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Abstract—Incremental quantum circuit simulation has
emerged as an important tool for simulation-driven quantum
applications, such as circuit synthesis, verification, and analysis.
When a small portion of the circuit is modified, the simulator
must incrementally update state amplitudes for reasonable
turnaround time and productivity. However, this type of
incrementality has been largely ignored by existing research.
To fill this gap, we introduce a new incremental quantum
circuit simulator called qTask. qTask leverages a task-parallel
decomposition strategy to explore both inter- and intra-gate
operation parallelisms from partitioned data blocks. Our
partitioning strategy effectively narrows down incremental
update to a small set of partitions affected by circuit modifiers.
We have demonstrated the promising performance of qTask
on QASMBench benchmarks. Compared to two state-of-the-art
simulators, Qulacs and Qiskit, qTask is respectively 1.46× and
1.71× faster for full simulation and 5.77× and 9.76× faster for
incremental simulation.

I. INTRODUCTION

Quantum computing (QC) is a promising computing

paradigm for tackling certain types of problems that are classi-

cally intractable, such as cryptography, chemistry simulation,

and finance [1]. Among various QC applications, classical

quantum circuit simulation (QCS) is essential for researchers

to understand quantum operations, design quantum algorithms,

and validate quantum circuit functionality [2]. However, QCS

is extremely challenging because it demands large computa-

tion and memory to evaluate state amplitudes of qubits. For

example, a full simulation of an n-qubit circuit requires an

exponential size of vector to store 2n amplitudes, as a result of

superposition. To tackle this challenge, QCS researchers have

explored parallel computing [3], [4], data compression [2],

circuit optimization [5], [6], etc.

Despite the rapid growth of QCS research, existing simu-

lators are largely short of a key feature–incrementality. Incre-

mental QCS has recently emerged as an important tool for

simulation-driven QC applications, as shown in Figure 1. For

example, quantum circuit synthesizers can iteratively modify

circuit gates to increase certain state probability and verify the

results with thousands of simulation runs [7], [8], [9], [10];

developers can issue step-by-step simulation calls to debug

how qubits change during the implementation of quantum

algorithms; equivalence checking tools can repetitively add

or remove gates to verify how similar two circuits are based

on simulation results [11]. For these applications, when small

portions of a quantum circuit is modified, re-simulating the full

circuit is infeasible from a turnaround time and productivity

perspective. The simulator must incrementally update only

affected regions and ensure state integrity in an efficient

manner.

Fig. 1: Incremental quantum circuit simulation is a key enabler

to high-performance simulation-driven quantum applications.

There are several challenges for designing an efficient

incremental QCS system. First, running QCS in a static envi-

ronment is very different from a dynamic environment. When a

quantum circuit begins to change, it can become very difficult

to reorganize data structures and keep algorithmic invariants

consistent over incremental operations. Second, achieving fast

incremental QCS requires very strategic task partitioning to

make the most of parallelism [12]. When applications modify

the circuits, we need to quickly identify affected partitions

and restructure their task dependencies for incremental update.

Last but not least, although algorithms of incrementality have

been widely studied in the classical design flow of digital

circuits (e.g., incremental timing/power analysis [13], [14]),

we cannot directly reuse them due to distinct behavior of

quantum circuits, such as superposition and entanglement.

To overcome these challenges, we introduce qTask, a state

vector-based quantum circuit simulator that efficiently sup-

ports incrementality using task parallelism. To the best knowl-

edge of authors, qTask is the first incremental quantum circuit

simulator in the literature. Our result can largely benefit many

simulation-driven quantum applications. We summarize our

technical contributions as follows:

• We present a lightweight C++ programming model to sup-

port incremental QCS. Applications can use our circuit

modifiers to modify existing quantum circuits and call state

update to transparently perform incremental simulation.

• We present a task graph-based partitioning strategy to

explore both inter- and intra-gate operation parallelisms

from a quantum circuit. Our strategy parallelizes both full

simulation and incremental simulation.
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• We present an efficient technique to maintain invariants of

our task partitioning over sequences of circuit modifiers.

When a state update call is issued, we can quickly identify

affected partitions and restructure the task graph to re-

simulate state amplitudes incrementally.

We have evaluated the performance of qTask on a set

of medium- and large-scale circuits in QASMBench [15],

an OpenQASM benchmark suite for noisy intermediate-scale

quantum (NISQ) evaluation and simulation. Compared to two

state-of-the-art simulators, Qulacs [3] and Qiskit [16], qTask

is respectively 1.46× and 1.71× faster for full simulation and

5.77× and 9.76× faster for incremental simulation. We believe

qTask stands out as a unique system given the ensemble of

software tradeoffs and architectural decisions we have made.

II. BACKGROUND AND RELATED WORK

In this section, we give an overview of quantum com-

putation and related work on QCS. Then, we discuss the

importance of incremental QCS and its challenges.

A. Quantum Circuits and Simulation

A quantum circuit of n qubits is a sequence of quan-

tum gates that act on quantum states. Each state ψ is a

superposition or a linear combination of 2n possible binary

states using 2n amplitudes, denoted as |ψ〉 = α0 |0...00〉 +
α1 |0...01〉 + ... + α2n |1...11〉. For brevity, binary states can

be written in decimal, |ψ〉 = α0 |0〉+ α1 |1〉+ ...+ α2n |2n〉.
Squared amplitudes are probability of individual states to

which a superposition state will collapse when measurement

is performed. Thus, squared amplitudes need to sum up to 1.

