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Abstract—Work-stealing is a key component of many parallel
task graph libraries such as Intel Threading Building Blocks
(TBB) FlowGraph, Microsoft Task Parallel Library (TPL)
Batch.Net, Cpp-Taskflow, and Nabbit. However, designing a
correct and effective work-stealing scheduler is a notoriously
difficult job, due to subtle implementation details of concur-
rency controls and decentralized coordination between threads.
This problem becomes even more challenging when striving
for optimal thread usage in handling parallel workloads
with complex task graphs. As a result, we introduce in this
paper an effective work-stealing scheduler for execution of
task dependency graphs. Our scheduler adopts a simple and
efficient strategy to adapt the number of working threads
to available task parallelism at any time during the graph
execution. Our strategy is provably good in preventing resource
underutilization and simultaneously minimizing resource waste
when tasks are scarce. We have evaluated our scheduler on both
micro-benchmarks and a real-world circuit timing analysis
workload, and demonstrated promising results over existing
methods in terms of runtime, energy efficiency, and throughput.

Keywords-task dependency graph; work stealing; parallel
computing; scheduling; multithreading;

I. INTRODUCTION

Work stealing has been proved to be an efficient approach

for parallel task scheduling on multi-core systems and has

received wide research interest over the past few decades

[1]–[12]. Several task-based parallel programming libraries

and language have adopted work-stealing scheduler as the

runtime for thread management and task dispatch such

as Intel Threading Building Blocks (TBB) [13], Cilk [2]

[14], X10 [15] [8], Nabbit [16], Microsoft Task Parallel

Library (TPL) [17], and Golang [18]. The efficiency of

the work-stealing scheduler can be attributed to the way it

manages the threads: The scheduler spawns multiple threads

(denoted as workers) on initialization. Each worker first

carries out tasks in its private queue. Then, a worker without

available tasks becomes a thief and randomly steals tasks

from others. By having thieves actively steal tasks, the

scheduler is able to balance the workload and maximize

the performance. However, implementing an efficient work-

stealing scheduler is not an easy job, especially when dealing

with task dependency graph where the parallelism could be

very irregular and unstructured. Due to the decentralized ar-

chitecture, developers have to sort out many implementation

details to efficiently manage workers such as deciding the

number of steals attempted by a thief and how to mitigate

the resource contention between workers. The problem is

even more challenging when considering throughput and

energy efficiency, which have emerged as critical issues in

modern scheduler designs [4] [19]. The scheduler’s worker

management can have a huge impact on these issues if it

is not designed properly. For example, a straightforward

method is to keep workers busy in waiting for tasks.

Apparently, this method consumes too much resource and

can result in a number of problems, such as decreasing

the throughput of co-running multithreaded applications and

low energy efficiency [4] [19]. Several methods have been

proposed to remedy this deficiency, e.g., making thieves

relinquish their cores before stealing [5] or backing off a

certain time [6], [13], or modifying OS kernel to directly

manipulate CPU cores [4]. Nevertheless, these approaches

still have drawbacks especially from the standpoints of

solution generality and performance scalability.

In this paper, we propose an adaptive work-stealing sched-

uler with provably good worker management for executing

task dependency graphs. Our scheduler employs a simple yet

effective strategy, in no need of sophisticated data structures,

to adapt the number of working threads to dynamically

generated task parallelism. Not only can our strategy prevent

resource from being underutilized which could degrade the

performance, but it also avoids overly subscribing threads

or thieves when tasks are scarce. As a result, we can sig-

nificantly improve the overall system performance including

runtime, energy usage, and throughput. We summarize our

contributions as follows:

• An adaptive scheduling strategy: We developed an adap-

tive scheduling strategy for executing task dependency

graph. The strategy is simple and easy to implement in

a standalone fashion. It does not require sophisticated

data structures or hardware-specific code. A wide range

of parallel processing libraries and runtimes that leverage
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work-stealing can benefit from our scheduler designs.

• Provably good worker management: We proved

our scheduler can simultaneously prevent the under-

subscription problem and the over-subscription problem

during the graph execution. When tasks are scarce, the

number of wasteful thieves will drop within a bounded

interval to save resources for other threads both inside

and outside the application.

• Improved system performance: We showed through bal-

ancing working threads on top of dynamically generated

task parallelisms can improve both application perfor-

mance and overall system performance including runtime,

energy efficiency, and throughput. Improved system per-

formance translates to better scalability.

We evaluated the proposed scheduler on both micro-

benchmarks and real-world applications, and we show that

on a very large scale integration (VLSI) timing analyzer

benchmark our scheduler can achieve up to 15% less runtime

and 36% less energy consumption over a baseline algorithm.

