GPU warp sizes, and may overconsume registers and memory,
leading to suboptimal GPU performance. Second, existing simulators do not take
advantage of structural redundancy. Even when designs contain homogeneous
logic elements, they generate separate evaluation code for each instance. This results
in substantial inefficiencies, as the same code is repeatedly compiled instead of

PE PE PE

PE PE PE

PE PE PE

… … …

…

…

…

Core Core

Core Core

Figure 4.1: Schematic of a deep learning accelerator SoC composed of multicore host
CPUs and a systolic array of duplicated PEs. The heterogeneous architecture enables
CPU-GPU hybrid simulation, while the duplicated components offer opportunities
for simulation code reuse and reduction.
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being reused, failing to leverage the structural parallelism present in deep learning
accelerators.

To address these challenges, we propose HeteroRTL, a scalable code generation
flow that produces hybrid CPU-GPU parallel RTL simulators targeting heteroge-
neous deep learning accelerator SoCs. Unlike prior works, HeteroRTL introduces
an architecture-aware partitioning method that identifies heterogeneous compo-
nents and structurally parallel modules in the RTL design. It partitions the system
into two parts: complex host cores are simulated on the CPU, while the systolic
array is offloaded to the GPU to exploit massive parallelism. This partitioning
improves load balancing and maximizes compute resource utilization. In addition,
HeteroRTL detects structural repetition to significantly reduce compilation over-
head. By reusing generated and compiled evaluation functions during simulation,
it avoids the redundant code generation commonly found in traditional compilers
and simulators. To support a unified code generation flow for hybrid CPU and
GPU simulation, HeteroRTL is built on top of the multi-level intermediate represen-
tation (MLIR) framework [85], which provides flexible dialects and transformation
capabilities. HeteroRTL emits evaluation functions in LLVM IR, then lowers them
to native binary code for CPU execution and PTX code for GPU execution. It also
generates simulation wrappers to invoke and coordinate hybrid simulation tasks
across CPU and GPU platforms. We summarize our technical contributions as
follows:

• We propose a code generation flow that produces hybrid CPU-GPU parallel
RTL simulators for heterogeneous deep learning accelerator SoCs.
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• We develop an architecture-aware partitioning method that separates hetero-
geneous components and structurally parallel modules for efficient CPU and
GPU execution.

• We design a scalable code generation approach that detects structural rep-
etition and eliminates redundant code, significantly reducing compilation
overhead.

We evaluate HeteroRTL on a set of deep learning accelerator SoC RTL designs.
Compared to state-of-the-art simulators, HeteroRTL achieves compilation speedups
of three to five orders of magnitude and delivers up to 9× and 122× simulation
speedups across various designs.

4.2 Background and Motivation

4.2.1 RTL Simulation

RTL designs are typically described using hardware description languages (HDLs)
such as SystemVerilog or Chisel. For simulation, these designs are translated
into intermediate representations like C++ or LLVM IR, integrated into a simula-
tion framework, and compiled into executable binaries. To achieve cycle-accurate
simulation and parallel execution, full-cycle simulators such as Verilator [127],
Khronos [146], and BatchSim [130] are commonly used. These tools represent RTL
designs as directed graphs, referred to as RTL graphs, where nodes correspond to
logic elements and edges capture data dependencies. Each simulation cycle involves
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evaluating the RTL graph by propagating input values through logic elements to
compute outputs. This process is repeated thousands to millions of times to ensure
functional correctness [97, 146].

While these simulators effectively capture functional behavior, they often suffer
from significant code redundancy due to a lack of structural awareness. Verila-
tor [127] and Dedup [135] offer only limited support for deduplication in RTL
simulation code generation. Verilator operates at the level of low-level SystemVer-
ilog statements and does not recognize or optimize larger structural patterns. Dedup
focuses on multi-core SoC-style designs, emphasizing heterogeneity and connectiv-
ity, but does not address the scalability requirements of deep learning accelerators
with highly repetitive architectures.

4.2.2 MLIR

MLIR [85] is a modern compiler infrastructure developed to streamline the creation
of new compiler components within the LLVM ecosystem [84]. It offers a rich
set of composable abstractions, such as operations, types, attributes, and regions,
that enable the representation of programs at multiple levels of abstraction. MLIR
also allows developers to define custom dialects and transformation passes, facili-
tating unified optimization workflows across diverse input languages and target
platforms. To preserve the original design intent and retain high-level structural in-
formation, we build HeteroRTL on top of FIRRTL [64] and CIRCT [2], intermediate
representations specifically designed to model RTL semantics directly.
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4.3 HeteroRTL

Figure 4.2 presents an overview of the proposed HeteroRTL framework. At a high
level, HeteroRTL compiles RTL source code written in FIRRTL into simulation
executables targeting both CPU and GPU platforms. The framework is built on
top of MLIR [85] and CIRCT [2], which provide reusable dialects and compilation
passes for general-purpose optimization and hardware modeling. HeteroRTL
consists of four key components: structural repetition analysis and architecture-
aware partitioning, CPU-parallel code generation, GPU-parallel code generation,
and CPU-GPU hybrid simulation generation.

FIRRTL

Comb SeqHW

LLVM

CPU-parallel Evaluation Function

Existing Dialect

HeteroRTL Pass

Input & Output

External Tool

CPU-parallel Code Generation

CIRCT Dialects
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Architecture-aware Partitioning

Global-to-Struct

Parallel libraryLLVM IR

LLVM/NVVM

GPU-parallel Code Generation

Global-to-Struct

CUDA DriverPTX/Fatbin

GPU-parallel Evaluation Function

CPU-GPU Hybrid Simulation

Simulation Wrapper

Figure 4.2: Overview of HeteroRTL.
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4.3.1 Structural Analysis and Architecture-aware Partitioning

The RTL simulation code generation process begins by using CIRCT tools to lower
the FIRRTL source design into CIRCT dialects, such as hw, seq, and comb. Listing 4.1
shows an example of a deep learning accelerator SoC represented in the hw dialect.
module {

hw. module @DL_SoC (% arg0: i32 , ...) -> i32 {

...

% Core_0 .io_data_ , ... = hw. instance " Core_0 " @Core(clock: %clock

: i1 , ...) -> ( io_data_ : i32 , ...)

% Core_1 .io_data_ , ... = hw. instance " Core_1 " @Core(clock: %clock

: i1 , ...) -> ( io_data_ : i32 , ...)

...

%PE_0.io_data_ , ... = hw. instance "PE_0" @PE(clock: %clock: i1 ,

...) -> ( io_data_ : i16 , ...)

%PE_1.io_data_ , ... = hw. instance "PE_1" @PE(clock: %clock: i1 ,

...) -> ( io_data_ : i16 , ...)

...

}

}

Listing 4.1: Example Deep Learning SoC Design in HW Dialect.

Unlike generic RTL designs, deep learning accelerator SoCs exhibit a hetero-
geneous architecture consisting of a cluster of host CPU cores and a systolic array
composed of replicated processing elements (PEs). To exploit this structure, we
introduce a method that analyzes the architectural heterogeneity and partitions
the design for subsequent CPU and GPU code generation. Within each partition,
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the layout is highly homogeneous, as cores and PEs are often instantiated repeti-
tively. From a hardware perspective, these components operate in parallel and can
therefore be simulated concurrently. To construct a highly parallel simulator, we
leverage this structural parallelism by analyzing the design, identifying repetitive
components, and extracting them from the top-level module. We implement this
analysis as a custom MLIR pass that inspects the hardware module hierarchy. The
pass identifies the top-level module using a method that computes both direct and
flattened instance counts, and returns a mapping of each module to its total number
of instantiations in a fully flattened design. This enables us to isolate and extract
frequently repeated modules, which can then be simulated efficiently as parallel
instances.

4.3.2 CPU-parallel Simulation Code Generation

Following the analysis of architectural heterogeneity and repetitive structures,
we decompose the deep learning accelerator RTL design into distinct modules
and apply a series of intermediate representation (IR) transformations. For CPU-
parallel code generation, we target the host CPU cores, which are typically large and
complex. Due to their instruction-heavy behavior, these modules are well-suited
for CPU-based simulation. Using MLIR, we lower these components from the
hw dialect to the LLVM dialect, enabling efficient parallel simulation on the CPU.
Listing 4.2 illustrates this transformation flow.
module attributes {llvm. data_layout = ""} {

...
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llvm.mlir. global linkonce_odr @clock () : i1

llvm.mlir. global linkonce_odr @reset () : i1

...

llvm.func @Core () {

...

%25 = llvm.mlir. addressof @reset : !llvm.ptr <i1 >

%26 = llvm.load %25 : !llvm.ptr <i1 >

...

llvm.store %30, %31 : !llvm.ptr <i16 >

llvm. return

}

}

Listing 4.2: Example core evaluation code in LLVM Dialect.