∑
b

|αb|2 = 1

Industrial quantum computers use a set of standard single-

qubit gates and two-qubit controlled gates to perform universal

computation [15]. These standard gates are defined by 2 ×
2 or 4 × 4 unitary matrices and can compose larger gates,

such as Toffoli, Fredkin, and controlled rotators. The following

example shows the standard Pauli-X gate, Hadamard gate, and

controlled-NOT (CNOT) gate in matrix form. Notice that NOT

and X are interchangeable in gate naming.

X =

[
0 1
1 0

]
, H =

1√
2

[
1 1
1 −1

]
, CX =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

A collection of quantum gates at a level forms a unitary
transformation matrix defined by the Kronecker product (⊗) of

individual gate matrices from the first qubit to the n-th qubit.

Figure 2 shows a five-qubit circuit with five Hadamard gates

and four CNOT gates. The first five Hadamard gates form the

32× 32 transformation matrix, H⊗5, to create superposition.

The last four CNOT gates create entanglement. Finding unitary

transformation matrices is an integral part of QCS. First, we

order the gates left to right and pad an empty spot with an

identity matrix of an appropriate dimension. Parallel gates

can be ordered arbitrarily, for instance, G7 and G8. Then,

we find all 2n × 2n matrices via Kronecker product and

multiply them in order. The resulting matrix represents the

entire circuit and can be multipled by input state vectors

to derive output states. Such simulations allow researchers

and developers to evaluate the complexity of new quantum

algorithms and validate quantum devices.

Fig. 2: A five-qubit quantum circuit of nine gates (left) and

its gate dependency graph (right).

B. Existing Quantum Circuit Simulators

Mainstream QCS software is based on two paradigms, state
vector and tensor network contraction. State vector-based QCS

keeps a vector of the current state and iteratively multiplies

it by a state transformation matrix. To improve space and

time efficiency, researchers have proposed various techniques,

such as compact binary decision diagram (BDD) to represent

matrices [17], lossy data compression to trade accuracy for

space [2], multi-threaded sparse matrices [3], graphics pro-

cessing units (GPUs) to gain throughput performance [18],

[19], and distributed vector to scale out computation [20],

[21]. While being mathematically simple, state vector has been

widely used in mainstream simulators including commercial

tools (IBM Qiskit [16], MS QDK [22], Google Qsim [23]).

On the other hand, tensor network-based QCS represents

a quantum circuit in a tensor network and explores the best

contraction order for state update. However, the time and space

costs for contracting tensor networks are exponential with the

network width. Therefore, existing research has been targeting

low-depth circuits using various optimization techniques, such

as slicing window with asynchronous task parallelism [24],

[25], GPU acceleration [19], and tree partitioning [26]. While

computing tensor networks is efficient, such an organization

does not support intermediate measurement [2]. Furthermore,

tensor network is primarily optimized for static environments.

When a circuit begins to change, maintaining a dynamic tensor

network becomes very challenging.

In addition to state vector and tensor network, general-

purpose heuristics for improving simulation efficiency have

also been studied, such as gate cancelling [4], gate restric-

tion [27], gate reordering [18], pattern matching [5], approx-

imation [28], and so on. Many of these strategies focus on

removing redundancy in a quantum circuit or restructuring it to

gain a more compact representation under certain assumptions.
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C. Importance and Challenges of Incrementality

As for the rapid growth of quantum software development,

incremental QCS has emerged as an important tool for the

success of many simulation-driven QC applications [9]. For in-

stance, quantum circuit synthesis engines can issue thousands

of simulation runs in an optimization loop to evaluate how a

local change (e.g., qubit swapping, rotation degree turning,

gate insertion and removal) affects output amplitudes [7].

This type of optimization is especially common in cross-layer

quantum computer designs that incrementally map software

logic to hardware with simulation in the loop [8]. When a

small portion of a quantum circuit is modified, re-simulating

the full circuit is infeasible from a turnaround time and

productivity perspective. The simulator must incrementally
update only affected regions without exhaustive simulation.

The success of incremental QCS can also largely improve

the efficiency, and consequently user experience, of QC plat-

forms that target interactive learning of quantum algorithms

with step-by-step simulation. Unfortunately, the current QCS

landscape is largely short of incrementality.

Fig. 3: Incremental timing analysis in the classical design flow

of digital circuits [14]. Optimization tools iteratively change

the design and incrementally update timing information until

no timing-critical paths are found.

On the contrary, incrementality has been extensively studied

in the classical design flow of digital circuits. For instance,

design automation tools heavily count on incremental tim-

ing/power analysis algorithms for efficient circuit optimiza-

tion [29], [14]. Figure 3 shows an example of timing-driven

optimization. These algorithms explore incrementality along

the circuit network and update quantities on a per-gate basis

after optimization transforms (e.g., gate sizing, buffer inser-

tion) change the design. However, such ideas are not easily

applicable to incremental QCS because state values can be

entangled and therefore are inseparable among gates. This

property also brings another challenge to parallelization. For

instance, although G7 and G8 in Figure 2 are structurally

independent of each other, we cannot apply these two CNOT

operations simultaneously as race can occur when both q4 and

q3 are 1. We need a different task decomposition strategy to

parallelize incremental QCS.