II. ADAPTIVE WORK-STEALING SCHEDULER

In this section we first introduce the task dependency

graph model and present the details of the proposed work-

stealing scheduler. Then, we provide an analysis of our

worker management to show its efficiency.

A. Scheduler Overview

Push
Pop

StealG F

B

D

A

C

E

Steal

Push

WorkerDependency QueueTask

Pop

Figure 1. A task dependency graph and the architecture of our scheduler.

Algorithm 1: Task insertion from users

Input: tasks: source tasks

1 lock();

2 for t in tasks do

3 master queue.push(t);
4 end

5 unlock();

6 notifier.notify one();

Figure 1 shows a task dependency graph (left) and the

architecture of the proposed scheduler (right). A task de-

pendency graph is a directed acyclic graph, where a node

contains a task which can be any computation, and an edge

denotes the dependency between tasks. A node is ready for

execution only after all its predecessors finish. The execution

of a task dependency graph begins from source nodes (nodes

without predecessors, e.g. node A) and ends when all sink

nodes (nodes without successors, e.g. node G) finish.

Our scheduler consists of a set of workers, a master queue,

a lock and a notifier. On initialization the scheduler spawns

workers waiting for tasks. Each worker is equipped with a

private queue to store tasks ready for execution. To begin

executing a task graph, users insert source nodes to the

master queue and notify workers via the notifier. Algorithm 1

is the pseudo code of task insertion from users. A lock

(line 1) is used to protect the master queue for concurrent

submissions of task graphs. When a worker completes a task,

it automatically decrements the dependency of successive

tasks and pushes new tasks to its queue whenever depen-

dency is met. Each worker keeps one local cache of task for

continuation.

We implement the queue based on the Chase-Lev algo-

rithm [20] [21]. Each worker can add and pop task tasks

from one end of its queue, while other workers can steal

tasks from the other end. The notifier is a two-phase

synchronization protocol that efficiently supports: (1) putting

a worker into sleep and (2) waking up one or all sleeping

workers. We leverage the EventCount construct from the

Eigen library [22] as the notifier in our scheduler. The

usage of EventCount is similar to a condition variable.

The notifying thread sets a condition to true and then signals

waiting workers via EventCount. On the other side, a

worker first checks the condition and returns to work if

the condition is true. Otherwise, the worker updates the

EventCount to indicate it is waiting and checks the

condition again. If the condition is still false, the worker

is suspended via the EventCount.

B. Worker Management

Each worker iterates the following two phases:

1) Task exploitation: The worker repeatedly executes tasks

from its queue and exploits new successor tasks whenever

dependency is met.

2) Task exploration: The worker drains out its queue and

turns into a thief to explore tasks by randomly stealing

tasks from peer workers. If the worker successfully

steals a task, it returns to the task exploitation phase,

or becomes a sleep candidate to wait for future tasks.

Algorithm 2 is the pseudo code of a worker’s top-

level control flow. The exploit_task (line 5) and

wait_for_task (line 6) functions correspond to the

two phases, respectively. The worker exits the control flow

when the scheduler terminates (wait_for_task returns

false). Inside these two phases, our scheduler uses two

variables: num_actives and num_thieves, to adap-

tively adjust the number of thieves. We present the details

of these two functions below to illustrate our scheduler’s

worker management.
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Algorithm 2: Top-level worker control flow

Input: id: worker id
1 Function worker_loop(id):

2 w ← workers[id] ; // the worker’s associated

data

3 t ← NIL ; // a task holder

4 while true do

5 exploit task(t, w) ; // Algorithm 3

6 if wait for task(t, w) = false then // Algorithm 5

7 break;
8 end

9 end
10 return

Algorithm 3 is the pseudo code of the task exploitation

phase. A worker enters this phase when successfully stealing

a task (line 1), either from other queues or the master

queue. The worker first increments the num_active and

checks the num_thieves (line 2). If the worker is the

first one that increments the num_active and there is

no thief (i.e. num_thieves is 0), the worker makes a

notification using the notifier (line 3). Next the worker

carries out available tasks until both the cache and private

queue are empty (line 5-12). When the worker runs out all

available tasks, it decrements the num_actives (line 13)

and leaves the exploit_task. Next in task exploration

phase, a worker becomes a thief to randomly steal tasks from

others. Algorithm 5 is the pseudo code of task exploration.

