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ABSTRACT
Static timing analysis (STA) is an integral part in the overall de-
sign flow because it verifies the expected timing behaviors of a
circuit. However, as the circuit complexity continues to enlarge,
there is an increasing need for enhancing the performance of exist-
ing STA algorithms using emerging heterogeneous parallelism that
comprises manycore central processing units (CPUs) and graph-
ics processing units (GPUs). In this paper, we introduce several
state-of-the-art STA techniques, including task-based parallelism,
task graph partition, and GPU kernel algorithms, all of which have
brought significant performance benefits to STA applications. Mo-
tivated by these successful results, we will introduce a task-parallel
programming system to generalize our solutions to benefit broader
scientific computing applications.
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1 INTRODUCTION
As the circuit size and complexity continue to increase, static tim-
ing analysis (STA) has quickly become a bottleneck in the overall
design flow due to its intensive yet time-consuming interaction
with other design tools [8]. For instance, a timing-driven place-
ment optimization algorithm can call a timer in a loop thousands
or millions of times to evaluate the timing result of an optimiza-
tion strategy. Besides, research has reported that completing a full
timing analysis for a large design of multi-million gates can take
several hours [35, 44]. To overcome these runtime challenges, there
is an increasing need for accelerating existing STA algorithms using
emerging heterogeneous parallelism that comprises manycore cen-
tral processing units (CPUs) and graphics processing units (GPUs).

Recognizing this need, we have been researching and devel-
oping various parallel STA algorithms since 2014. By harnessing
the power of CPU-GPU heterogeneous computing, our algorithms
have successfully accelerated many time-consuming STA tasks in
both graph-based analysis (GBA) [21, 24] and path-based analy-
sis (PBA) [17–19, 22, 23, 25, 43, 45, 46] applications. To efficiently
handle large designs, we also introduced new partitioning algo-
rithms [10, 20, 44] to offload partitioned STA tasks across distributed
machines [31, 34, 40, 41, 44, 47]. More importantly, we have inte-
grated our innovations into the open-source timing analysis soft-
ware, OpenTimer [29, 36, 42], to facilitate research on efficient
STA algorithms. So far, OpenTimer has been used by many re-
searchers (ICCAD CAD Contests [51], TAU Contests [33]) and
vendors (DARPA IDEA [1], Motivo [4], efabless [6]) to analyze the
timing of their designs.

In this paper, we will briefly discuss our solutions for parallel
and heterogeneous STA algorithms. We will go through four cor-
nerstone strategies in the next four sections: (1) task-parallel STA
algorithms to improve the asynchrony of timing propagation in
GBA, (2) task graph partitioning to improve the scheduling perfor-
mance of task-parallel STA algorithms, (3) GPU-accelerated STA
algorithms to speed up time-consuming PBA applications, and (4) a
task-parallel programming system to generalize our approach for
broader applications beyond STA. For each section, we will high-
light the experimental results achieved by our strategy.
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2 TASK-PARALLEL STA ALGORITHMS
2.1 Motivation
Most existing timers, including commercial ones, count on loop-
based parallelism to parallelize GBA and other timing propagation
tasks. In a rough view, the circuit is levelized to a topological order,
and levels of nodes are kept in a dynamic data structure called
level list. Since all the nodes in the same level are independent on
each other and can run in parallel, one can apply language-specific
“parallel for" to each list of nodes level by level. This level-
based decomposition is advantageous in its simple task-parallel
pipeline concept [11, 12, 15] and is by far the most implementation
in existing timers, including our first version of OpenTimer v1 [42].
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Figure 1: Loop-based parallel timing propagation. Each level
applies a parallel_for to update timing from the fanin of
each node [42].

Figure 1 illustrates this strategy on an example of forward tim-
ing propagation in OpenTimer v1 [42]. For each node, we update a
sequence of dependent tasks including parasitics (RCP), slew (SLP),
delay (DLP), arrival time (ATP), jump points (JMP), and common
path pessimism reduction (CRP). We encapsulated the task depen-
dency into a parallel pipeline and used one thread to run a particular
type of task level by level. Details of each task can be referred to [42].
OpenTimer v1 carried out this strategy using Algorithm 1. It first
calls update_level to update the level list for incremental timing
(line 5). The timing propagation is then performed level by level in a
parallel pipeline (line 8:18 for forward timing propagation and line
19:25 for backward timing propagation). By the end of each pipeline
stage, a barrier is imposed to synchronize all spawned tasks (line
16 and line 23). The level list is reset after the timing propagation
completes (line 26). Depending on applications, the timer may add
more tasks to the pipeline for parallelism.

The loop-based pipeline strategy is simple and easy to implement
using popular parallel programming libraries such as OpenMP [5]
and Intel Threading Building Blocks (TBB) Flow Graph [3]. How-
ever, it suffers from many performance drawbacks. For example,
the number of nodes can vary from level to level, resulting in highly
unbalanced computations and thread utilization. Also, there is a
synchronization barrier between successive levels in order to keep
task dependencies. The overhead can be large for graph with long
data paths. Furthermore, it is difficult to extend the pipeline to
efficiently include other types of compute-intensive tasks such as

Algorithm 1: update_timing_using_loop_parallelism()