Extending existing QCS algorithms to incorporate incre-

mentality is nontrivial, either. The biggest challenge is to

maintain consistency or invariants in these algorithms when

data structures of states and gates start to change. For instance,

BDD can be extremely compact for full simulation [17],

but its linear coupling between stages can incur expensive

reorganization of a BDD when a local change happens in an

early stage. Likewise, algorithms that count on restructuring

input circuits [5] will need to manage an additional layer of

consistency between the original and the modified circuits.

Similar challenges exist in other full simulation algorithms

as well [2], [4]. Although existing QCS algorithms and ideas

in the classical design flow have their benefits, we believe

a ground-up design of simulation system is necessary to

overcome the unique challenges of incremental QCS.

III. QTASK: TASK-PARALLEL INCREMENTAL QCS

In this section, we introduce qTask, a new QCS engine

that efficiently supports incrementality using task parallelism.

qTask introduces a lightweight C++ programming model for

incremental simulation and backs up the model with an effi-

cient runtime that explores both inter- and intra-gate operation

parallelisms from partitioned data blocks. We first discuss the

targeted environment of qTask and then present its technical

details. Throughout the discussion, we will use the circuit

example in Figure 2 to explain key steps in qTask.

A. Targeted Simulation Environment

qTask targets medium-size gate-level quantum circuits on

a single machine that has sufficient memory to store all

output amplitudes (αi). While qTask currently assumes all

data fit in memory, the proposed partitioning strategy can

be extended to a higher number of qubits using out-of-core

memory, which is part of our future work. To comply with

modern quantum computers, we target standard gates defined

atomically in OpenQASM [30] and QASMBench [15], as

shown in Table I. These standard gates can be 1) mapped to

machine-specific gates for actual execution and 2) assembled

to form composition gates (e.g., CZ, CCX, SWAP). Since

qTask does not impose any constraints on gates, composition

gates can be also included to our database using the same

simulation method as standard gates.

TABLE I: Supported standard quantum gates by qTask based

on OpenQASM specification [30]

Gates Functionality Gates Functionality

CNOT Controlled-NOT SDG Conjugate of sqrt(Z)
X Pauli-X gate T sqrt(S) phase
Y Pauli-Y gate TDG Conjugate of sqrt(S)
Z Pauli-Z gate RX X-axis rotation
H Hadamard gate RY Y-axis rotation
S sqrt(Z) phase RZ Z-axis rotation

B. Programming Model

Unlike existing quantum programming models that do not

anticipate incrementality, qTask introduces a lightweight C++-

based model with two new concepts: First, qTask groups

application programming interface (API) to three categories,

circuit modifier, state update, and query. The three cate-

gories describe operations that modify the circuit, update

state amplitudes (incrementally), and query circuit quantities,

respectively. Second, qTask asks users to explicitly structure
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gates on a per-net basis to facilitate the design of incremental

QCS. A net is a group of gates that are parallel in structure

(e.g., G1–G5 in Figure 2). Table II shows the key API to

support incremental QCS in qTask. Currently, qTask does not

support adding or removing a qubit as the number of qubits

is typically decided in the beginning.

TABLE II: Key API to support incremental QCS in qTask

Method Functionality

insert net insert a new empty net to the circuit
remove net remove a net and all its gates from the circuit
insert gate insert a net gate to an existing net

remove gate remove a gate from its net and the circuit
update state update the state value, incrementally
dump graph dumps the current partition graph

Listing 1 shows an example of qTask code for creating the

quantum circuit in Figure 2. We start by creating a circuit

object, ckt, with five qubits, q4, q3, q2, q1, and q0, where

q4 is the most significant bit. Then, we create five nets using

the method insert_net, which inserts a new net right after

the net given in the argument. Since the five Hadamard gates

are of no structural dependency, we insert them to net1.

Next, we insert four CNOT gates to net2, net3, net4,

and net5, respectively. If a gate is inserted to a net that

introduces a dependency, such as G6 and G7, qTask will throw

an exception. When we finish describing the circuit, calling

dump_graph will dump the current task graph of partitioned

blocks to a DOT format. Calling update_state will run

the task graph to perform simulation. The last three lines

modify the circuit by removing G8 and inserting a new CNOT

gate G10, followed by calling update_state to re-simulate

state amplitudes incrementally.