In the LLVM dialect, internal states are commonly allocated as global variables
in the data segment. When lowered to LLVM IR and compiled into an object file,
each evaluation function, such as @Core, is statically linked to these globals. In
a deep learning accelerator SoC with tens of cores and thousands of PEs, this
leads to redundant compilation of identical logic for each instance, resulting in
excessive code duplication and inflated binary size. To address this inefficiency, we
introduce a simulation model that separates data from computation. Instead of
binding evaluation functions to global variables, we encapsulate all state variables
within a struct and pass a pointer to this struct as an argument. This transformation,
known as the Global-to-Struct pass, promotes function reuse across instances
and significantly reduces both compilation time and executable size.
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Listing 4.3 illustrates an evaluation function that takes a pointer to a struct as its
argument, with the struct itself defined in a header file. During code generation,
we record the byte offsets of all variables within the struct to ensure correct mem-
ory access. This guarantees that the evaluation function can compute the correct
addresses and access the corresponding data reliably. By decoupling the function
from its internal state, we compile the evaluation logic once and allocate multiple
struct instances at runtime. This design enables concurrent invocation of the same
function on different data, reducing data hazards and minimizing synchronization
overhead. With both the evaluation function and the struct definition in place, we
leverage OpenMP to execute cycle-level parallel simulation efficiently across CPU
threads.
// LLVM Dialect

module attributes {llvm. data_layout = ""} {

llvm.func @Core (% arg0: !llvm.ptr <i8 >) {

%0 = llvm.mlir. constant (0 : i64) : i64

%1 = llvm. getelementptr %arg0 [%0] : (! llvm.ptr <i8 >, i64) -> !

llvm.ptr <i8 >

%2 = llvm. bitcast %1 : !llvm.ptr <i8 > to !llvm.ptr <i16 >

...

llvm. return

}

}

// C++ header file

typedef struct EvalContext {

// Field 0 - Original global : @data - Byte offset : 0

char data [8];
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...

} EvalContext ;

void Core( EvalContext * ctx);

Listing 4.3: Example core evaluation code in LLVM dialect with a struct pointer as
an argument, and the corresponding struct defined in a C++ header file.

4.3.3 GPU-parallel Simulation Code Generation

Building on the analysis of architectural heterogeneity and structural repetition,
we partition the deep learning accelerator SoC RTL design into separate modules
and apply a series of intermediate representation (IR) transformations. For GPU-
parallel code generation, we target the processing elements (PEs) in systolic arrays,
which are typically simple and compute-light. Due to their data-parallel nature and
regular structure, these modules are well suited for GPU-based simulation. Unlike
prior work [132] that leverages the GPU dialect for simulation code generation, we
found that relying solely on the GPU dialect limits flexibility in kernel control and
host-side optimization. To overcome this limitation, we design a custom host-side
CUDA code generator that programmatically invokes CUDA driver APIs to load
modules, manage device memory, and launch kernels. On the device side, similar
to CPU-parallel code generation, we emit evaluation functions in the LLVM dialect.

Given the GPU’s ability to launch thousands of threads executing the same
kernel in a SIMT model, we first allocate a contiguous block of device memory
to store struct instances. Each thread must compute the correct address of its
assigned struct, which requires calculating both the base address and the byte
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offset of each field. These offsets are precomputed during code generation to
ensure correct memory access at runtime. Listing 4.4 provides an example of
a GPU evaluation kernel written in the NVVM dialect, where thread and block
IDs are used to compute global memory addresses. Once the LLVM and NVVM
dialects are generated, we invoke the LLVM static compiler llc to lower the code
to PTX. To avoid the overhead of just-in-time (JIT) compilation, where the GPU
compiles PTX to SASS upon first execution, we use the PTX assembler ptxas to
compile the PTX into architecture-specific SASS binaries. These are packaged as
fatbins, which improve performance and maintain compatibility across different
GPU architectures.
module attributes {llvm. data_layout = ""} {

llvm.func @PE (% arg0: !llvm.ptr <i8 >) {

%0 = nvvm.read.ptx.sreg.tid.x : i32

%1 = nvvm.read.ptx.sreg.ctaid.x : i32

%2 = nvvm.read.ptx.sreg.ntid.x : i32

...

%11 = llvm. getelementptr %arg0 [%10] : (! llvm.ptr <i8 >, i64) ->

!llvm.ptr <i8 >

...

llvm. return

}

}

Listing 4.4: Example GPU-based PE evaluation code in LLVM and NVVM Dielact.
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4.3.4 CPU-GPU Hybrid Simulation Generation

After generating simulation functions for both CPU-parallel and GPU-parallel mod-
ules, we construct a unified simulation wrapper to enable hybrid execution across
CPU and GPU platforms. This wrapper coordinates the simulation of heteroge-
neous components, executing host cores on the CPU and processing elements (PEs)
on the GPU, in a single simulation cycle. To achieve this, we assign two host threads:
one responsible for launching the CPU-side simulation function and the other for
invoking the GPU kernel through the CUDA driver API. These threads are folded
into a lightweight runtime framework that synchronizes execution using a barrier
at each end of the simulation cycle to ensure correctness and data consistency.
Since our simulation scenario involves no shared inputs or outputs to simplify our
simulation model, no explicit data transfer between host and device memory is
required.

During each simulation cycle, the CPU thread invokes the evaluation functions
for complex cores using OpenMP, while the GPU thread asynchronously launches
the evaluation kernel to simulate thousands of parallel PEs. This hybrid execution
model leverages the strengths of both CPU and GPU: the CPU efficiently handles
control-heavy, instruction-rich host cores, while the GPU executes lightweight, mas-
sively parallel PEs with high throughput. By balancing workloads and minimizing
idle compute resources, the hybrid simulation framework improves scalability and
simulation efficiency for heterogeneous deep learning accelerator SoCs.
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4.4 Experimental Evaluation

We evaluate the performance of HeteroRTL on four deep learning SoC RTL designs,
each integrating multiple RISC-V Rocket [7] cores as the processing host and paired
with one of the following accelerators: Conv2D [65], GEMM [65], Gemmini [30],
or SIGMA [122]. Evaluations are performed on a 64-bit Linux machine with an
Intel i5-13500 CPU and an NVIDIA RTX A4000 GPU. CPU code is generated using
LLVM 17’s clang and llc, while GPU code generation leverages CUDA Toolkit 12.6
with compute capability 8.6. All generated code is built with the -O2 optimization
level.

4.4.1 Baseline

We compare HeteroRTL against three CPU-based RTL simulators: Verilator [127],
Khronos [146], and BatchSim [130]. Verilator and BatchSim are executed with four
threads enabled, while Khronos operates in a single-threaded configuration due to
its lack of parallel execution support. Since our experiments focus on single-input
stimulus scenarios, we exclude RTLflow [97], a GPU-based simulator specifically
optimized for batch-driven workloads. ESSENT [8] and its successors [134, 135]
are also excluded, as they fail to complete code generation due to out-of-memory
errors. To ensure consistency, all simulation results are averaged over five runs.
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4.4.2 Code Generation and Compilation Results

Table 4.1 shows the end-to-end compilation time and executable size for Conv2D,
GEMM, Gemmini, and SIGMA across various RTL simulators. The compilation
time includes both the transformation from RTL source to simulation code (C++
or LLVM IR) and the final compilation and linking steps to produce the executable.
Baseline simulators fail to identify repetitive components, leading to redundant
code generation and substantial compilation overhead. In contrast, HeteroRTL
compiles in just a few seconds, achieving a three to five order-of-magnitude speedup.
This efficiency stems from HeteroRTL’s ability to detect structural repetition in
heterogeneous architectures and deep learning accelerators, generating evaluation
functions only for critical components (e.g., cores and PEs) and reusing them at
runtime via corresponding data structures.

To demonstrate HeteroRTL’s scalability, Figure 4.3 shows the compilation time
of GEMM across RTL simulators as the number of PEs and Rocket cores increases.
HeteroRTL exhibits sublinear growth in compilation overhead, even as design size
scales exponentially. This trend underscores HeteroRTL’s efficiency and scalability
for large-scale RTL simulation of heterogeneous architectures and deep learning
accelerators.

4.4.3 Overall Simulation Speedup

Figure 4.5 and Figure 4.6 show the simulation speedup of Conv2D, GEMM, Gem-
mini, and SIGMA on various RTL simulators under different configurations of
Rocket cores and PEs, relative to the baseline Verilator. In Figure 4.5, HeteroRTL
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Table 4.1: Compilation time (T) and executable size for Conv2D, GEMM, Gemmini,
and SIGMA across different Rocket core and PE configurations.