1 𝐵 ← Level list of the timer;
2 if B.num_pins = 0 then
3 return;
4 update_level(𝐵);
5 𝑙𝑚𝑖𝑛 ← 𝐵.min_nonempty_level;
6 𝑙𝑚𝑎𝑥 ← 𝐵.max_nonempty_level;
7 # Parallel_Region {
8 # Master_Thread_do for l = 𝑙𝑚𝑖𝑛 to 𝑙𝑚𝑎𝑥 + 4 do
9 # spawn_task propagate_rc(𝑙 );

10 # spawn_task propagate_slew(𝑙 − 1);
11 # spawn_task propagate_delay(𝑙 − 1);
12 # spawn_task propagate_arrivel_time(𝑙 − 2);
13 # spawn_task propagate_jump_point(𝑙 − 3);
14 # spawn_task propagate_cppr_credit(𝑙 − 4);
15 # synchronize_tasks;
16 };
17 # Parallel Region {
18 # Master_Thread_do for l = 𝑙𝑚𝑎𝑥 to

B.min_non_empty_level do
19 # spawn_task propagate_fanin(𝑙 );
20 # spawn_task propagate_required_arrival_time(𝑙 );
21 # synchronize_tasks;
22 };
23 remove all pins from the level list 𝐵;

advanced delay modeling, signal integrity, and cross-talk analysis.
These tasks often expose dependency constraints across multiple
layers of the timing graph that do not fit in a single level [8]. Nei-
ther can path-specific update be included to the pipeline without
significant rewrite of the core data structure.

2.2 Parallel Timing Update using Task Graph
To overcome the synchronization challenge of pipeline-based tim-
ing update, we have introduced a new task graph-based timing
propagation method. Instead of representing a circuit graph and
storing propagation tasks in a levelized list, we represent these tasks
in a task graph that is directly constructed from the circuit itself.
Each task represents a specific timing propagation task, and each
edge represents a functional dependency between two tasks. By
delegating the scheduling to an efficient task graph execution run-
time (e.g., work-stealing scheduler [55]), we can gain transparent
parallelization and dynamic load balancing. We have implemented
this strategy in OpenTimer v2 [29].

Figure 2 gives an example of a task graph-based timing update.
White nodes represent forward propagation tasks (e.g., slew propa-
gation, delay calculation, arrival time update), while black nodes
represent backward propagation tasks (e.g., required arrival time up-
date). We can clearly see the advantage of task graph-based timing
update, as multiple timing propagation tasks can start immediately
whenever their dependency constraints are met. There is no need
to wait for the previous level to complete before moving onto the
next level. Furthermore, overlap between forward and backward
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Figure 2: A task graph to carry out parallel timing update.
The graph consists of forward propagation tasks (white) and
backward propagation tasks (black).

propagation tasks are now possible. As a result, the runtime effi-
ciency is largely improved due to more asynchronous execution
than loop-based pipeline parallelism.

2.3 Experimental Results
Figure 3 plots the runtime results at different numbers of CPU
cores for two different parallel timing propagation algorithms, loop
parallelism and task parallelism, which were implemented in Open-
Timer v1 [42] and OpenTimer v2 [29], respectively. We observed
task parallelism scales higher than loop parallelism with increasing
cores. Both saturate at about 8-12 cores. The saturation is affected
by many factors such as the graph structure and the size of timing
propagation tasks.

Regardless of the core count used, task-parallel strategy leads to
much better runtime scalability over loop-based parallelism. The
maximum parallelism in the loop-based strategy is dominated by
the number of independent nodes in a single level. Computing
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Figure 3: Comparison of runtime scalability between loop-
parallel and task-parallel timing propagation algorithms
over increasing number of CPU cores on four large circuits,
vga_lcd, netcard, leon2, and leon3mp.

nodes between different levels incurs a synchronization cost. By
contrast, task-parallel strategy lets computation flow naturally with
the timing graph structure. The scheduler autonomously optimizes
the parallelismwith dynamically generated tasks. As a consequence,
the runtime difference between the two strategies becomes remark-
able as we increase the numbers of cores and tasks. For example,
it took 12.54 minutes for loop-based method to finish whereas
task-parallel implementation reached the goal in only 8.80 minutes
(30% faster). At about 8–16 cores where both methods reach the
saturation point, the gap between the two remains pronounced.

3 TASK GRAPH PARTITION
3.1 Motivation
While using task dependency graph (TDG) brings significant speed
up to STA, the scheduling cost, which includes the construction
and execution of a TDG, may become predominant when handling
extensive STAworkloads. For example, the analysis of a circuit with
1.5M gates can allocate more than 50% of the runtime to construct
the corresponding TDG with 4M tasks and 5M dependencies [2].
However, the TDG execution performance speedup often saturates
under only 8-16 CPU threads. This outcome indicates it is unnec-
essary to have a large TDG, considering the limited number of
saturated CPU threads. Moreover, the majority of timing prop-
agation tasks have very short runtime compared to the per-task
scheduling cost. For example, a backward propagation task in Open-
Timer [2] takes about 0.5-50 us, while scheduling such a task using
OpenTimer’s Taskflow scheduler [7] can task 0.2-3 us. Therefore,
it is important to achieve a balance between scheduling cost and
task granularity to optimize the performance of task-parallel STA
algorithms.
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A typical approach to minimize scheduling cost is to partition
a large TDG into numerous clusters. Each cluster comprises tasks
that run sequentially based on their topological order in the original
TDG. Instead of scheduling individual tasks across various workers,
we now schedule a partition only once and execute it with a single
worker, thereby reducing scheduling overhead. Figure 4 shows the
advantage of TDG partitioning by recording the runtime of the
core "update_timing" method in OpenTimer [2]. We assume the
TDG maintains the same topology throughout different iterations
as this is a common scenario in STA (e.g., gate sizing). Therefore,
partitioning is only conducted once at the first iteration of STA.
From Figure 4, we can see that despite the partitioning overhead in
the first couple of iterations, partitioning largely improves the STA
runtime performance due to the reduction of scheduling overhead
in the later iterations. The improvement continues to accumulate
as we increase the number of STA iterations.