qTask c k t ( 5 ) ;
a u t o [ q4 , q3 , q2 , q1 , q0 ] = c k t . q u b i t s ( ) ;
/ / c r e a t e f i v e n e t s and e i g h t g a t e s
a u t o n e t 1 = c k t . i n s e r t n e t ( c k t . n e t s ( ) . b e g i n ( ) ) ;
a u t o n e t 2 = c k t . i n s e r t n e t ( n e t 1 ) ;
a u t o n e t 3 = c k t . i n s e r t n e t ( n e t 2 ) ;
a u t o n e t 4 = c k t . i n s e r t n e t ( n e t 3 ) ;
a u t o n e t 5 = c k t . i n s e r t n e t ( n e t 4 ) ;
a u t o G1 = c k t . i n s e r t g a t e (H, ne t1 , q4 ) ;
a u t o G2 = c k t . i n s e r t g a t e (H, ne t1 , q3 ) ;
a u t o G3 = c k t . i n s e r t g a t e (H, ne t1 , q2 ) ;
a u t o G4 = c k t . i n s e r t g a t e (H, ne t1 , q1 ) ;
a u t o G5 = c k t . i n s e r t g a t e (H, ne t1 , q0 ) ;
a u t o G6 = c k t . i n s e r t g a t e (CNOT, ne t2 , q3 , q4 ) ;
a u t o G7 = c k t . i n s e r t g a t e (CNOT, ne t3 , q1 , q4 ) ;
a u t o G8 = c k t . i n s e r t g a t e (CNOT, ne t4 , q2 , q3 ) ;
a u t o G9 = c k t . i n s e r t g a t e (CNOT, ne t5 , q0 , q2 ) ;
c k t . dump graph ( s t d : : c o u t ) ;
c k t . u p d a t e s t a t e ( ) ; / / f u l l u p d a t e
/ / modify t h e c i r c u i t
c k t . r emove ga te ( G8 ) ;
a u t o G10 = c k t . i n s e r t g a t e (CNOT, ne t4 , q1 , q2 ) ;
c k t . u p d a t e s t a t e ( ) ; / / i n c r e m e n t a l u p d a t e

Listing 1: qTask code (before circuit modifiers) of Figure 2.

Internally, qTask does not maintain any gate dependency

graph, such as the one in Figure 2, but a list of nets based on

the order of their constructions. Since all the gates in a net are

structurally parallel, qTask can group them in arbitrary order

to design an efficient memory management scheme atop our

task partitioning, discussed later.

C. Task Decomposition Strategy

To facilitate the design of efficient incremental QCS, qTask

employs a top-down parallel decomposition strategy using the

task graph model. qTask divides a state vector into a set of

disjoint, equal-size blocks and groups consecutive blocks to

form partitions. Each partition spawns one or multiple tasksto
perform gate operations on designated memory regions. This

strategy breaks down gate dependencies to task dependencies
among partitions, enabling inter-gate operation parallelism. If

a partition contains more than one block, qTask further spawns

parallel tasks to explore intra-gate operation parallelism among

these blocks. By leveraging existing task graph programming

systems, qTask transparently scales to many processors. Here,

we focus on task partitioning first and will discuss how parti-

tions are connected to each other as part of circuit modifiers

and incremental update.

Fig. 4: Task partitioning for simulating the quantum circuit

in Figure 2 using a block size of 4. The task graph explores

inter-gate parallelism through partitioned data blocks.

Figure 4 shows the partition diagram for the simulation

workload of the quantum circuit in Figure 2. Each block sizeB
is a power of two (4 here) and represents the minimum number

of elements or granularity for each task. The key idea behind

our partitioning is to carry out gate operations over a state

vector in two modes, non-superposition and superposition
gates. Gate operations, such as CNOT, diagonal matrices,

and permutations do not create superposition and can directly

alter the state vector using linear swapping and scaling. For

instance, the CNOT gate G6 in Figure 2 is equivalent to
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swapping state amplitudes between 10xxx and 11xxx, where

“xxx” denotes all possible binary strings of the first three

qubits (1+xxx for short). On the other hand, gate operations

that result in superposition, such as non-diagonal matrices and

rotators, will fall back to the use of state transformation matrix.

Fig. 5: Task partitioning of CNOT gates G6–G9 in Figure 4. (a)

G6 gives one partition spanning four consecutive data blocks.

(b)-(c) Both G7 and G8 give two partitions each spanning

two consecutive data blocks. (d) G9 gives two partitions each

spanning three consecutive data blocks.

Figure 5 gives an example of how qTask performs CNOT

using partitioned tasks. For G6, we need to swap eight

amplitudes between 10xxx and 11xxx. Since the block

size is 4, the eight swaps can be parallelized by two tasks,

starting at states 10000 and 10100, respectively. However,

the two tasks cannot appear in two parallel partitions because

their memory regions overlap (i.e., [16, 27] and [20, 31], using

decimal representation). Instead, we form one partition of

[16, 31], as shown in Figure 4, and spawn the two parallel

tasks within this partition to explore intra-gate operation

parallelism, as illustrated in Figure 6. In qTask, intra-gate

operation parallelism can be regarded as a parallel-for with

chunk size equal to our block size. On the other hand, G7
results in two partitions that can run in parallel because the

memory regions of the two blocks are [16, 23] and [24, 31]
that do not overlap, as shown in Figure 4. The procedure to

derive partitions for G8 and G9 is similar.

The memory region of a block can be quickly decided

by replacing “x”s with the binary string of a multiple of

B. In Figure 5, for instance, the first and the second blocks

of G6 are the two states by replacing xxx with 000 and

100, respectively. By iterating blocks in order, we can decide

Fig. 6: Intra-gate operation parallelism of G6 in Figure 5. Tasks

1 and 2 simultaneously operate on the first and the second

blocks to swap amplitudes between states.

when to form a partition of consecutive blocks that overlap

in memory regions. Furthermore, it can be observed that the

proposed partitioning has a repetitive pattern (see Figure 4).

Once we have found a partition, the rest can be quickly decided

as they all have the same size by symmetry. qTask employs

this algorithm to decide partitions for gates X, Y, Z, S, SDG,

T, TDG, SWAP, and RX/RY/RZ of certain degrees that do not

form superposition (e.g., RX(π)).