Design #Cores #PEs Verilator Khronos BatchSim HeteroRTL
T(s) Size(MB) T(s) Size(MB) T(s) Size(MB) T(s) Size(MB)

Conv2D
4 27 25 0.9 16 0.6 11 1.1 5 1.1
4 211 55 4.3 2643 3.8 310 10 5 1.1
32 27 150 3.5 229 2.8 79 5.1 7 1.1
32 211 180 6.9 2856 6.1 378 14 7 1.1

GEMM
4 27 41 0.9 12 0.5 11 1.0 5 1.1
4 211 240 3.6 1145 2.6 148 8.2 5 1.1
32 27 167 3.4 226 2.7 79 4.9 7 1.1
32 211 365 6.2 1359 4.9 215 12 7 1.1

Gemmini
4 27 396 9 1907 3.3 601 3.8 7 1.2
4 211 17909 132 357508 47 92682 52 7 1.2
32 27 521 11 2121 5.6 669 7.8 8 1.2
32 211 18034 135 357721 49 92750 56 8 1.2

SIGMA
4 27 111 2.8 109 1.3 68 1.8 12 1.4
4 211 4936 35 22258 16 10977 20 12 1.4
32 27 236 5.4 323 3.5 136 5.8 13 1.4
32 211 5062 38 22472 18 11045 24 14 1.4

demonstrates increasing speedup as deep learning accelerator designs scale from
small to large sizes. This improvement is driven by HeteroRTL’s strategy of assign-
ing thread blocks to evaluate identical components (PEs) in parallel, leveraging
SIMT execution on the GPU to effectively hide latency. As a result, it achieves a
speedup of 9× to 122× for the largest designs.

In Figure 4.6, HeteroRTL outperforms other simulators, achieving up to 80×

speedup. This gain is attributed to its use of pointer-based struct passing, which
enhances data locality and reduces synchronization overhead. Additionally, Het-
eroRTL adopts a hybrid CPU-GPU co-simulation strategy that balances the work-
load: complex heterogeneous cores are simulated on the CPU, while simpler PEs
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Figure 4.3: Compilation time of GEMM accelerators across different RTL simulators
under varying Rocket core and PE configurations.

are handled in parallel on the GPU, reducing pressure on both sides and achieving
better load balancing.
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Figure 4.4: Simulation time of Gemmini on various RTL simulators with different
numbers of PEs and Rocket core configurations.
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Figure 4.5: Overall simulation speedup of Conv2D, GEMM, Gemmini, and SIGMA
on various RTL simulators with 32 Rocket cores while the number of PEs increases
exponentially.
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Figure 4.6: Overall simulation speedup of Conv2D, GEMM, Gemmini, and SIGMA
on various RTL simulators with 1024 PEs while the number of cores increases.
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4.4.4 Simulation Runtime Analysis

Figure 4.4 presents the simulation time of Gemmini on various RTL simulators
across different PE counts and Rocket core configurations. All baseline simulators
exhibit superlinear growth in simulation time due to their CPU-based execution.
With limited CPU threads and instruction counts scaling proportionally to design
size, the simulation imposes significant memory and compute pressure on the CPU.
In contrast, HeteroRTL demonstrates sublinear growth. As shown in Figure 4.4, the
simulation time remains around 0.5 seconds with 32 Rocket cores, even as the num-
ber of PEs increases from 24 to 211. This performance comes from offloading deep
learning accelerator simulation to the GPU. The GPU consists of multiple stream-
ing multiprocessors (SMs), each capable of handling thousands of threads. This
enables latency hiding through context switching and allows massive concurrency,
significantly improving simulation throughput.

Figure 4.4 also shows that HeteroRTL continues to outperform other simulators
as the number of Rocket cores increases from 2 to 32. This is due to the effective
load balancing of HeteroRTL’s hybrid simulation model: complex heterogeneous
cores (e.g., Rocket cores) are assigned to the CPU, which is better suited for their
instruction-heavy behavior, while simpler, massively parallel PEs are evaluated
on the GPU. As a result, HeteroRTL’s hybrid CPU-GPU co-simulation approach
achieves high performance and scalability for heterogeneous architectures with
integrated deep learning accelerators.
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4.5 Conclusion

This chapter presents HeteroRTL, a unified and scalable code generation flow for
hybrid CPU-GPU RTL simulation. By introducing an architecture-aware partition-
ing method and a structural deduplication strategy, HeteroRTL effectively maps
complex host cores to CPUs and highly parallel processing elements to GPUs. Built
on top of the MLIR infrastructure, HeteroRTL enables modular, parallel code gener-
ation and simulation, significantly improving performance and resource utilization.
Our evaluation shows that HeteroRTL achieves up to five orders of magnitude
compilation speedup and delivers up to 122× simulation speedup compared to
state-of-the-art simulators. These results underscore the benefits of leveraging
structural parallelism and heterogeneous hardware to accelerate RTL simulation.
In the future, we plan to extend HeteroRTL to support additional features such as
dynamic scheduling. We also aim to scale it to support larger and more diverse
SoC designs.

In this work, Jie Tong was the primary contributor, leading the majority of
the research and development efforts. Zhengxiong Li, Umit Y. Ogras, and Tsung-
Wei Huang supervised the project, offering guidance and oversight throughout
the project. All authors contributed to the preparation and review of the final
manuscript.
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Chapter 5

MQL: ML-Assisted Queuing Latency

Analysis for Data Center Networks

Data center network (DCN) performance analysis is becoming increasingly critical
due to the growing data center scale and proliferation of latency-critical applications.
Packet-level simulators, the de-facto performance evaluation tools, allow accurate
modeling of the network and protocols, but they are extremely slow [115, 109, 103].
Simulation of large-scale DCNs with thousands of nodes can take days, making
meaningful design space exploration impractical. Analytical techniques, such as
queuing theory, can mitigate the scalability problem and offer high accuracy when
specific workload assumptions are satisfied. However, their accuracy may decline
as these assumptions break, and execution times explode unless designed carefully.

To address these challenges, we propose a novel and scalable performance
analysis methodology that combines two powerful techniques. First, it uses queuing
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theory and the maximum entropy (ME) principle to approximate the waiting time
in each queue in a DCN. It then finds the end-to-end latency of each flow using
traffic input, routing algorithm, and network parameters. This ME-based queuing
model can approximate the latency under generalized exponential input traffic and
general service distributions. Since its accuracy can degrade as traffic diverges from
input and service time assumptions, the second step of the proposed methodology
learns and corrects the systematic errors using a regression tree. The resulting
ML-assisted technique achieves less than 3% modeling error on average compared
to ns-3 simulations. Moreover, the speedup over ns-3 ranges from 100× to 9000×

on DCNs with 128 to 1024 nodes.

5.1 Overview

Due to the increasing demand for internet services, millions of users worldwide rely
heavily on data centers to serve their computational needs. Data centers provide
shared access to data, applications, storage, and compute resources. They comprise
of many compute and storage nodes structured in a particular topology, such as a
fat-tree [5]. As the data volumes and amount of managed services explode, data
centers scale out to satisfy the growing requirements.

Data center networks (DCN) must deliver low latency and virtually unlimited
bandwidth to maximize the quality of service (QoS) under cost (e.g., equipment
cost) constraints. Therefore, DCN architects spend substantial effort designing
the network topology, routing algorithms, and protocols. Packet-level simulators,
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such as ns-3 [3] and OMNet++ [4], are used to evaluate the performance of these
factors. Simulators provide flexibility in modeling different protocols and a high
degree of observability, facilitating debugging and achieving high fidelity with real
DCN hardware. However, the advantages of a simulator come at the expense of
simulation speed. Our evaluations show that ns-3 simulations of a DCN with a
1024-node fat-tree topology and 100 Mbps links take up to a week. Consequently,
simulation-based design space exploration is not practical, considering that numer-
ous simulations with different parameters are required.

Notoriously slow simulation speeds motivated the deployment of analytical
approaches to estimate network performance [9, 12, 116, 105, 106, 107, 113, 114].
The most prominent example is the queuing theory, which led to a large family
of analytical models that model the queuing delay under different input traffic
and service time distributions. These models are then employed to approximate
the delay through complex switches and eventually through networks composed
of these switches. Queuing latency models are effective when the workload and
service time assumptions match real-life behavior. For example, the M/M/1 queue
model in Kendall’s notation [72] implies Poisson input arrivals, exponentially
distributed service time, one server, and infinite-sized queues. The analytical
equations for this model match almost perfectly with actual measurements when
the Poisson arrival, exponential service time, and infinite-sized queue assumptions
hold. The rich queuing theory literature [9, 12, 76, 78, 77] provides tailored models
to more general cases, such as general traffic arrival and service time distributions
and a finite-sized queue with K slots. However, the model accuracies degrade with
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higher mismatch between the model assumptions and real-life behavior, and with
non-trivial interaction between tandem queues. Furthermore, knowing the precise
input traffic and service time distributions is unrealistic.