There have been various TDG partitioning algorithms. Vivek [64]
partitions tasks based on their impact on critical path length and
TDG parallelism. However, their partitioning algorithm requires
iterative cycle checking, which results in quadratic time complex-
ity. To improve time complexity, GDCA [9, 63] removes iterative
cycle checking by partitioning the TDG based on its topological
order. However, this largely impacts the partitioned TDG paral-
lelism. Moreover, they are all limited to single-threaded execution.
As the size of the TDG increases, their partitioning time grows
significantly, potentially negating the benefits of partitioning.
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Figure 4: Overall STA runtime of the core "update_timing"
method in OpenTimer [2] under different timing update
iterations with and without partitioning.

3.2 CPU-parallel Partitioning Algorithm
To expedite the TDG partitioning process, we propose C-PASTA,
a CPU-parallel partitioning algorithm for STA. C-PASTA not only
achieves significant speedup in partitioning but also minimizes
the reduction of TDG parallelism by prioritizing clustering tasks
between adjacent levels. Moreover, to eliminate the time-consuming
cycle-checking process, C-PASTA incorporates a simple yet efficient
cycle-free clustering algorithm that restricts the parent partition to
which a task can be clustered.

Algorithm 2 describes the overall partitioning process for C-
PASTA. We maintain a work-stealing queue for each CPU thread.
At the beginning of partitioning, all the source tasks of the TDG are
pushed into the queue of the first CPU thread. During partitioning,
each CPU thread first works on the tasks in its own queue until the
queue is empty, then steals a task from one of the other threads’

queues. When a CPU thread is working on a task, it first assigns the
partition for this task using our cycle-free clustering algorithm, then
checks if this task initiates a linear chain of tasks, meaning there is
only one dependency between two tasks in adjacent levels. If such
a linear chain exists, the CPU thread iteratively traverses the tasks
on this chain and assigns their partitions. Finally, upon reaching
the end of the linear chain, the CPU thread releases the dependents
for the neighboring tasks of the current task by incrementing their
dependent counters. Once the dependent counter of a neighboring
task equals its number of dependents, that task is placed into the
queue for later processing.

Algorithm 3 describes C-PASTA’s cycle-free clustering algorithm.
Specifically, we assign a partition ID for each task in the TDG. In
cases where multiple partitions seek to cluster one task, only the
partition with the largest ID is able to cluster that task. Since C-
PASTA traverses the TDG in a top-down manner, the partition IDs
of all tasks at one level are always larger than those at previous
levels. This enforces no cyclic dependencies will be introduced dur-
ing partitioning because the partition with a larger ID will always
come after a partition with a smaller ID. Once the largest partition
ID from the dependents of the to-be partitioned task is obtained,
we increment the partition counter of this partition which counts
the number of tasks within this partition. Then, we verify whether
the partition counter surpasses the user-defined partition size (P_S),
indicating the maximum allowable number of tasks for a partition.
If so, we assign the to-be partitioned task a new partition ID by
incrementing the current maximum partition ID (max_partition)
by one.

Figure 5 shows an example of C-PASTA’s partitioning algorithm
in three iterations. In the first iteration, all the source tasks 0, 1, and
2 are pushed into the work-stealing queue of thread 1. While thread
1 is working on task 2, tasks 0 and 1 are stolen and processed by
threads 2 and 3 separately. Moving to the second iteration, threads
1, 2, and 3 handle tasks 5, 3, and 4 along the linear chains. Notably,
tasks on the linear chains are directly processed by threads without
being enqueued. After the second iteration, the dependents of task
6 are all released and task 6 is pushed into the queue of thread 1.
Thread 1 processes task 6 in the final iteration. The partitioning
result is shown in Figure 5(c).

3.3 Experimental Results
For partitioning performance comparison, We consider GDCA as
our baseline due to its efficiency. As GDCA requires users to provide
a partition size, we select the optimal partition size that produces
the best performance for each circuit; for C-PASTA, we simply use
the TDG size for the partition size, as our algorithmwill converge to
a suitable value. We conduct our experiments by integrating GDCA
and C-PASTA into OpenTimer [2] and run graph-based analysis
(update_timing command) on five industrial circuits.