For gate operations that form superposition (e.g., Hadamard,

RX(π/2)), qTask falls back to the principle of state trans-

formation matrix. Since this process is equivalent to matrix-

vector multiplication, we partition the state vector into an equal

number of blocks and perform parallel multiplication. For

instance, the first net of five Hadamard gates in Figure 2 will

result in eight partitions each of one block, as shown in Figure

4. Each partition computes four amplitudes via multiplying the

input state vector by the corresponding subset of matrix rows.

Since the multiplication cannot start until the previous vector is

ready, the eight partitions are preceded by a synchronization

task, sync. Notice that each partition derives its subset of

matrix rows on the fly to save memory and gain parallelism

using recursive tensor products. We stop the recursion when

zero and identity patterns occur.

D. Circuit Modifiers

With a task graph in place, we can efficiently perform

incremental QCS by restructuring the graph connectivity and

identifying affected partitions to resimulate after a circuit

modifier is applied. Since qTask partitions a state vector

into contiguous blocks, connections between partitions can be

quickly decided by a few forward and backward checks using

range intersection algorithm. Specifically, a connection exists

between two partitions if they are the closest pair of overlapped

blocks. By scanning neighboring partitions and their block

coverages, qTask can efficiently rebuild new connections and

identify affected partitions for incremental update. We will

focus on removing and inserting gates since net-level circuit

modifiers can be built on top.

Figure 7 illustrates how removing a gate affects the graph

connectivity. When we remove gate G8, all its partitions and

relevant dependencies should be removed (marked in blue

dash). For each removed partition, we need to reconnect its

preceding partitions to its successor partitions if an overlap

exist in their blocks. Since each partition is a group of consecu-

tive blocks, by keeping a list of block indices covered by each

partition, we can quickly decide overlapped partitions using
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Fig. 7: Remove gate G8 from the quantum circuit in Figure

2 and its impact on partitioned data blocks. Numbers in “{}”
denote block IDs.

range intersection algorithm. For instance, the first partition

of G8 spans the block range [2, 3], which intersects the block

range [1, 3] of its successor.

Fig. 8: Insert a new gate G10 after the removal of G8 in Figure

7 and its impact on partitioned data blocks.

Fig. 9: Incremental update of the task graph after inserting a

new gate G10 to Figure 7.

Figure 8 illustrates how inserting a new gate affects the

graph connectivity. When a new gate G10 is inserted, we first

identify its partitions (marked in blue dash) and then connect

each partition with appropriate predecessors and successors.

Figure 9 illustrates our algorithm to find such predecessors

and successors. Starting from the row of G10, which has

two partitions of block ranges [1, 3] and [5, 7], we iteratively

move backward and forward to find intersected partitions for

predecessors and successors until the remaining blocks of G10
become empty. For example, with one step forward, the two

partitions of G9 can all cover that of G10, resulting in two

successor dependencies. Similarly, with one step backward, the

two partitions of G7 cover only the second partition of G10,

resulting in two predecessor dependencies; with two more

steps backward, we have three predecessor dependencies that

completely cover the first partition of G10. Since dependency

constraints are transitive, we remove existing dependencies

between these predecessors and successors.

E. Incremental Update

qTask keeps a list of partitions called frontiers for each

sequence of circuit modifiers. Frontiers are the source to start

incremental update of affected state amplitudes when users

issue an update call after a sequence of circuit modifiers.

For each newly inserted gate, we add all its partitions to the

frontier list. For each removed gate, we add all successors

of removed partitions to the frontier list. Now, it should be

clear that our partitioning strategy effectively scopes down

state update to only successor partitions that are reachable

from frontiers. Such successors can be found through a depth-

first-search (DFS) starting from each frontier partition.

Fig. 10: Incremental update of state amplitudes after (a)

removing G8 as in Figure 7 and (b) inserting G10 as in Figure

8. Frontier partitions are marked in green, and their reachable

successors are marked in blue.

Figure 10 illustrates how qTask identifies frontiers and use

them to carry out incremental update for Figure 7 and Figure

8. In (a), the two successor partitions of G8 (marked in green)

are frontiers when G8 is removed from the circuit. Intuitively

speaking, we only need to update state amplitudes of the two

partitions and onward since removing G8 has no impact on

other partitions. Similarly in (b), inserting G10 to the circuit

introduces two new partitions to perform CNOT operations.

The two partitions will be added to the frontier list and all their

successors will participate in the incremental update. Figure

11 shows a detailed state map of Figure 10(b). We can see

only 24 state amplitudes ([4, 15] and [20, 31]) are incrementally

updated after removing G8 and inserting G10.

F. Implementation Details

In this section, we discuss three important implementation

details of qTask, task graph creation, per-net state vector
management, and copy-on-write data optimization.
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Fig. 11: Detailed state map of Figure 10(b), in which only

four partitions (marked in blue) are involved in updating 24

state amplitudes incrementally.

1) Task graph creation: We leverage the Taskflow li-

brary [31] to derive a task graph from partitioned data blocks.