The thief begins by incrementing num_thieves (line 2)

and then invokes the explore_task (Algorithm 4) to

perform random stealing. Once the thief obtains a task,

it decrements the num_thieves (line 5) and returns to

task exploitation phase (line 8). A successful thief has to

make a notification (line 6) if the num_thieves becomes

zero. Otherwise, the thief that failed to derive any task

prepares waiting for tasks via the notifier (line 10) and

then checks the master queue (line 11) and the scheduler’s

status (line 23) sequentially. If the master queue is empty

and the scheduler is not terminated, the thief decrements

the num_thieves (line 29). If there exists an active

worker (i.e. num_actives is greater than 0), the last thief

has to reiterate the wait_for_task procedure (line 31).

Otherwise, the thief will be suspended by the notifier (line

33).

Algorithm 4 is the pseudo code of how a thief performs

random stealing. The thief steals randomly from either other

queues or the master queue (line 5:9) and returns once

it succeeds. When the number of failed steal exceeds a

threshold (line 14), the thief has to call yield after each

failed steal. The yielding intends to let other workers with

tasks to run first so that resource can be better utilized. A

thief stops stealing if it cannot obtain a task after yielding

several times (line 18).

Algorithm 3: exploit task

Input: t: a task holder
Input: w: the worker’s associated data

1 if t �= NIL then

2 if AtomInc(num actives) == 1 and num thieves == 0 then
3 notifier.notify one();
4 end

5 do

6 execute(t);
7 if w.cache �= NIL then

8 t ← w.cache;
9 else

10 t ← pop(w.queue);
11 end

12 while t �= NIL;
13 AtomDec(num actives);
14 end

Algorithm 4: explore task

Input: t: a task holder
Input: w: the worker’s associated data

1 num failed steals ← 0;
2 num yields ← 0;
3 while scheduler not stops do
4 victim ← random();
5 if victim == w then

6 t ← steal(master queue);
7 else

8 t ← steal from(victim);
9 end

10 if t �= NIL then
11 break;
12 else

13 num failed steals++;
14 if num failed steals ≥ STEAL BOUND then
15 yield();
16 num yields++ ;
17 if num yields = Y IELD BOUND then
18 break;
19 end

20 end

21 end
22 end

C. Analysis

We show the scheduler’s worker management is very

efficient in two fronts: (1) it does not have the under-

subscription problem (2) it mitigates the over-subscription

problem by putting most thieves into sleep after they failed

to steal within a time bound. We first define the states of a

worker and present the Lemma 1:

Definition 1. A worker is active if it is exploiting tasks

(Alg 3: line 2:13). A worker is a thief if it is not exploiting

tasks (Alg 3: line 2:13) nor sleeping (Alg 5: line 33).

Lemma 1. When a worker is active and at least one worker

is inactive, one thief always exists.

Proof: Assume there exists one active worker and one

inactive worker. The inactive worker is either awake (Alg 5:

line 1:28) or sleeping (Alg 5: line 33). If the inactive
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Algorithm 5: wait for task

Input: t: a task holder
Input: w: the worker’s associated data
Output: A boolean value to indicate continuation of worker-loop

1 wait for task:
2 AtomInc(num thieves);
3 explore task:
4 if explore task(t, w) ; t �= NIL then
5 if AtomDec(num thieves) == 0 then

6 notifier.notify one();
7 end

8 return true;
9 end

10 notifier.prepare wait(w);
11 if master queue is not empty then
12 notifier.cancel wait(w);
13 t ← steal(master queue);
14 if t �= NIL then

15 if AtomDec(num thieves) == 0 then
16 notifier.notify one();
17 end

18 return true;
19 else
20 go to explore task;
21 end

22 end
23 if scheduler stops then

24 notifier.cancel wait(w);
25 notifier.notify all();
26 AtomDec(num thieves);
27 return false;
28 end

29 if AtomDec(num thieves) == 0 and num actives > 0 then
30 notifier.cancel wait(w);
31 go to wait for task;
32 end

33 notifier.commit wait(w);
34 return true;

worker is awake, then it is a thief and the lemma holds.

Otherwise the inactive worker is sleeping and it must have

decremented the num_thieves without seeing any active

worker (Alg 5: line 29). This happens only when the active

worker just enters the exploit_task function and is

right before incrementing num_actives (Alg 3: line 2).

Subsequently the active worker shall wake up a thief (Alg 3:

line 3) and the lemma holds.