Motivated by the shortcomings of classical queuing theory, recent works pro-
posed employing deep learning techniques for DCN performance analysis [142,
29, 138, 123]. For example, MimicNet [142] proposes a hybrid technique that com-
bines simulation with deep learning. It observes that users are often interested
in detailed performance analysis of one cluster. Hence, they simulate the cluster
of interest using OMNet++ and model the rest of the DCN using a deep neural
network (DNN) trained offline. While speeding up the DCN performance analysis,
this approach loses the network-level observability by abstracting all remaining
clusters. Similarly, DeepQueueNet [138] models each device in the network as a
DNN. The proposed models approximate the delay of each packet in the incoming
packet stream and produce an outgoing stream of packets. Then, it composes
these DNNs in one-to-one correspondence with the network structure. Treating
the switches as black boxes and modeling them with DNNs requires substantial
training data. Furthermore, trying to achieve high accuracy can lead to overfit and
overkill since this approach replaces the well-known structure of DCN switches
with generic DNNs instead of exploiting them. Finally, the composability of these
DNNs is not proven theoretically. These emerging approaches aim to replace the
well-established analytical techniques completely, while traditional queuing models
fail to exploit the rich set of simulation data and emerging machine learning (ML)
techniques. In contrast to these two extremes, we propose to build a new family of
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ML-assisted queuing latency (MQL) analysis approaches by leveraging queuing
theory rather than resorting to black-box deep learning techniques. We base our
novel approach on the following insights:
Key insight 1: Queuing theory can produce fast, accurate, and scalable models for
many workload scenarios.
Key insight 2: Current methodologies already compare the accuracy of analytical
techniques to simulations and produce a massive dataset. We can learn from this
data where the analytical models fall short.
Key insight 3: A suite of lightweight ML techniques, such as regression analysis,
can be used to learn and correct the analysis errors.

We propose a new MQL methodology using the insights listed above. The
proposed MQL method first develops analytical latency models based on queuing
network discipline deemed appropriate for the target scenario. This work employs
the maximum entropy (ME) model to derive mathematical expressions for each
queue in the target DCN. Then, the input flows, topology, and routing algorithm
are used to find the end-to-end flow latencies. In this work, the ns-3 simulator is
used as the golden truth to compare the accuracy between the analytical model
and simulation. At this point, the proposed MQL methodology performs a more
extensive analysis than simply measuring and comparing the accuracy. From the
comparison, we identify the regions where the analytical models fall short. These
shortcomings can happen systematically due to the network structure, such as
tandem queues. We use these systematic errors to extract the features that are
highly correlated with the underlying analysis of the analytical model. The last step
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of the proposed MQL methodology is modeling the systemic errors and adding
them to the analytical estimates. While the MQL methodology can be used with
any ML technique, this work uses Regression Trees (RT).

In summary, this work makes the following contributions:

• Demonstrates the first ML-assisted queuing theory-based technique that can
handle a large-scale (>1000 nodes) network of queues, for modern DCN
protocols,

• An automated tool that generates an executable performance model (queuing
analysis and RT) for a given DCN,

• The ability to provide detailed observability (e.g., individual queuing delay,
occupancies, and tier-level visibility) without relying on any communication
pattern and topology assumptions,

• Extensive simulation studies with synthetic traffic and network traces that
demonstrate less than 3% error on average, 100× to 9000× speed up over ns-3,
and scalability to 1024-node fat-tree.

The rest of this chapter is organized as follows. Section 5.2 presents a background
on data center networks and the motivation for this work. The proposed MQL
approach is described in Section 5.3. Section 5.4 presents extensive experimental
evaluations and comparisons with state-of-the-art approaches. We review the
related work in Section 5.5. Finally, Section 5.6 concludes the work with directions
for future work.
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5.2 Background and Motivation

Data centers are evolving rapidly with new paradigms and emerging innovations,
such as resource disaggregation and low-diameter topologies, to meet the un-
precedented growth of data center computing and enable new system-level ar-
chitectures [129]. Similarly, application disaggregation approaches disintegrate
monolithic applications into small microservices or functions with communication
overheads [128]. CPU tasks are increasingly offloaded to special-purpose acceler-
ators, often linked over the network, including FPGA resource pooling [147]. In
addition, memory and storage are being disaggregated, opening up new system-
level architectures to explore [102, 89].

From a DCN perspective, integrated silicon photonics [110] delivers break-
through performance, enabling high bandwidth and low latency interconnection.
It has generated renewed interest and innovations in low-diameter (shorter path-
length) topologies [83, 137, 11, 74, 75]. These benefits enable exploring large-scale
topologies (>10K end points) [108] and numerous permutations. Hence, there is a
critical need for fast performance models to explore the vast design space of new
architectures and data center topologies enabled by these innovations.

This work develops fast performance models that generalize to any topology
[10]. While exploring new topologies is a crucial use case, we initially demonstrate
the proposed technique on fat-tree topologies. Since fat-trees are widely used
in DCN and HPC systems [136, 108], they provide the baseline for new DCNs
“to beat.” Figure 5.1 shows an example of a three-tier fat-tree topology with 16
compute nodes and twenty k-port switches arranged hierarchically in three layers.
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In addition to the data center network, the proposed technique can also be applied to
model the emerging interchiplet communication architectures, enabled by advanced
packaging [124, 126, 125, 79].

A well-established approach for fast network modeling is queuing theory [10,
29]. Each compute node and switch in the DCN is represented by one or more
queues, while the interconnection of compute nodes and switches is modeled as
a network of queues (shown in blue), as illustrated in Figure 5.1. The internal
structure of switches is modeled via different techniques, such as output-queue
(OQ), with queues only on the output ports, and combined input/output-queued
(CIOQ) switch with queues on both the input and output ports [25]. OQ switches
have a simple scheduling policy which is easier to model, but they are impractical
due to the high-speed crossbar. CIOQ switches, on the other hand, are practical to
implement but are harder to model due to their more complex scheduling policies.
For modeling a switch’s performance, [25] shows that the simpler OQ switch is
equivalent to CIOQ+CCF (critical cell first IO scheduling) in its input/output

Figure 5.1: Queuing theory representation of 16-node fat-tree



72

timing characteristics. Thus, we use the OQ switch as the modeling abstraction.
There are different versions of queuing theory-based analytical models. This

work uses the principle of maximum entropy (ME) because it handles bursty traffic
and generalized service distributions quite well by generating the least biased
distribution that matches the constraints. We first find the mean queue occupancies
and then calculate the waiting time using Little’s law [101]. One must also model the
interconnection of different queues and flows going through the queues following
the routing algorithm. We use the decomposition method to find the inputs to each
queue [121], as detailed in Section 5.3. Finally, the accuracy of analytical models
can degrade when the real traffic diverges from the assumed parameters. Instead
of completely switching to a machine-learning (ML)-based approach, we harness
the power of queuing theory and improve on it using a light-weight ML-based
correction technique, as described in Section 5.3.5.

5.3 MQL: ML-Assisted Queuing Latency Analysis

5.3.1 MQL Overview

We set the following goals while scaling to thousands of nodes and providing
visibility of internal queue utilization:

• High accuracy in estimating end-to-end packet latency and round-trip delay,

• Fast and lightweight estimation, scaling to DCNs with thousands of nodes,

• Tier- and queue-level visibility (e.g., observing individual queue utilizations),
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• Generality to support different workloads and protocols.

Offline Phase: The first two components of MQL leverage the current DCN per-
formance evaluation practice, as illustrated in Figure 5.2. It develops analytical
performance models for the topologies, workloads, and network protocols of in-
terest. Then, the accuracy of these models is compared against simulations. The
common practice does not offer any systematic technique to learn the accuracy
mismatches and use them for correction. MQL elaborates on this step by systemati-
cally analyzing the modeling error as a function of the simulation and analytical
parameters. For example, the error may be a function of the queue within a partic-
ular switch, data rate, or any input used by analytical models. Therefore, the final
component, which provides ML assistance, extracts the most prominent features.
Then, it trains a regression model that estimates the error as a function of these
features.
Online Use: MQL first runs the analytical performance model to determine the
end-to-end latencies. Then, it adds the error estimate to its results as a correction
factor.

The proposed MQL methodology can be implemented with any performance
analysis and ML technique. The following section describes the specific methods
used in this paper.

5.3.2 Modeling Assumptions and Target Illustrative DCN

The proposed MQL methodology can be applied to arbitrary DCN topologies
and routing algorithms. This work demonstrates MQL on the three-level fat-tree
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Figure 5.2: Overview of the proposed MQL methodology.

topology (shown in Figure 5.1) with up to 1024 nodes (16 pods) due to its popularity.
It is validated with fixed and equal-cost multi-path routing (ECMP) [43] due to its
wide usage and complexity.