We decide to use Taskflow because of its simplicity and many

successful use cases in classical circuit design [32], [33],

[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], but

other tasking libraries (e.g., TBB [44], OpenMP [45]) are also

possible. Specifically, we use the static tasking and dynamic

tasking (subflow) features [46] of Taskflow to compose inter-

and intra-gate operation parallelisms, respectively. Figure 12

shows the Taskflow graph of Figure 4, where 1) 16 static

tasks (sync-1, MxV0–MxV7, G71, G72, G81, G82, G91,

G92, output) are used to formulate inter-gate operation

parallelism and 2) one subflow of two static tasks (G6-0 and

G6-1) is used to formulate intra-gate operation parallelism of

G6. Each time the application requests a state update, qTask

derives a new Taskflow graph from affected partitions and

submits it to Taskflow’s work-stealing runtime [47] for parallel

incremental simulation.

2) Per-net state vector management: Since gates in the

same net are structurally independent of each other, we first

group superposition gates to share a state vector and partition it

to an equal number of blocks, such as MxV0–MxV7 in Figure

12. These partitions will succeed an empty task (sync-1)

that synchronizes all previous tasks to safely perform parallel

matrix-vector multiplication. Next, we create a state vector for

each non-superposition gate in the net and partition the vector

into a set of consecutive blocks based on the proposed method.

If multiple gates exist, we connect them in an increasing order

of block count in partitions. This is because a partition of a

high block count tends to affect a large number of downstream

Subflow: G6

sync-1

MxV0

MxV1

MxV2

MxV3

MxV4

MxV5

MxV6

MxV7

outputG91

G81

G6

G71

G72

G92

G82G6-0

G6-1

Fig. 12: Taskflow graph of Figure 4. Each task performs a

specific gate operation on partitioned data blocks. The subflow

task, G6 (in blue box), spawns two static tasks for intra-gate

operation parallelism as described in Figure 6.

partitions, and we prefer to defer it as much as possible.

3) Copy-on-write data optimization: While qTask keeps

multiple state vectors per net to store intermediate results

for incrementality, each state vector does not explicitly store

all partitioned blocks. Instead, we leverage the copy-on-write
(COW) technique [48] to optimize data access. Each block

has a COW C++ smart pointer to its predecessor block.

The memory and data of a block will not be created and

copied until a task performs gate operations on the block.

This COW optimization has two significant advantages: First,

qTask will only create necessary data blocks for simulation.

For example, the first and the fifth blocks of G9 in Figure 4 will

not be created unless explicitly requested. Second, multiple

memory allocations and data copies between blocks can be

simultaneously performed through parallel tasks.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of qTask on 20 quan-

tum circuits selected from medium- and large-scale QASM-

Bench [15]. As shown in Table III, these circuits exhibit

different complexities in terms of numbers of qubits and

standard gates. For example, vqe uccsd has the largest gate

count of 10808, and big ising has the largest qubit count of

26. All circuits except bb84 incorporate several CNOT gates

to entangle and disentangle states. Figure 13 shows a fraction

of the circuit, ising, that performs Ising model simulation

using 10 qubits. All experiments ran on a CentOS 64-bit

machine with 16 Intel i7 cores at 2.50 GHz and 128 GB RAM.

We compiled qTask using clang++12 with C++17 standard

-std=c++17 and optimization flag -O3 enabled. The default

block size of qTask is 256. All data is an average of 10 runs.
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TABLE III: Performance comparison of qTask with Qulacs and Qiskit on medium- and large-scale QASMBench circuits [15]

Circuit Description Qubits Gates CNOT
Qulacs Qiskit qTask

full
(ms)

inc
(ms)

mem
(GB)

full
(ms)

inc
(ms)

mem
(GB)

full
(ms)

inc
(ms)

mem
(GB)

dnn Quantum deep neural network 8 1200 384 21.8 2167.8 0.07 51.4 5114.3 0.07 22.4 529.3 0.09
adder Quantum ripple adder 10 142 65 17.2 186.4 0.05 29.5 320.1 0.04 11.79 57.9 0.06
bb84 Quantum key distribution 8 27 0 1.1 2.3 0.03 1.1 2.4 0.03 1.5 1.9 0.04

bv Berstein-Vazirani algorithm 14 41 13 9.0 21.7 0.11 16.7 40.6 0.12 6.7 14.3 0.13
ising Ising model simulation 10 480 90 49.6 1438.1 0.08 81.4 2360.1 0.09 41.7 550.14 0.10

multiplier Quantum multiplication 15 574 246 150.9 4199.0 1.98 283.7 7896.3 2.86 101.62 1052.6 3.46
multiplier 35 3×5 matrix multiplication 13 98 40 22.4 130.1 0.10 47.1 273.54 0.15 16.01 92.7 0.18

qaoa Approximation optimization 6 270 54 5.4 148.5 0.01 13.4 368.5 0.01 6.1 37.65 0.02
qf21 Quantum factorization of 21 15 311 115 79.8 1173.1 1.59 191.5 2815.1 1.66 58.3 480.7 1.91
qft Quantum Fourier transform 15 540 210 142.0 3621.0 2.75 281.2 7170.1 3.11 102.2 949.4 3.17
qpe Quantum phase estimation 9 123 43 10.3 100.42 0.02 27.8 270.4 0.04 7.65 80.44 0.05
sat Boolean satisfiability solver 11 679 252 85.5 3660.7 0.11 196.7 8422.1 0.21 62.3 786.5 0.28