Table 1 compares the overall performance between GDCA and
C-PASTA in terms of their runtime improvements on the gener-
ated TDGs and their partitioning runtime. The values under the
𝑇𝑇𝐷𝐺𝑃 column show the runtime of partitioned TDGs and their
speedup over the original TDGs. The values under the 𝑇𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛
column show the runtime of C-PASTA and GDCA and C-PASTA’s
speedup over the baseline GDCA. We measure the performance in
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Algorithm 2: Overview of C-PASTA
1 push_source_tasks_to_queues();
2 parallel for each thread tid {
3 while task_cnt.load() < total_num_task do
4 /* step 1. Process the tasks in the local queue */
5 while !queues[tid].empty() do
6 task = queues[tid].pop();
7 task_cnt.fetch_add(1);
8 cycle_free_clustering(task);
9 while is_linear_chain(task) do
10 task = task.neighbor ;
11 cycle_free_clustering(task);
12 for n ∈ task.neighbor do
13 if n.dep_cnt.fetch_add(1) = n.num_deps then
14 queues[tid].push(n);
15 /* step 2. Steal a task from other queues */
16 steal_from = traverse_queues_to_steal();
17 task = queues[steal_from].steal();
18 task_cnt.fetch_add(1);
19 cycle_free_clustering(task);
20 while is_linear_chain(task) do
21 task = task.neighbor ;
22 cycle_free_clustering(task);
23 for n ∈ task.neighbor do
24 if n.dep_cnt.fetch_add(1) = n.num_deps then
25 queues[steal_from].push(n);
26 }
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Figure 5: An example of C-PASTA’s partitioning algorithm
in three iterations under the partition size of 3.

one full-timing iteration through the update_timing method in
OpenTimer [2]. Overall, both GDCA and C-PASTA can improve
the performance of update_timing due to reduced TDG size and
scheduling cost. However, C-PASTA always outperforms GDCA.
For instance, C-PASTA can improve the TDG runtime of the five
circuits by 1.7–2.1×, whereas GDCA is 1.6–1.9×. We attribute this

Algorithm 3: cycle_free_clustering(task)
1 desired_partition = get_max_partition(task.dependents);
2 if partition_cnt[desired_partition].fetch_add(1) < P_S then
3 task.partition = desired_partition;
4 else
5 new_partition = max_partition.fetch_add(1) + 1;
6 task.partition = new_partition;
7 partition_cnt[new_partition]++;

Table 1: Overall performance comparison between GDCA
and C-PASTA and their improvements on generated TDGs
in the core update_timing method of OpenTimer [2].

circuit #tasks #deps 𝑇𝑇𝐷𝐺
𝑇
𝑇𝐷𝐺𝑃 (ms) 𝑇𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (ms)

(ms) GDCA C-PASTA GDCA C-PASTA
des_perf 303.7K 387.3K 25.5 15.9 (1.6×) 13.5 (1.8×) 40.3 17.3 (2.3×)
vga_lcd 397.8K 498.9K 34.7 21.3 (1.6×) 19.8 (1.7×) 57.9 22.5 (2.5×)
leon3mp 3.4M 4.1M 286.0 148.9 (1.9×) 133.7 (2.1×) 567.1 179.0 (3.1×)
netcard 3.9M 4.9M 338.3 173.6 (1.9×) 155.9 (2.1×) 656.1 155.0 (4.2×)
leon2 4.3M 5.3M 372.6 192.0 (1.9×) 180.5 (2.0×) 762.0 221.9 (3.4×)

result to C-PASTA’s effort to minimize the impact on the original
TDG parallelism during partitioning. In terms of partitioning run-
time, C-PASTA surpasses GDCA on all five circuits. The largest
speedup values are observed in netcard where C-PASTA is 4.2×
faster than GDCA.

Figure 6 compares the TDG runtime (after partitioning) between
GDCA and C-PASTA under different partition sizes. Note that the
partition size refers to the maximum number of tasks within a
partition. As GDCA strictly requires each partition to have the
same size, its TDG runtime shows a V-shape pattern, where the
runtime first decreases because of reduced scheduling cost and then
increases because of reduced parallelism. For GDCA, users are re-
sponsible for finding the right partition size that produces the best
performance. However, for C-PASTA, the TDG runtime continues
to decrease until saturation. This is because Algorithm 3 always
maintains a minimum number of partitions during partitioning,
ensuring a lower limit for the resultant TDG parallelism. This char-
acteristic emphasizes an additional benefit of C-PASTA, eliminating
the necessity for users to fine-tune the partition size. Instead, they
can effortlessly employ the original TDG size as the default value.
C-PASTA will autonomously converge to the optimal partition size
and granularity, ensuring optimal TDG runtime performance.

4 GPU-ACCELERATED STA ALGORITHMS
4.1 Motivation
PBA is pivotal for achieving accurate timing results by reducing
unwanted pessimism in STA [8]. However, PBA is extremely time-
consuming, typically 10-1000× slower than graph-based analysis
GBA [43]. The high runtime cost has imposed a significant barrier
for designers to incorporate PBA in the early design closure flow to
improve Quality of Results (QoR) in the timing landscape. To allevi-
ate the long runtime of PBA, existing works have proposed various
strategies [26, 32, 44, 50, 53, 62]. However, nearly all of them are
architecturally constrained by CPU parallelism, and their results
stagnate at a few CPU cores. For example, the state-of-the-art PBA
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Figure 6: Comparison of TDG runtime (after partitioning)
between GDCA and C-PASTA under different partition sizes.

algorithm [32, 44] adopts task-based parallelism with exact accu-
racy, but its performance saturates at 16 cores. Similarly, Jin [50]
and Peng [62] propose fast and accurate block-based algorithms
that improve runtime up to 1.63×, but their algorithms are highly
sequential and scales to fewer CPU cores.
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Fundamental computational challenges of Path-
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Figure 7: Computational trade-off between runtime and pes-
simism reduction on path-based timing analysis [18, 19].