Since real-world traffic can be bursty, we model the arrival process at each queue
based on the Generalized Exponential (GE) distribution [78, 77], which can also
handle other distributions like Poisson. The queues accept packets one at a time.
Hence, multiple flows (a stream of packets per source-destination pair) can merge
and decompose while entering and leaving queues. This general behavior suggests
that even if the individual flows follow a specific distribution at the input, the
output stream of packets can follow an unknown distribution. Similarly, we do
not make any assumptions about the packet size distributions and thus select the
Generalized distribution to model the service time. The channel (link) between
switches and nodes in Figure 5.1 is modeled as a server for the output queue on
the corresponding port. Therefore, we start with a GE/G/1 model and extend it to
GE/G/1/N, where N is the finite queue length.
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5.3.3 Analytical Queuing Models

This work uses ME-based queuing models to illustrate the proposed MQL method-
ology due to its accuracy and scalability. Since we focus on the network latency,
we use the traffic from each node entering the DCN as the primary input. The ME-
based models with generalized exponential traffic employ the first two moments:
the average arrival rate (λi) and squared coefficient of variation (C2

Ai
) of each input

flow, as summarized in Table 5.1. These inputs are propagated to the switches in
the fat-tree using a decomposition method [121]. Then, the ME models are used to
compute the delay in each queue in the target DCN, as described next.

Decomposition method

The flows entering the DCN from the node queues go through multiple merges
and separations as they travel to their destination. Since we used a generalized
exponential model, the sum of arrival rates alone is insufficient, unlike the Poisson
distribution assumption. Figure 5.3 illustrates two flows entering the same queue.
The packets from these flows are stored in their arrival order, which is arbitrary.
Hence, we need to estimate the first and second orders of the models, i.e., the
arrival rate and squared coefficient of variation. Following the derivation in the
decomposition model given in [121], we find the squared coefficient of variation of
inter-arrival times of merged flow as the weighted average of the incoming squared
coefficient of variations, as shown in Figure 5.3. Similarly, the squared coefficient
of variation of inter-departure times (C2

D) of the merged flows is found using the
decomposition approach illustrated in Figure 5.3. The output flows are split to
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Table 5.1: Summary of notations used in this work.

λi Injection rate of flow-i
ρi Link utilization of flow-i
pi Probability of flow-i split when leaving the queue
C2

Ai
Squared coefficient of variation of inter-arrival time for flow-i

C2
Di

Squared coefficient of variation of inter-departure time for flow-i
C2

Si
Squared coefficient of variation of service time for flow-i

λ Injection rate for merged flow
ρ Link utilization for merged flow
C2

A Squared coefficient of variation of inter-arrival time for merged flow
C2

D Squared coefficient of variation of inter-departure time for merged flow
C2

S Squared coefficient of variation of service time for merged flow
⟨ni⟩ Mean queue length of flow-i in an infinite-sized queue
⟨ni⟩N Mean queue length of flow-i in a finite-sized(N) queue
Wi Average waiting time of flow-i

enter the downstream queues. Therefore, we calculate the C2
D of the split flow and

the probability of splitting based on the number of downstream queues using the
equation in Phase 3 of Figure 5.3. These split C2

Di
will be the C2

Ai
to the downstream

queues. Furthermore, the decomposition method is computed in one pass, making
our approach scalable.

GE/G/1 Maximum Entropy model

The Maximum Entropy(ME) method approximates the networks when queues
achieve equilibrium [12, 78]. For fat-tree topology, with the first-come-first-served
(FCFS) queuing discipline and a single server, we adopt the GE/G/1 ME model
(generalized exponential arrival process, and generalized service process) proposed
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in [78, 77]. The proposed approach traverses the network from source to destination
for each flow in the workload, following the routing algorithm. During this process,
it uses the decomposition process to find the mean arrival rate (λi), utilization (ρi),
squared coefficient of variation (C2

Ai
), and the coefficient of variation of the service

time (C2
Si

) at each queue. Then, it uses the GE/G/1 ME model to find the mean
queue length of each flow i (⟨ni⟩) in an infinite-sized queue as:

⟨ni⟩ = ρi

2 (C2
Ai

− 1) +

N∑
k=1

λi

λk

ρ2
k(C2

Ak
+ C2

Sk
)

1 − ρ
(5.1)

Finally, the waiting time (queuing delay) of flow-i becomes:

Wi = ⟨ni⟩ − ρi

λi

(5.2)

GE/G/1/N Maximum Entropy model

For the finite-sized queue model, we adopt the treatment of queue occupancy (and
delay) presented in [76]. We list the key steps here for completeness. Derivations
can be found in [76]. We start constructing the analytical model for the finite-sized
queue by first assuming infinite queues. With this assumption, we first find the
mean queue length of each flow i (⟨ni⟩) in an infinite-sized queue using Equation 5.1.
Then, we find the Lagrangian coefficient x by using the mean infinite queue length
⟨ni⟩ from Equation 5.1 [76].

x = ⟨ni⟩ − ρi

⟨ni⟩
(5.3)
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Figure 5.3: Decomposition method: Phase 1 merges multiple flows into a single
flow. Phase 2 computes the coefficient of variation of departure processes. Phase 3
splits the merged flow to derive the individual departure processes.

The Lagrangian coefficient x is then used to find the mean finite queue length given
by Equation 5.4, where N is the finite size of the queue:

⟨ni⟩N = ρi

1 − ρ2
i x

N−1

1 − xN

1 − x
− Nρix

N−1

 (5.4)

Finally, it computes the finite mean occupancy (⟨ni⟩N ) and the waiting time (queu-
ing delay) of flow-i as:

Wi = ⟨ni⟩N − ρi

λi

(5.5)

5.3.4 End-to-End and Round-Trip Latency Modeling

Using the λi, ρi, C2
Ai

of the flows entering a queue, we find the queuing delay
of that queue. Then, the squared coefficient of variation of inter-departure time
(C2

Di
) is calculated by the decomposition model, which uses the squared coefficient

of variation of inter-arrival time (C2
Ai

) of the upstream queues. Therefore, the
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algorithm iterates over every queue that has its inputs ready and computes the
corresponding delay.

The next step is finding the end-to-end latency of each flow by summing up
the queuing delays and the service times. The proposed approach achieves this
objective using the fat-tree size, routing algorithm, and the characteristics of each
flow(λi, ρi, C2

Di
, C2

Si
, mean packet size, queuing delay of host queues). The output

is the average end-to-end latency for each flow, as shown in the pseudo-code in
Algorithm 1. Finally, we compute the average round-trip time (RTT) by adding the
end-to-end latency of data and their corresponding acknowledgment packets.

5.3.5 ML-Based Correction Technique

While the ME model applies to any network that decomposes into a network of
queues, it may fail to generalize to all scenarios. Therefore, MQL augments the

Algorithm 1: End-to-end latency computation
1 Input: Fat-tree size, link bandwidth, flow metadata (flow ID, source, destination),

characteristics for each flow (λi, C2
Di

, C2
Si

, mean packet size, queuing delay of host
queues)

2 Output: Average end-to-end latency for each flow
3 foreach queue ready to be processed do
4 I = number of flows in the queue
5 for i = 1:I do
6 Compute Wi using GE/G/1 and GE/G/1/N ME model
7 Compute C2

Di
using decomposition model

8 Populate flow characteristics of the upstream queues
9 end

10 end
11 foreach flow in the traffic do
12 Traverse all the queues throughout the flow’s path
13 Aggregate queuing delay and link delay
14 end
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ME model with a correction factor obtained by ML models. We first provide two
examples when ME models perform poorly and then present the proposed ML-
based correction technique.

Sample scenarios in which ME models fail to generalize

The packets pass through a sequence of queues as the packets traverse the DCN.
For example, packets from the first node (far left) to the last node (far right) in
Figure 5.1 pass through queues in the edge, aggregate, and core switches. This
tandem arrangement of queues shapes the packet inter-arrival times as a function
of their link service times. When packets of different sizes pass through the same
link, the tandem nature causes the smaller packets to experience higher queuing
latency than their larger counterparts. The ME models fail to capture this effect,
resulting in poor latency estimations.

Similar to the packet size distribution, the communication protocol plays a
crucial role in the manner the packets are transported through the network. For
instance, the User Datagram Protocol (UDP) sends packets into the network irre-
spective of the size, while the Transmission Control Protocol (TCP) divides the
packets into segments based on a preset threshold size [120]. Similarly, the TCP
sends an acknowledgement packet, which are typically significantly smaller than
the data packets. The resulting bimodal packet size distribution, combined with
the tandem effect, degrades the accuracy.
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Figure 5.4: Workflow of the ML-assistance component in the MQL framework.