seca Shor’s algorithm 11 216 84 28.4 401.0 0.06 59.64 843.0 0.09 21.42 128.5 0.11
simons Simon’s algorithm 6 44 14 0.83 3.9 0.03 1.44 6.71 0.03 0.81 2.44 0.04

vqe uccsd Variational quantum eigensolver 8 10808 5488 244.4 249084.2 0.36 435.1 443367.1 0.56 259.4 44251.1 0.76
big adder Quantum ripple adder 18 284 130 200.1 2401.3 7.98 360.4 4300.8 11.4 137.9 602.5 13.9

big bv Bernstein-Vazirani algorithm 19 56 18 125.0 305.9 2.6 234.5 573.9 3.9 95.4 126.6 4.9
big cc Counterfeit coin finding 18 34 17 24.9 47.8 0.98 42.3 63.3 1.5 16.6 24.5 1.7

big ising Ising model simulation 26 280 50 1939.1 3345.5 89.4 1745.3 2866.2 91.4 991.4 2000.3 114.3
big qft Quantum Fourier transform 20 970 380 2936.3 100567.0 67.3 3012.6 144453.4 77.6 2209.7 12912.8 91.2

1.46 5.77 0.74 1.71 9.76 0.82 1.00 1.00 1.00

Qubits: number of qubits Gates: number of standard gates CNOT: number of CNOT gates to entangle and disentangle states
full: runtime of full simulation inc: runtime of incremental simulation mem: maximum resident set size (RSS)

Fig. 13: Quantum circuit (partial) for Ising model simulation.

A. Baseline

Given the large number of quantum circuit simulators, it

is impractical to compare qTask with all of them. Instead,

we consider Qulacs [3] and Qiskit [16] as the baseline for

the following three reasons: First, both Qulacs and Qiskit

have an optimized C++ back-end and have demonstrated

superior runtime performance over existing simulators [3].

Second, Qulacs is completely open-source and has relatively

rich documentation for C++ in addition to Python, allowing us

to reason the source when incrementality is taken into account.

Third, Qulacs and Qiskit support circuit modification, in spite

of no incremental simulation. For example, Qulacs have API

for inserting/removing gates at given positions, while Qiskit

allows adding/erasing gates as a byproduct of Python list.

B. Overall Simulation Performance

Table III presents the overall simulation performance of

qTask, Qulacs, and Qiskit, using a maximum hardware con-

currency of 16 threads. In terms of full simulation, which

issues a simulation call when the entire circuit is constructed,

qTask outperforms Qulacs and Qiskit in nearly all circuits.

The average speed-ups of qTask over Qulacs and Qiskit across

all circuits are 1.46× and 1.71×, respectively. We attribute

this result to our partitioning strategy which explores both

inter- and intra-gate operation parallelisms. This performance

advantage becomes even more significant at larger circuits

that produce more partitioned tasks and parallelism than small

ones. For example, qTask simulates big ising (26 qubits)

1.67× and 1.43× faster than Qulacs and Qiskit. For circuits

of state sizes below our partition size (i.e., 8 qubits with 256

amplitudes), such as dnn, bb84, qaoa, and vqe uccsd qTask

is a bit slower than Qulacs because there is no much task

parallelism. Yet, the difference is very negligible (e.g., about

5% in vqe uccsd).

Next, we study the performance of incremental simulation.

Following the convention of QASMBench, we create a net per

level and insert all parallel gates at that level to the net. Starting

from the first level, we repeat this process and issue level-by-

level simulation calls until the entire circuit is constructed.

That is, the number of simulation calls is equal to the number

of nets or the circuit level/depth. With incremental simulation,

we clearly see the advantage of qTask. On average, qTask is

5.77× and 9.76× faster than Qulacs and Qiskit, respectively.

When a circuit include many gates in a long depth, this

advantage becomes even more pronounced. Taking big qft

for example, qTask finished 7.79× and 11.19× faster than

Qulacs and Qiskit, respectively. The trade-off of this large

performance gain is higher memory usage, since we keep

several state vectors per net to store intermediate results for

incrementality. On average, qTask is 26% and 18% higher

than Qulacs and Qiskit, both of which incorporate specialized

sparse data structures for state vectors and matrices. However,

how to efficiently extend such sparsity management to an

incremental environment remains unknown.
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C. Performance of Incremental Simulation

We further study the performance difference of incremental

simulation between qTask and Qulacs over different numbers

of circuit modifiers. Hereafter, we compare with only Qulacs

since Qiskit is much slower. We follow the convention of

classical design flow [14], [49], [50], [51] to define one incre-
mental iteration as a sequence of circuit modifiers followed

by a simulation call. We first demonstrate the simulation

performance for incremental gate insertions. At each incre-

mental iteration, we randomly select a few levels and insert

all their gates into the circuit. Then, we call state update

to re-simulate the modified circuit. Iterations stop until the

circuit is fully constructed. Figure 14 draws the cumulative

runtime over all incremental iterations for two circuits, qft and

big adder. As the number of incremental iterations increases,

the performance gap between qTask and Qulacs becomes

larger.
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Fig. 14: Performance of incremental simulation for random

gate insertions on two quantum circuits, qft and big adder.
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Fig. 15: Performance of incremental simulation for random

gate removals on two quantum circuits, qft and big adder.