As illustrated in Figure 7, fundamental computational challenges
of PBA remain unsolved. Current STA engines have very limited
performance gain by counting on multi-core CPUs. To achieve
transformational performance milestone, new PBA algorithm must
harness the power of heterogeneous parallelism, CPU-GPU hybrid
computing. Nevertheless, offloading PBA to GPU is an extremely
challenging task for three reasons. Firstly, PBA is graph-oriented
and involves irregular computational patterns, requiring very strate-
gic decomposition between CPU and GPU to benefit from hetero-
geneous parallelism. Secondly, the dynamic process of path gen-
eration needs specially-designed GPU kernels to search for critical
path and maintain path priorities. Lastly, to support a large number
of paths, we need efficient data structures to overcome the hurdle
of relatively limited GPU memory.

4.2 GPU Kernels for Path Enumeration
Figure 8 shows the overview of our GPU-accelerated PBA algorithm.
The blue block and the white block denote the computation on
GPU and CPU, respectively. We start off by constructing a shortest
path forest based on an updated STA graph. Then, we iteratively
explore critical path candidates by permuting path prefixes. Each

iteration consists of three heterogeneous steps: (1) Look-ahead Level
Allocation. (2) Interlevel Expansion. (3) Intralevel Compression. We
define the set of path candidates with the same number of path
prefix permutations as a level set. We maintain a level counter to
record the number of expanded levels. When the level counter
reaches a threshold of decent accuracy (tunable depending on the
GPU capability), we stop the iteration and derive the final critical
paths from the implicit path representation on GPU.

Construct Shortest Path Forest

Look-ahead Level Allocation

Interlevel Expansion

Intralevel Compression

max level

Increment level

Y

N

Path Recovery

CPU Execution

GPU Execution

Figure 8: Overview of our GPU-accelerated PBA algo-
rithm [19].

4.3 Experimental Results
To demonstrate our performance advantage over the baseline, Fig-
ure 9 plots the speed-up curve of our algorithm over the baseline
across different numbers of CPU cores. We observe that the per-
formance of baseline continues to improve as the number of cores
increases but saturates at about 16 cores, and there is always a
significant performance margin to ours. With the baseline at the
maximum CPU concurrency of 40 cores, our algorithms is still
faster than the baseline by 45.68× and 35.27× on two large designs
netcard and b19_iccad, respectively. In fact, according to our exper-
iments, our GPU-accelerated PBA algorithm is always faster than
the baseline in all designs, regardless of the number of CPU cores
the baseline uses.
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Figure 9: Speed-up values of our GPU-accelerated PBA algo-
rithm over a CPU baseline.
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5 TASK-PARALLEL PROGRAMMING SYSTEM
Given these successful results, we have further developed a new
task-parallel programming systems called Taskflow [32, 37] that
generalizes our solutions to benefit broader applications beyond
STA. Some examples include machine learning [13, 48, 49, 54, 57–
59], hardware fuzzing [61], logic simulation [16, 60], quantum com-
puting [28], physical design [27, 30, 38, 39], power grid analysis [56],
macro modeling [52], graph partitioning [10], etc. The main goal
of Taskflow is to simplify the building of parallel programs using a
transparent and concise graph description model. At the time of
this writing, Taskflow has been used by thousands of academic and
industrial projects. There are two type of task graph programming
models, static task graph programming (STGP) and dynamic task
graph programming (DTGP), which we explained below:

5.1 Static Task Graph Programming
STGP defines separate graph construction and graph execution.
Applications need to describe the task graph first and then submit
it to a Taskflow scheduler for execution. STGP is useful when the
task graph structure is known at programming time and does not
depend on runtime variables.

t f : : Taskf low t a s k f l ow ;
t f : : Execu to r e x e cu t o r ;
au to [A , B , C , D] = t f . emplace (

[ ] ( ) { s t d : : cou t << " Task A\ n " ; } ,
[ ] ( ) { s t d : : cou t << " Task B \ n " ; } ,
[ ] ( ) { s t d : : cou t << " Task C \ n " ; } ,
[ ] ( ) { s t d : : cou t << " Task D\ n " ; }

) ;
A . p r e cede ( B , C ) ; / / A runs b e f o r e B and C
D . succeed ( B , C ) ; / / D runs a f t e r B and C
exe cu t o r . run ( t a s k f l ow ) . wa i t ( ) ;

Listing 1: A static task graph programming example of Task-
flow [37].

Listing 1 presents an STGP example. The code is self explanatory.
The program creates a task dependency graph of four tasks, A, B,
C, and D, where task A runs before task B and task C, and task D
runs after task B and task C. Each task is described as a callable
object, which can be either a lambda, a functor, a binding expres-
sion, or an operator. Taskflow provides an abstraction over difficult
concurrency controls such as threading and scheduling. Users de-
scribe an application in terms of tasks rather than threads. They
do not need to manage threads or locks, and can focus on high-
level development work. Meanwhile, Taskflow will handle all the
scheduling details and achieve dynamic load balancing using work
stealing [55].

5.2 Dynamic Task Graph Programming
Unlike STGP, DTGP overlaps graph construction with graph ex-
ecution. Applications describe the task graph on the fly from an
Taskflow executor. DTGP is useful when the task graph structure is
unknown at programming time and depends on runtime variables
or control-flow results.

t f : : Execu to r e x e cu t o r ;
au to [A , FuA ] = t f . dependent_async ( [ ] ( ) {

s t d : : cou t << " Task A\ n " ;
} ) ;
au to [B , FuB ] = t f . dependent_async ( [ ] ( ) {

s t d : : cou t << " Task B \ n " ;
} , A ) ;
au to [C , FuC ] = t f . dependent_async ( [ ] ( ) {

s t d : : cou t << " Task C \ n " ;
} , A ) ;
au to [D , FuD ] = t f . dependent_async ( [ ] ( ) {

s t d : : cou t << " Task D\ n " ;
} , B , C ) ;
FuD . g e t ( ) ;

Listing 2: A dynamic task graph programming example of
Taskflow’s AsyncTask interface [14].