With Lemma 1, we show that our scheduler does not have

the under-subscription problem:

Definition 2. An under-subscription problem means:

T = 0 and 0 < Q < W

where

T : number of thieves, W : number of total workers

Q : number of non-empty private queues

According to the definition, the under-subscription prob-

lem occurs when all thieves go into sleep (i.e. T = 0) while

at least one queue is non-empty (i.e. 0 < Q < W ). Lemma

1 guarantees at least one thief exists in our scheduler when

there is an active worker. Since a worker must be active if

its queue is not empty, according to the Lemma 1 a thief

must exist (except when all workers are active), and thus our

scheduler does not have the under-subscription problem.

Our scheduling method not only prevents the under-

subscription problem but can also mitigate the over-

subscription problem. The over-subscription problem means

the number of thieves is greater than the number of available

tasks. Over-subscription can lead to substantial resource

wasted on failed steals if those thieves remain awake for

a long time.

We now show the scheduler will put most thieves into

sleep if they fail to steal any task within a time bound. First

we give the definition of a group:

Definition 3. Assume there are multiple thieves. We call

those thieves are in a group and a thief leaves the group if

it goes into sleep (Alg 5: line 33) or successfully steals a

task.

Given a group, we prove that only one thief exists in the

group after a certain time. This implies excessive thieves

will go into sleep when there is no sufficient tasks. In the

following proof, we assume the master queue is empty since

thieves always check the master queue before going to sleep.

Lemma 2. Given a group of thieves, only one thief

in the group exists after O((STEAL BOUND +
Y IELD BOUND) ∗ S + C) time, where S is the time

to perform a steal and C is a constant.

Proof: Given a group of thieves, we denote the thief

that lastly decrements the num_thieves (Alg 5: line 5,

15 and 29) in this group as the last thief. Thieves in a

group except the last thief must either (1) become active

workers if they successfully steal tasks or (2) go into sleep

(Alg 5 line 33) after they decrement the num_thieves.

Therefore, eventually only one thief stays in the group when

the last thief performs the decrement.

Next we analyze the runtime taken by the last thief

to perform the decrement on num_thieves. There are

two cases to consider: the last thief either successfully

steals a task (Alg 5: line 4) or fails to steal any task

(Alg 5: line 29). For the first case, the runtime is bounded

by O((STEAL BOUND + Y IELD BOUND) ∗ S)
where S is the time of conducting one steal and

(STEAL BOUND + Y IELD BOUND) is the maxi-

mum number of steals that can be attempted. For the second

case, the last thief will attempt (STEAL BOUND +
Y IELD BOUND) steals, prepare for sleep, and check

the master queue and scheduler’s status before doing the

decrement.

Because the latter two steps are simple routines, we

can use a constant C to denote the maximal runtime

taken by these two steps. Then the runtime of the
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second case is bounded by O((STEAL BOUND +
Y IELD BOUND) ∗ S + C). Therefore, the runtime for

the last thief to perform the decrement will be bounded by

O((STEAL BOUND + Y IELD BOUND) ∗ S + C).

To sum up, we proved our scheduler can prevent the

under-subscription problem (Lemma 1) and effectively miti-

gate the over-subscription problem (Lemma 2) during graph

execution. When tasks are abundant, one worker will in-

crementally wake up another and so on until no starvation

or maximum workers reached. When tasks are scarce, the

number of thieves will drop within a bounded interval to

reduce wasteful steals. Our scheduler adaptively maintains

this invariant to balance the number of workers on top of

dynamically generated task parallelisms.

III. EVALUATION

We evaluated our scheduler on both micro-benchmarks

and a real-world timing analyzer for VLSI systems. We

compare our scheduler with two approaches: (1) The ABP

method proposed by Aurora et al. [5] and (2) MBWS which

is modified from the BWS method of Ding et al. [4]. For

fair comparison, we implement all schedulers on top of the

same task execution engine, Cpp-Taskflow [23], a modern

C++ parallel programming library using task dependency

graphs. We briefly summarize our implementation of ABP

and MBWS: In ABP, thieves repeatedly steal until they

succeed, and thieves will invoke yield system call every

time before attempting a steal. BWS [4] introduces two

methods to enhance ABP’s resource utilization: (1) BWS

modifies the OS kernel so that workers can query the running

status of others and yield their cores directly to others. (2)

BWS uses two counters, a wake-up counter and a steal

counter, to make thieves wake up two sleeping workers for

busy workers and limit the number of steals a thief can

attempt. We modified BWS as follows: First, we do not

modify the OS kernel as we aim for a portable solution that

does not introduce system-specific hard code. To compensate

for this, we associate each worker with a status flag which

is set by the owner to inform its current status, and thieves

do not yield their cores.