Proposed ML-based Assistance to Queuing Models

The ML-assistance component of the proposed MQL framework is presented in
Figure 5.4. First, we run simulations with representative configurations (network
sizes) and input traffic (packet arrival and size distributions, data rates, and traffic
types). Simulations with multiple random seed values help in eliminating random-
ness effects. Then, MQL obtains the correction factors by comparing the expected
latencies from the simulation and the ME models. Since each queue type (e.g., edge-
up, core-down, aggregate-up) in the fat-tree observes a different traffic pattern,
we use a regression model for each queue type. The input features (described in
Section 5.3.5) and the correction factors are aggregated to obtain a merged training
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dataset. Since the systematic errors are continuous quantities, any regression-based
ML model can be used in this stage. We use regression trees (RT) due to their
accuracy and explainable structure. To avoid overfitting and minimize inference
latency, we empirically set the maximum depth of RTs to 12. The RT uses 11 input
features (shown in Table 5.2) and predicts one real-valued output. MQL employs
one RT model for each type of queue (e.g., edge, aggregate, core) in the network,
regardless of the number of nodes, thereby providing excellent scalability across
network sizes. Finally, we utilize the scikit-learn library to train RTs. Building a
consolidated set of training samples allows MQL to generalize to different traffic
patterns. Then, MQL trains generalizable regression models, which concludes the
one-time offline process. Finally, the runtime step uses the pre-trained regression
models to accurately estimate the latency.

Features for the ML-based Regression Model

End-to-end latencies are functions of DCN topology, the traffic arrival distribution,
packet size distribution, data rates, and routing patterns. Since our goal is to
estimate these delays accurately, we systematically construct their input features
with the following attributes:

1. They must demonstrate a strong correlation with the target quantity to be
estimated,

2. They cannot depend on any parameter or quantity we cannot obtain at runtime
(e.g., information from simulation),
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Table 5.2: List of the input features constructed in a particular queue for the regres-
sion model.

Input Feature Mathematical Representation

Data rate of flow i λi

Link utilization of flow i ρi

Total utilization of a link leaving switch s ρtotal,s

Co-efficient of inter-arrival time of flow i C2
A,i

Co-efficient of service time for flow i C2
S,i

Packet size of flow i Pi

Link occupancy indicator of flow i 1 / (1 − ρi)

Link occupancy indicator of switch s 1 / (1 − ρtotal,s)

Data rate/link occup. indicator of flow i λi / (1 − ρi)

Data rate/link occupancy indicator
of switch s for flow i

λi

1−ρtotal,s

Queue occupancy indicator of flow i (C2
A,i +C2

S,i)/(1−ρtotal,s)

3. The overheads to compute them must be minimal.

To satisfy these requirements, we methodically architect the 11 input features
to the regression model as shown in Table 5.2 for each queue type. The queuing
models described in Section 5.3.3 use data rate (λ), link utilization (ρ, and ρtotal),
and second-order moments of inter-arrival (C2

A) and service times (C2
S) in latency

estimation. The proposed MQL framework exploits the information to include these
parameters as input features. In addition, we include input features, such as link
occupancy and queue occupancy indicators, since they typically appear in analytical
models (e.g., Equation 5.1). These features satisfy Attribute 1 both intuitively (as
described here) and empirically (demonstrated in Section 5.4). Basing the input
features on quantities computed by the ME model is highly desirable since we reuse
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the information already computed, thereby simultaneously catering to Attribute 2

and Attribute 3.

5.4 Experimental Evaluation

This section first describes the experimental setup. Section 5.4.2 and Section 5.4.3
evaluate the proposed MQL approach with synthetic traffic and real-world traces,
respectively. Section 5.4.4 presents the execution time of the MQL models, their
speedup w.r.t simulation, and comparisons with approaches from the literature.
Finally, Section 5.4.5 compares the round-trip latency of MQL with state-of-the-art
approaches.

5.4.1 Experimental Setup and Methodology

DCN Topology: While the MQL methodology is applicable to other topologies,
this work focuses on the widely used fat-tree topology. Fat-tree topologies are
represented by the number of layers and a parameter K, which determines the
number of pods [5]. The number of nodes for a K-ary fat-tree is (K3/4). In this
work, we use three-layer fat-trees with K ∈ {4, 8, 12, 16}, leading to sizes listed in
Table 5.3.
Workloads used for Evaluation: We utilize both synthetic and real-world traces to
evaluate MQL. Synthetic traffic includes three different traffic types: all-to-all (each
node in the DCN sends packets to every other node), broadcast (only one node
(source) sends packets to all other nodes), and incast (all nodes send packets to



85

one node (destination)), as summarized in Table 5.3 along with other parameters.
The real-world trace is Anarchy [119].
Simulation Environment and Other Parameters: We performed simulations with
ns-3, a discrete-event network simulator [3]. NS-3 provides packet-level visibility.
It also allows users to configure various parameters such as the number of source
nodes and destination nodes in the DCN, routing patterns, mean flow sizes, simu-
lation time, network protocol, and FIFO and queue sizes. We perform 30-second
simulations with a warmup of an additional 10 seconds to ensure the inputs to the
simulation are representative of the steady state. The queue sizes are set to 128 to
represent the finite buffer scenario.

The simulations and analytical models are executed on an Intel® Xeon® Gold
6336Y CPU at 2.40GHz with 36 MB cache (OS: SUSE Linux Enterprise Server 12

Table 5.3: A summary of the experimental setup used for evaluations in this paper.
Parameter Values Evaluated in this Paper

3-Layer Fat-Tree Topology Number of nodes: 16, 128, 432, 1024
Workloads Synthetic and Real Traces

Synthetic Traffic Patterns All-to-all, broadcast, incast
Traffic Arrival Distributions Poisson and Generalized Exponential (GE)
Synthetic Packet Size Dist. 500 B; uniform (500B with 1% variation)

Synthetic Workload
Data Rates

Low (link utilization of 25%)
Medium (link utilization of 50%)
High (link utilization of 75%)

Real Trace Anarchy
Link Bandwidth 100 Mbps

Protocol TCP, UDP
Queue FIFO, 128 Packets Capacity
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SP5, compiler version: g++/gcc 11.1.0).
ML-based Assistance: The ML-based regression models must generalize to unseen
scenarios for the application of the proposed framework at a larger scale. Thus, we
randomly pick 60% of the data to train the regression models, and then evaluate all
configurations. In this particular work, we use the regression tree model with a
maximum depth of 12 [118].
Comparison Metrics: We use the normalized Wasserstein distance [133] and mean
absolute percentage error (MAPE) for accuracy evaluations. The Wasserstein
distance compares probability distributions based on the theory of optimal mass
transport, and is a measure of the distance between two distributions. MAPE is
a measure of the average absolute error observed between simulation and MQL
estimates.
State-of-the-Art Approaches Chosen for Comparison: We identify a combina-
tion of ML- and queuing theory-based approaches, namely DeepQueueNet [138],
MimicNet [142], and RouteNet [27] for comparisons. Section 5.5 discusses the
significance of these approaches. Comparisons with the state-of-the-art approaches
are presented in Section 5.4.5.
Protocols: We evaluated the proposed MQL methodology using both UDP and
TCP. UDP is a connectionless protocol with no congestion control mechanism. Thus,
the flow distribution with UDP is less complicated than TCP. Since we obtain high
accuracy (overall less than 10% MAPE) with MQL, the rest of this paper focuses
on the TCP results.
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Figure 5.5: MAPE (%) of the round-trip latency achieved by MQL on all-to-all,
incast and broadcast traffic for (a) Fat-Tree-16, (b) Fat-Tree-128, (c) Fat-Tree-432
and (d) Fat-Tree-1024 with different types of packet arrival distributions, packet
size distributions, and data rates.

5.4.2 Evaluations with Synthetic Traffic

This section presents extensive evaluations to compare the proposed MQL frame-
work to ns-3 simulations using synthetic traffic. Figure 5.5(a), (b), (c), and (d)
present the MAPE results for fat-tree-16, fat-tree-128, fat-tree-432, and fat-tree-1024,
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respectively. We sweep three data rates (low, medium, and high) with uniform
distribution of packet size (fixed and uniform as defined in Table 5.3) in all cases.
The entire all-to-all traffic simulations for fat-tree-432 and fat-tree-1024 take pro-
hibitively long simulation times (over 5–9 days for one random seed only) since
they simulate 373K flows and 2M flows, respectively. As a result, we reduced the
number of flows by using a density parameter that uniformly selects a subset of
active hosts participating in the all-to-all communication [71]. Considering the
simulation time, we set the density parameters for fat-tree-432 and fat-tree-1024 as
10% and 6%, respectively.