Listing 2 presents a DTGP example of the same structure as
Listing 1. Similarly, the program explains itself. The program creates
a task graph of four tasks, A, B, C, and D. The dependency constraints
state that task A runs before task B and task C, and task D runs after
task B and task C. However, unlike Listing 1, when a task is created
from dependent_async, its execution starts immediately. That is,
the task execution can overlap with the task graph construction
(see Figure 10). For large task graph, such as those of millions of
tasks and dependencies, this overlap can bring certain performance
advantage.

A
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D

C

(a) Task graph

A B DC

A B

C

D

(c) Dynamic task graph parallelism Runtime

A B DC A B

C

D

(b) Static task graph parallelism Runtime

Figure 10: Comparison between static task graph parallelism
and dynamic task graph parallelism.

6 CONCLUSION
In this paper, we have discussed several promising methods to ac-
celerate STA by harnessing the power of CPU-GPU heterogeneous
parallelism. We have discussed (1) task-parallel STA algorithms to
improve timing propagation performance through asynchronous
execution, (2) task graph partitioning algorithm to further improve
the scheduling performance of task-parallel STA algorithms, (3)
GPU kernel algorithms to largely speed up time-consuming STA
tasks, and (4) a general-purpose task-parallel programming system
that generalizes our approach to benefit other applications beyond
STA. We hope this paper can inspire more solutions for enhancing
the performance of STA.

ACKNOWLEDGMENTS
We are grateful for the support of four National Science Foundation
(NSF) grants, CCF-2349141, CCF-2349582 (CAREER), OAC-2349143,
and TI-2349144.

57



ISPD ’24, March 12–15, 2024, Taipei, Taiwan Tsung-Wei Huang, Boyang Zhang, Dian-Lun Lin, and Cheng-Hsiang Chiu

REFERENCES
[1] 2019. DARPA IDEA Program. https://www.darpa.mil/news-events/2019-05-31
[2] 2024. https://github.com/OpenTimer/OpenTimer
[3] 2024. Intel TBB. https://github.com/01org/tbb
[4] 2024. Motivo AI. https://motivo.ai/
[5] 2024. OpenMP 4.5. https://www.openmp.org/wp-content/uploads/openmp-

4.5.pdf
[6] 2024. Qflow. http://opencircuitdesign.com/qflow/.
[7] 2024. Taskflow. https://github.com/taskflow/taskflow
[8] J. Bhasker et al. 2009. Static Timing Analysis for Nanometer Designs: A Practical

Approach. Springer.
[9] Bérenger Bramas and Alain Ketterlin. 2020. Improving parallel executions by

increasing task granularity in task-based runtime systems using acyclic DAG
clustering. PeerJ Computer Science 6 (2020), e247.

[10] Chih-Chun Chang and Tsung-Wei Huang. 2023. uSAP: An Ultra-Fast Stochastic
Graph Partitioner. In IEEE HPEC. 1–7.

[11] Cheng-Hsiang Chiu and Tsung-Wei Huang. 2022. Composing Pipeline Par-
allelism Using Control Taskflow Graph. In ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC). 283–284.

[12] Cheng-Hsiang Chiu and Tsung-Wei Huang. 2022. Efficient Timing Propagation
with Simultaneous Structural and Pipeline Parallelisms: Late Breaking Results.
In ACM/IEEE Design Automation Conference (DAC). 1388–1389.

[13] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang. 2022. An Experi-
mental Study of SYCL Task Graph Parallelism for Large-Scale Machine Learning
Workloads. In European Conference on Parallel Processing (Euro-Par). 468–479.

[14] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang. 2023. Programming
Dynamic Task Parallelism for Heterogeneous EDA Algorithms. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD).

[15] Cheng-Hsiang Chiu, Zhicheng Xiong, Zizheng Guo, Tsung-Wei Huang, and Yibo
Lin. 2024. An Efficient Task-parallel Pipeline Programming Framework. In ACM
International Conference on High Performance Computing in Asia-Pacific Region
(HPC Asia).

[16] Elmir Dzaka, Dian-Lun Lin, and Tsung-Wei Huang. 2023. Parallel And-Inverter
Graph Simulation Using a Task-graph Computing System. In IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 923–929.

[17] Guannan Guo, Tsung-Wei Huang, Chun-Xun Lin, andMartinWong. 2020. An Effi-
cient Critical Path Generation Algorithm Considering Extensive Path Constraints.
In ACM/IEEE Degign Automation Conference (DAC). 1–6.

[18] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. 2021. GPU-
accelerated Critical Path Generation with Path Constraints. In IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD). 1–9.

[19] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. 2021. GPU-
accelerated Path-based Timing Analysis. In ACM/IEEE Design Automation Con-
ference (DAC). 721–726.

[20] Guannan Guo, Tsung-Wei Huang, and Martin Wong. 2023. Fast STA Graph Parti-
tioning Framework for Multi-GPUAcceleration. In IEEE/ACMDesign, Automation
and Test in Europe Conference and Exhibition (DATE). 1–6.