Next, we demonstrate the simulation performance for in-

cremental gate removals. Starting from a complete circuit,

each incremental iteration randomly selects a few levels and

removes all their gates from the circuit. Then, we call state

update to re-simulate the modified circuit. Iterations stop until

the circuit becomes empty. Figure 15 draws the runtime at each

incremental iteration for the same circuits, qft and big adder.

Notice that the runtime at the iteration 0 represents full

simulation. As the number of incremental iterations increases,

both Qulacs and qTask approach zero due to fewer gates to re-

simulate, but qTask is always faster. qTask fluctuates more than

Qulacs because the number of affected partitions varies across

different incremental iterations. Removing gates at a later level

will affect fewer downstream partitions that an earlier level,

and vice versa.
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Fig. 16: Performance of incremental simulation for mixing

random gate removals and insertions based on two quantum

circuits, qft and big adder.

Finally, we demonstrate the performance of incremental

simulation performance by randomly mixing gate insertions

and gate removals at each incremental iteration. Figure 16

plots the runtime over 50 incremental iterations. Since the

circuit size varies at each iteration, both Qulacs and qTask

fluctuate. However, we observe qTask is faster than Qulacs in

nearly all points, as a result of incremental simulation. The

runtime difference is larger at big adder, which is primar-

ily composed of non-superposition gates (CNOT, CX) to to

perform quantum arithmetics. In this case, qTask can quickly

update certain, affected amplitudes by circuit modifiers, rather

than the entire state.

D. Multi-threading Performance
Figure 17 compares the runtime between Qulacs and qTask

for completing full simulation using different numbers of

cores. Both qTask and Qulacs saturate at about 10 cores. Since

our task partitioning strategy enables both inter- and intra-gate

operation parallelisms, multi-threaded qTask is always faster

than Qulacs. Also, by modeling partitioned simulation tasks

into a task graph, qTask can execute the whole-graph with

dynamic load balancing (via Taskflow [31]) in no need of

synchronizing work between levels as Qulacs. Similar result

is observed for incremental simulation in Figure 18, where we

collect 50 incremental iterations of random gate insertions and

removals. For qTask, the advantage of multi-threading is less

significant than full simulation because incremental simulation

takes much less computation. The scalability saturates at about

10 cores because most task graphs give 10—-30 parallel tasks

with a partition size of 256. Smaller partition size gives more

task parallelism, but the resulting scheduling overhead can

outweigh the advantage.

E. Impact of Block Size
We study the impact of different block sizes on simulation

performance. In qTask, using a smaller block size results in

more partitioned tasks and thus a finer control over incre-

mentality, and vice versa. However, more partitions also incur
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Fig. 17: Runtime scalability of full simulation with increasing

numbers of CPU cores for qft and big adder.
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Fig. 18: Runtime scalability of incremental simulation with

increasing numbers of CPU cores for qft and big adder.

higher runtime overhead, such as re-connecting the task graph

after circuit modifiers and scheduling tasks with dynamic

load balancing. Figure 19 shows the simulation runtime of

qTask for qft (15 qubits) using different block sizes. When

the block size is too small, the overhead of task partitioning

and scheduling completely outweighs the advantage of task

parallelism. When the block size is to too large, qTask does

not benefit much from task parallelism, and the result basically

degenerates to using one core (compared to Figure 17 and

Figure 18).
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Fig. 19: Runtime of full simulation and incremental simulation

using different block sizes.

The selection of partition size depends on the circuit struc-

ture and application environment. For example, if the simulator

only has four cores to run, then a bigger partition size is better

for avoiding excessive parallelism plus scheduling overhead.

On the other hand, if the circuit incorporates a long chain

of arithmetic operations (e.g., CNOT), a smaller partition

size may bring more inter-gate parallelism. Since there is no

universal optimal selection, we have decided to parameterize

it for users.

F. Impact of Copy-on-Write Data Optimization

qTask partitions each state vector into a set of data blocks

and stores each partitioned block using a C++ COW smart

pointer [48]. A data block is automatically freed when ref-

erence count drops to zero, which happens on the fly by

Taskflow’s scheduler. In general, this data block management

strategy can reduce the overall memory footprint by about 20–

50%. For large-scale circuits, e.g., big qft and big ising, the

saving can be significant (up to several GBs).

V. CONCLUSION

In this paper, we have introduced qTask to efficiently

support incremental quantum circuit simulation. To the best

knowledge of authors, qTask is the first incremental quantum

circuit simulator in the literature. We have presented a task-

parallel decomposition strategy to explore both inter- and intra-

gate operation parallelisms from partitioned data blocks. Our

strategy effectively scopes down incremental update to a small

set of affected partitions that can be quickly identified from

a sequence of circuit modifiers. We have demonstrated the

promising performance of qTask on medium- and large-scale

quantum circuits from QASMBench. Compared to two state-

of-the-art simulators, Qulacs and Qiskit, qTask is respectively

1.46× and 1.71× faster for full simulation and 5.77× and

9.76× faster for incremental simulation.

As part of our future work, we are enhancing qTask to

support a higher number of qubits by extending its state vector

data structure to out-of-core memory and distributed com-

puting [52], [53]. Additionally, we plan to leverage the new

CUDA Graph execution model [54], [55], [56] to accelerate

large simulation task graphs using GPU computing. Integrating

qTask into existing quantum circuit synthesis engines [7], [57]

is also of our interest.
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