The broadcast traffic is the simplest pattern since packet injection is only from
one source. Furthermore, the packets entering the network are serialized. Our
MQL framework models this scenario very accurately, with average MAPE always
less than 1%, as shown in Figure 5.5. Hence, in the following discussion we only
cover all-to-all and incast patterns.
Fat-tree-16 Results: MQL achieves an MAPE of less than 1% for Poisson all-to-all
traffic. Unlike Poisson, GE traffic can produce bursty traffic, which is more complex
to model. The maximum error with GE packet arrivals, even in the medium and
high data rates, remains less than 2%, with an average MAPE of 0.9%. The incast
traffic pattern is highly complex to model since several flows merge into one queue.
A combination of the ME and ML models in the MQL framework effectively captures
this behavior and achieves an average MAPE of 0.9%, with the highest being under
2%.
Fat-tree-128 Results: Similar to the analysis for Fat-tree-16, MQL achieves an average
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MAPE of 1% for all-to-all Poisson packet arrivals and < 2% MAPE for GE arrivals.
MQL models incast for Fat-tree-128 accurately, with an average error less than 0.9%.
Fat-tree-432 Results: The number of flows and complexity of latency estimation grow
with increasing fat-tree size. Besides scaling to these large sizes, the combination of
the ME and ML models in the MQL framework perform well with an average error
of less than 3% MAPE for the incast traffic and less than 8% MAPE for the all-to-all
(10% density) traffic.
Fat-tree-1024 Results: The large number of flows in a 1024 node fat-tree, especially
merging into a single queue in incast traffic, severely complicates the modeling.
The proposed MQL models result in higher error compared to lower network sizes,
with an average MAPE of 8% for incast patterns. However, we note that MQL still
enables rapid design space exploration when compared to ns-3, which takes over a
week to simulate a reasonable workload duration.
Cumulative Distribution Function of Round-Trip Latency: We must ensure that the RTT
throughput distribution is close to the ground truth, as opposed to an averaged
value such as the normalized Wasserstein distance or MAPE. Figure 5.6 presents the
cumulative distribution function (CDF) of the RTT for all-to-all traffic in fat-tree-16
and fat-tree-128. We observe that MQL achieves high fidelity with the simulation
ground truth in the RTT spectrum for both fat-tree-16 and fat-tree-128.
Error Reduction: As anticipated, the MQL demonstrates a significant improvement
in error reduction compared to the ME model alone. Upon evaluating all of the
synthetic workloads, we calculated the difference of MAPE between the ME model
and MQL. The results indicate that the average error reduction is 7.1%, with a
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Figure 5.6: A comparison of the round-trip latency (RTT) (in milliseconds) cu-
mulative distribution function (CDF) between simulation and MQL models for
all-to-all traffic in (a) Fat-tree-16 and (b) Fat-tree-128, respectively.

variance of 1.2%.
Results of 2-tier fat-tree: In addition to the 3-tier fat-tree, we also evaluated MQL on
a proprietary 2-tier fat-tree. The 2-tier version offers a significantly larger level of
parallelism by using additional pairs of parallel links between the same edge-core
switch pairs. Hence, it is structurally different than the conventional 3-tier fat-tree.
Our results indicate that we achieved a comparable accuracy (overall less than 9%)
on a 128-node fat-tree when simulating all-to-all, incast, and broadcast synthetic
traffic under UDP.

5.4.3 Evaluations with Real-World Traces

Synthetic traffic may often over-constrain the system with traffic that does not
represent realistic scenarios. Therefore, we also evaluate a real-world public trace,
Anarchy [119]. This trace provides time stamps of the packets injected into the
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Table 5.4: Evaluations with the Anarchy [119] trace.
Size MAPE(%) avgRTT(w1) p99RTT(w1)

Fat-tree-16 0.23 0.007 0.009
Fat-tree-128 0.46 0.029 0.034
Fat-tree-432 7.86 0.052 0.058
Fat-tree-1024 0.37 0.040 0.047

DCN from 16 hosts, including the packet sizes and destinations. We mapped the
source and destinations to a 16-node fat-tree (i.e., four pods). The round-trip times
match almost perfectly with ns-3 simulations with 0.09% MAPE even without any
ML assistance, as shown in the first row of Table 5.4. Consequently, the RT adds a
negligible correction factor, maintaining the accuracy.

To analyze scalability, we also extended this trace into 128 nodes (i.e., eight pods)
by replicating each flow and randomly reassigning its source and destination to
different nodes. We repeat this flow replication and reassigning process until all 128
nodes are assigned a source or destination. Similarly, we expanded the original trace
to 432- and 1024-node fat-trees. Table 5.4 shows the MAPE and RTT normalized
Wasserstein distances in fat-tree-128, fat-tree-432, and fat-tree-1024. All of them
achieve less than 8% MAPE and very small Wasserstein distances. Furthermore,
Figure 5.7 displays the CDF of RTT for real-world traces on fat-tree-16, fat-tree-128,
fat-tree-432, and fat-tree-1024. These plots demonstrate that MQL achieves good
traffic generality and accurate results.
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Figure 5.7: A comparison of the cumulative distribution function (CDF) of the
round-trip time (RTT) (or latency) in milliseconds between simulation and MQL
for the real-world trace Anarchy on (a) fat-tree-16, (b) fat-tree-128, (c) fat-tree-432,
and fat-tree-1024, respectively.

5.4.4 Scalability and MQL Execution Time Analysis

This section compares the execution time speedup of the proposed MQL analytical
models to corresponding ns-3 simulations (40-second simulation including a 10-
second warmup).

Since the fat-tree-1024 all-to-all simulations take an extremely long time to
complete, we compare the runtime based on a 10-second-long simulation, whose
results are not used for accuracy analysis due to the small number of packets. The
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Table 5.5: Execution time of the MQL models, speedup w.r.t simulations A2A:
all-to-all, IC: incast, BC: broadcast

Size Traffic Exec.
Time

Speedup
w.r.t Sim Size Traffic Exec.

Time
Speedup
w.r.t Sim

16 BC 0.002s 22092 432 BC 2.420s 471
16 IC 0.002s 19198 432 IC 2.440s 532
16 A2A 0.028s 29111 432 A2A 13m17s 400
16 Anarchy 0.008s 6375 432 Anarchy 1.046s 9730

128 BC 0.083s 2246 1024 BC 9.159s 220
128 IC 0.090s 2429 1024 IC 36.71s 89
128 A2A 47.14s 1367 1024 A2A 1h49m 115
128 Anarchy 0.634s 456 1024 Anarchy 8.293s 5317
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Figure 5.8: Speedup of the proposed MQL framework when compared to ns-3
simulations for different configurations of tree sizes, traffic type, and data rates
represented by FT{size}-{traffic type}-{data rate}. Sizes vary between 16, 128, 432,
and 1024. Traffic types vary between all-to-all (A2A), incast (IC), and broadcast
(BC). Data rates vary between low (L), medium (M), and high (H).

speedup is highest for fat-tree-16 at over four orders of magnitude in the best case
and over three on average, as shown in Figure 5.8. Since the number of flows
increases with the increase in the tree, the ME model component of MQL takes
longer, while the ML component takes a constant amount of time. We emphasize
that MQL uses the same regression models across sizes and configurations and
achieves similar execution times across workloads. Even for fat-tree-1024, MQL
achieves a speedup of 89× or higher. The benefits during rapid DCN design space
exploration multiply since simulations need to be repeated for multiple random
seeds.
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5.4.5 Comparison with State-of-the-Art Approaches

This section compares the proposed MQL approach to three state-of-the-art ap-
proaches: DeepQueueNet [138], RouteNet [123], and MimicNet [142]. Table 5.6
lists the normalized Wasserstein distances [133] (lower is better) between the RTT
of these approaches and simulations for synthetic traffic in fat-tree-16 and fat-tree-
128. We compare the w1 distance of average RTT indicated by avgRTT(w1), and the
99th percentile RTT w1 distances indicated by p99RTT(w1).

For fat-tree-16 using synthetic traffic with Poisson distribution arrivals, MQL
achieves an avgRTT(w1) better than competitive approaches. The proposed MQL
approach also achieves a lower 99th percentile w1 distance (i.e., higher accuracy)
for all configurations. Similarly, MQL outperforms the state-of-the-art approaches
in terms of the avgRTT(w1) and p99RT(w1) for fat-tree-128, providing the best-in-
class performance estimation models. We could not include comparison with larger
fat-trees since the other approaches limit their evaluations to networks with 128
nodes. In contrast, we report evaluations with substantially larger network sizes,
demonstrating the proposed MQL approach’s scalability.