[21] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2020. GPU-Accelerated Static
Timing Analysis. In IEEE/ACM International Conference On Computer Aided
Design (ICCAD).

[22] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2021. A Provably Good and
Practically Efficient Algorithm for Common Path Pessimism Removal in Large
Designs. In ACM/IEEE Design Automation Conference (DAC). 715–720.

[23] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2021. HeteroCPPR: Accelerating
Common Path Pessimism Removal with Heterogeneous CPU-GPU Parallelism.
In IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–9.

[24] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2023. Accelerating Static Timing
Analysis using CPU-GPU Heterogeneous Parallelism. IEEE TCAD (2023).

[25] Zizheng Guo, Tsung-Wei Huang, Jin Zhou, Cheng Zhuo, Yibo Lin, Runsheng
Wang, and RuHuang. 2024. Heterogeneous Static TimingAnalysis with Advanced
Delay Calculator. In IEEE/ACM Design, Automation and Test in Europe Conference
and Exhibition (DATE).

[26] Tsung-Wei Huang. 2020. A General-Purpose Parallel and Heterogeneous Task
Programming System for VLSI CAD. In IEEE/ACM International Conference On
Computer Aided Design (ICCAD).

[27] Tsung-Wei Huang. 2022. Enhancing the Performance Portability of Heteroge-
neous Circuit Analysis Programs. In IEEE High Performance Extreme Computing
Conference (HPEC). 1–2.

[28] Tsung-Wei Huang. 2023. qTask: Task-parallel Quantum Circuit Simulation with
Incrementality. In IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). 746–756.

[29] Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and Martin Wong. 2021. Open-
Timer v2: A New Parallel Incremental Timing Analysis Engine. In IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD).
776–789.

[30] Tsung-Wei Huang and Leslie Hwang. 2022. Task-Parallel Programming with
Constrained Parallelism. In IEEE High Performance Extreme Computing Conference

(HPEC). 1–7.
[31] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin D. F. Wong. 2018. A

General-Purpose Distributed Programming System Using Data-Parallel Streams.
In ACM International Conference on Multimedia (MM). 1360–1363.

[32] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin D. F. Wong. 2019.
Cpp-Taskflow: Fast Task-based Parallel Programming using Modern C++. IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 974–983.

[33] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin D. F. Wong. 2019.
Essential Building Blocks for Creating an Open-Source EDA Project. InACM/IEEE
DAC. Article 78, 4 pages.

[34] Tsung-Wei Huang, Chun-Xun Lin, and Martin D. F. Wong. 2017. DtCraft: A
distributed execution engine for compute-intensive applications. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 757–765.

[35] Tsung-Wei Huang, Chun-Xun Lin, and Martin D. F. Wong. 2019. Distributed
Timing Analysis at Scale. In ACM/IEEE DAC. Article 229.

[36] Tsung-Wei Huang, Chun-Xun Lin, and Martin D. F. Wong. 2021. OpenTimer v2:
A Parallel Incremental Timing Analysis Engine. IEEE Design and Test 38, 2 (2021),
62–68.

[37] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2022. Taskflow:
A Lightweight Parallel and Heterogeneous Task Graph Computing System. In
IEEE Transactions on Parallel and Distributed Systems (TPDS). 1303–1320.

[38] Tsung-Wei Huang, Dian-Lun Lin, Yibo Lin, and Chun-Xun Lin. 2022. Taskflow:
A General-Purpose Parallel and Heterogeneous Task Programming System. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
41, 5 (2022), 1448–1452.

[39] Tsung-Wei Huang, Yibo Lin, Chun-Xun Lin, Guannan Guo, andMartin D. F.Wong.
2021. Cpp-Taskflow: A General-Purpose Parallel Task Programming System at
Scale. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) 40, 8 (2021), 1687–1700.

[40] Tsung-Wei Huang and Martin D. F. Wong. 2015. Accelerated Path-Based Timing
Analysis with MapReduce. In ACM International Symposium on Physical Design
(ISPD). 103–110.

[41] Tsung-Wei Huang and Martin D. F. Wong. 2015. On fast timing closure: speed-
ing up incremental path-based timing analysis with mapreduce. In ACM/IEEE
International Workshop on System Level Interconnect Prediction (SLIP). 1–6.

[42] Tsung-Wei Huang andMartin D. F.Wong. 2015. OpenTimer: A High-Performance
Timing Analysis Tool. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 895–902.

[43] Tsung-Wei Huang and Martin D. F. Wong. 2016. UI-Timer 1.0: An Ultrafast Path-
Based Timing Analysis Algorithm for CPPR. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) 35, 11 (2016), 1862–1875.

[44] Tsung-Wei Huang, Martin D. F. Wong, Debjit Sinha, Kerim Kalafala, and Natesan
Venkateswaran. 2016. A distributed timing analysis framework for large designs.
In ACM/IEEE Design Automation Conference (DAC). 1–6.

[45] Tsung-Wei Huang, Pei-Ci Wu, and Martin D. F. Wong. 2014. Fast Path-Based
Timing Analysis for CPPR. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 596–599.

[46] Tsung-Wei Huang, Pei-Ci Wu, and Martin D. F. Wong. 2014. UI-Timer: An Ultra-
Fast Clock Network Pessimism Removal Algorithm. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 758–765.

[47] Tsung-Wei HuangHuang, Chun-Xun Lin, andMartin D. F.Wong. 2019. DtCraft: A
High-Performance Distributed Execution Engine at Scale. IEEE TRANSACTIONS
ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
(ICCAD) 38, 6 (2019), 1070–1083.

[48] Shui Jiang, Tsung-Wei Huang, Bei Yu, and Tsung-Yi Ho. 2023. SNICIT: Acceler-
ating Sparse Neural Network Inference via Compression at Inference Time on
GPU. In ACM International Conference on Parallel Processing (ICPP).

[49] Shiu Jiang, Tsung-Wei Huangand, and Tsung-Yi Ho. 2023. GLARE: Accelerating
Sparse DNN Inference Kernels with Global Memory Access Reduction. In IEEE
HPEC. 1–7.

[50] B. Jin, G. Luo, and W. Zhang. 2016. A fast and accurate approach for common
path pessimism removal in static timing analysis. In IEEE ISCAS. 2623–2626.

[51] Myung-Chul Kim et al. 2015. ICCAD-2015 CAD contest in incremental timing-
driven placement and benchmark suite. In IEEE/ACM ICCAD. 921–926.

[52] Tin-Yin Lai, Tsung-Wei Huang, and Martin D. F. Wong. 2017. LibAbs: An Efficient
and Accurate Timing Macro-Modeling Algorithm for Large Hierarchical Designs.
In ACM/IEEE Design Automation Conference (DAC).

[53] P. Lee, I. H. Jiang, and T. Chen. 2018. FastPass: Fast timing path search for
generalized timing exception handling. In IEEE/ACM ASPDAC. 172–177.

[54] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin D. F. Wong. 2019. A
Modern C++ Parallel Task Programming Library. InACM International Conference
on Multimedia (MM). 2284–2287.

[55] Chun-Xun Lin, Tsung-Wei Huang, and Martin D. F. Wong. 2020. An Efficient
Work-Stealing Scheduler for Task Dependency Graph. In IEEE International
Conference on Parallel and Distributed Systems (ICPADS). 64–71.

[56] Chun-Xun Lin, Tsung-Wei Huang, Ting Yu, and Martin D. F. Wong. 2018. A
Distributed Power Grid Analysis Framework from Sequential Stream Graph. In
Proceedings of the 2018 on Great Lakes Symposium on VLSI (GLVLSI). 183–188.

58

https://www.darpa.mil/news-events/2019-05-31
https://github.com/OpenTimer/OpenTimer
https://github.com/01org/tbb
https://motivo.ai/
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://opencircuitdesign.com/qflow/
https://github.com/taskflow/taskflow


Parallel and Heterogeneous Timing Analysis: Partition, Algorithm, and System ISPD ’24, March 12–15, 2024, Taipei, Taiwan

[57] Dian-Lun Lin and Tsung-Wei Huang. 2020. ANovel Inference Algorithm for Large
Sparse Neural Network using Task Graph Parallelism. In IEEE High Performance
Extreme Computing Conference (HPEC). 1–7.

[58] Dian-Lun Lin and Tsung-Wei Huang. 2021. Efficient GPU Computation Using
Task Graph Parallelism. In European Conference on Parallel Processing (Euro-Par).

[59] Dian-Lun Lin and Tsung-Wei Huang. 2022. Accelerating Large Sparse Neural
Network Inference Using GPU Task Graph Parallelism. IEEE IEEE Transactions
on Parallel and Distributed Systems (TPDS) 33, 11 (2022), 3041–3052.

[60] Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, and Tsung-Wei
Huang. 2023. From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation
with Batch Stimulus. In International Conference on Parallel Processing (ICPP).
1–12.

[61] Dian-Lun Lin, Yanqing Zhang, Haoxing Ren, Shih-Hsin Wang, Brucek Khailany,
and Tsung-Wei Huang. 2023. GenFuzz: GPU-accelerated Hardware Fuzzing

using Genetic Algorithm with Multiple Inputs. In ACM/IEEE Design Automation
Conference (DAC).

[62] F. Peng, C. Yan, C. Feng, J. Zheng, S. Wang, D. Zhou, and X. Zeng. 2018. A
General Graph Based Pessimism Reduction Framework for Design Optimization
of Timing Closure. In ACM/IEEE DAC. 1–6.

[63] Corentin Rossignon, Pascal Hénon, Olivier Aumage, and Samuel Thibault. 2013. A
NUMA-aware fine grain parallelization framework for multi-core architecture. In
2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops
and Phd Forum. IEEE, 1381–1390.

[64] Vivek Sarkar and John Hennessy. 1986. Partitioning parallel programs for macro-
dataflow. In Proceedings of the 1986 ACM Conference on LISP and Functional
Programming. 202–211.

59


	Abstract
	1 Introduction
	2 Task-Parallel STA Algorithms
	2.1 Motivation
	2.2 Parallel Timing Update using Task Graph
	2.3 Experimental Results

	3 Task Graph Partition
	3.1 Motivation
	3.2 CPU-parallel Partitioning Algorithm
	3.3 Experimental Results

	4 GPU-accelerated STA Algorithms
	4.1 Motivation
	4.2 GPU Kernels for Path Enumeration
	4.3 Experimental Results

	5 Task-parallel Programming System
	5.1 Static Task Graph Programming
	5.2 Dynamic Task Graph Programming

	6 Conclusion
	Acknowledgments
	References