5.5 Related Work

Packet-level simulations, such as ns-3 [3] and OMNet++ [4], provide high accuracy
and fine-grain visibility and are versatile, handling different topologies, network
protocols, queueing disciplines, and routing algorithms. However, they are too slow
to scale to a large number of nodes (1k-10k+ nodes) required for data centers [144,
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Table 5.6: A comparison of normalized Wasserstein distances of RTT (avgRTT(w1))
and 99th percentile RTT (p99RTT(w1)) between DeepQueueNet [138], Mimic-
Net [142], RouteNet [27] and our proposed MQL framework for synthetic traffic.

avgRTT (w1)
Size DeepQueueNet RouteNet MimicNet MQL (Ours)

Fat-tree-16 0.0086 0.6737 0.0090 0.0025
Fat-tree-128 0.0133 0.9824 0.0172 0.0077

p99RTT (w1)
Size DeepQueueNet RouteNet MimicNet MQL (Ours)

Fat-tree-16 0.0145 0.9723 0.0135 0.0021
Fat-tree-128 0.0532 0.6397 0.0194 0.0109

138]. Therefore, prior work focuses on speeding up network simulation and creating
fast network performance models.

Part of the challenge in speeding up network simulators is the almost non-
existent opportunities for parallelization. Parsimon [144] observes that large-scale
data centers are provisioned such that congestion events rarely occur, and when
they do occur, they happen at different points along the path and at different times.
Hence, the modeling of the interdependence between queues is a second-order
effect. Breaking this dependency enabled the authors to speed up the simulation by
decomposing the problem into a large number of parallel, independent single-link
simulations. While their approach handles cases with limited congestion, design
space exploration also requires identifying solutions that satisfy highly congested
workloads, especially for deep learning workloads.

In addition to simulators, prior work creates fast network performance models
via pure analytical, pure ML, and hybrid techniques. A well-established perfor-
mance analysis approach is queuing-theoretic (QT) estimators. They are fast, but
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their assumptions, including the Poisson arrival process, FIFO queueing discipline,
and queue independence, can lead to unacceptable accuracy in some realistic use
cases [9, 12, 76, 78, 77], which we address in this work. QT-based performance
analysis approaches have also been applied to networks-on-chip (NoC). However,
these models are typically limited to a few 100s of nodes, with a 16x16 2D mesh
being the largest [104, 73, 117], unlike our approach that scales to over 1000 nodes.

RouteNet-Erlang [29] observes that Graph Neural Networks (GNNs) capture
the underlying graph structure of computer networks. It trains on two small net-
works (10s) of nodes with various traffic communication patterns and queuing
disciplines. However, it requires tuning hyperparameters which is empirical. The
tunable hyperparameters question the scalability of the approach to larger networks.
Finally, they do not present DCN performance evaluations with network protocols
and congestion control algorithms, which are essential for DCNs.

MimicNet [142] uses deep learning to speed up simulation by combining deep
learning with simulation. They simulate one cluster and use a deep neural network-
trained model to estimate the remaining clusters. The technique relies on symmetry
in both the topology and the traffic (e.g., symmetric bisection bandwidth), thereby
limiting its applicability to many real-world traffic patterns and topologies.

DeepQueueNet [138] models each device in the network as a DNN that adds
a delay to each packet in the incoming packet stream and produces an outgoing
stream of packets. It composes these DNNs in one-to-one correspondence with the
network structure, but there is no formal guarantee that the DNN can be composed
to model the whole network. DeepQueueNet targets packet-level visibility, enabled



97

by its detailed simulations.
QT-RouteNet [27] combines a queueing theoretic model with a GNN in two

steps. First, it runs a simplistic queueing model (M/M/1/B) and extracts features,
such as predicted latency, to use in training. Then, it combines with path and link
features to train the RouteNet GNN model [123]. Using RouteNet/RouteNet-Erlang
at its core, it suffers from similar limitations: tuning the hyperparameters, which is
empirical, generalizability, and long traning time. Moreover, it does not present
DCN evaluations and learns non-interpretable black-box models, like other purely
ML-based approaches.

In summary, existing models suffer from long training times, generalisability
and scalability. In contrast, our MQL approach needs no empirical hyperparameters,
making the approach generalizable. Moreover, it leverages the data from simula-
tions that are performed to validate the analytical performance models (as part of
the regular design flows). To the best of our knowledge, it is the first approach that
provides ML assistance to QT-based performance analysis.

5.6 Conclusion

Data centers provide shared access to computing, storage, and memory resources
for large organizations that serve millions of users. Efficient, accurate, and scalable
performance analysis techniques are critical for rapid design exploration efforts,
enabling architectural optimizations. To address these challenges, we proposed
MQL, a novel and scalable performance analysis methodology that combines a
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queuing theory-based maximum entropy principle and an ML-based assistance
technique to correct systematic errors. MQL achieves a minimum of ∼ 80× and up
to four orders of magnitude speedup compared to simulations using the discrete-
event ns-3 framework. With the evaluations used in this paper, MQL estimates
the latencies with less than 3% error on average for DCNs with 16 to 1024 nodes.
Future directions include demonstrating the approach on topologies other than
fat-tree and validating MQL’s modeling accuracy to ensure it is scalable when the
queue buffer resources are highly constrained.

In this work, Jie Tong and Shruti Yadav Narayana contributed equally to this
project, leading the majority of the research and development efforts. Anish Kr-
ishnakumar and Nuriye Yildirim assisted with simulation automation and exper-
imental analysis. Emily Shriver, Mahesh Ketkar, and Umit Y. Ogras supervised
the project, providing guidance and oversight. All authors contributed to result
discussions and participated in the preparation and review of the final manuscript.
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Chapter 6

Conclusion of the Dissertation

This dissertation has addressed the growing need for scalable and efficient simula-
tion and modeling techniques in modern computing systems, particularly as the
complexity of deep learning accelerators and data center networks continues to rise.
Traditional RTL simulators and packet-level network simulators struggle to meet
the demands of performance, scalability, and turnaround time required in both
academic and industrial workflows. To overcome these limitations, this research
introduced two complementary contributions: a compiler-based framework for
accelerating RTL simulation and a machine-learning-assisted analytical modeling
approach for network performance estimation.

On the RTL simulation front, the dissertation presented a unified compiler
infrastructure that leverages structural parallelism, task graph execution, as well
as architecture-aware partitioning. BatchSim introduced inter-cycle batching to
reduce per-cycle overhead and improve parallelism across time. ScaleRTL advanced
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this further by detecting and reusing structurally identical modules, significantly
reducing redundant code generation and achieving compilation speedups of up
to five orders of magnitude. HeteroRTL extended the framework to heterogeneous
CPU-GPU simulation platforms by introducing target-aware partitioning strategies,
enabling fine-grained parallelism and hybrid execution. Together, these contribu-
tions establish a robust, extensible simulation pipeline capable of handling modern
accelerator-scale RTL designs.

In parallel, the dissertation introduced MQL, an analytical performance model-
ing technique that addresses the scale and speed limitations of packet-level simu-
lators. By combining queuing theory with the Maximum Entropy principle and
augmenting it with regression tree learning, MQL provides accurate latency estima-
tions, within 3% of cycle-accurate simulations, while achieving orders-of-magnitude
speedups. MQL is well-suited for analyzing large-scale data center topologies and
offers detailed observability into queue and tier-level behavior, enabling practical
early-stage performance evaluation.

In summary, this dissertation has advanced the state of the art in simulation
and modeling for both RTL and network domains. It demonstrates how compiler
infrastructure and lightweight machine learning can be leveraged to build scalable,
high-performance tools that meet the challenges of contemporary system design.
These tools offer immediate benefits in accelerating verification cycles, supporting
architecture exploration, and enabling rapid performance feedback.

Future work may explore broader applications and extensions of the ideas
presented in this dissertation. For instance, inspired by our success in task graph
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parallelism [131, 17, 87, 26, 69, 31, 15, 141, 88, 24, 18, 42, 68, 130, 13, 21, 99, 86, 14,
140, 100, 63, 41, 111, 23, 16, 66, 67, 98, 47, 28, 36, 35, 40, 48, 46, 97, 20, 19, 49, 145,
96, 112, 45, 39, 34, 139, 22, 95, 33, 38, 81, 58, 59, 61, 55, 62, 93, 94, 44, 37, 32, 92, 91,
80, 54, 56, 57, 53, 90, 52, 82, 51], we plan to accelerate RTL simulation using task
graphs on both CPUs and GPUs. While the proposed RTL simulation framework
and network modeling technique each address distinct challenges, the underlying
principles of structural analysis, parallel execution, and lightweight abstraction can
be applied to other domains of system design and performance evaluation. As
system designs continue to grow in scale and complexity, advancing scalable and
efficient simulation methodologies will remain critical. The foundations laid in
this dissertation offer a platform for future research that continues to close the gap
between simulation fidelity and practical usability.
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