Second, we included the steal and wake-up counters into

our explore_task. As multiple thieves can concurrently

modify the wake-up counter, we use atomic compare-and-

swap operation to decrement the wake-up counter. A defi-

ciency of BWS is that all thieves could be sleeping while

parallelism is increased. To resolve this problem, BWS has

to keep a watchdog worker which never goes into sleep

even no tasks are available. We also implemented this

mechanism in MBWS by keeping a thief busy in a stealing

loop if it is the last one that decrements num_thieves.

Notice that the modified BWS may not be reflective of

the true implementation but it provides a good reference

to implement the wake-up-two heuristic.

We conducted all experiments on a machine with two Intel

Xeon Gold 6138 processors (2 NUMA nodes) and 256 GB

memory. Each processor has 20 cores with 2 threads per

core. The OS is Ubuntu 19.04 and the compiler is GCC

8.3.0. We compile all source code with the optimization

flag O2 and C++ 17 standard flag (-std=c++17). To

reduce the impact of thread migration, we use the system

command taskset to bond the threads on a set of cores,

and we split the threads equally on the two processors. The

STEAL_BOUND is set to 2 ∗ (number of workers + 1) and

the YIELD_BOUND is 100. For MBWS we select 64 as the

SleepThreshold, which is the same as the experiment

setting in [4]. We report the results measured by Linux

profiling utility perf.

A. Micro-benchmarks

We investigate the performance of each scheduler under

a set of task dependency graphs each representing a unique

parallel pattern:

• Linear chain: Each task has one successor and one pre-

decessor except the first task and the last tasks. Each

task increments a global counter by one. The graph has

8388608 tasks.

• Binary tree: Each task has one predecessor and two

successors except the root and leaf tasks. The task has

no computation and the graph has 8388607 tasks.

• Graph traversal: We generate a directed acyclic graph with

random dependency. The degree of each node, i.e. number

of successors and predecessors, is bounded by four. Each

task marks a boolean variable to true indicating the node

is visited. The graph has 4000000 tasks.

• Matrix multiplication: We generate a task graph to mul-

tiply two square matrices of size 2048×2048. The task

graph has two parts: (1) The first part initializes the values

of matrices. (2) The second part performs the matrix

multiplication. Computations are performed row by row

to represent a generic parallel-for pattern.

In this experiment, we vary the number of cores from 1, 4,

8, 12, 16, 20, 24, 28, 32, 36 to 40 to study the scalability

and CPU utilization of each scheduler. All data is an average

over ten runs reported by the command perf stat -r.

Figure 2 and 3 show the runtime and CPU utilization

of each benchmark, respectively. For the linear chain, the

runtime does not decrease when adding more cores. This is

expected as the linear chain has no parallelism at all and

one core is sufficient for optimal performance. The CPU

utilization of ABP increases along with the number of cores

while both MBWS and ours remain nearly uninfluenced. In

fact, the CPU utilizations of MBWS and ours stay around

2.0 and 1.2 from 4 to 40 cores respectively. For the binary

tree and graph traversal, the runtimes of all schedulers drop

to a stable point after 4 cores. Adding more cores does not

improve the performance as a worker can quickly carry out

all tasks in its queue before thieves discover them. We can
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Figure 2. Runtime comparisons between ours, MBWS, and ABP on micro-
benchmarks.
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Figure 3. CPU utilization comparisons between ours, MBWS, and ABP
on micro-benchmarks.

clearly inspect the overhead of stealing under this scenario.

ABP has the highest CPU utilization among all schedulers

and ours is the lowest in both cases. The CPU utilization

of ABP also grows more rapidly than others in these two

cases. Lastly, for the matrix multiplication, which has better

scalability than the previous three cases, the runtimes of all

schedulers are very close and their CPU utilizations exhibit

similar growth. There are two reasons: (1) In the matrix

multiplication, intra-level tasks are independent of each

other and those tasks have nearly equal workload. (2) the

multiplication is compute-intensive and thus the runtime is

Table I
STATISTICS OF CIRCUITS

Circuit # of gates (K) # of nets (K) # of operations
c6288 1.7 1.7 80800
tv80 5.3 5.3 51000
b19 255.3 255.3 10100

dominated by the computation rather than the scheduling

overhead.

B. VLSI Timing Analysis

We study the performance of our scheduler on a real-

world VLSI static timing analyzer, OpenTimer [24]. Static

timing analysis (STA) plays a critical role in the circuit

design flow. For a circuit to function correctly, its timing

behavior must meet all requirements under different design

constraints and environment settings. Thus, circuit designers

have to apply STA to examine the circuit’s timing behavior

during different stages in the design flow. STA calculates

the timing-related information by propagating through the

gates in a circuit. This workload can be naturally described

using task dependency graph, where a task encloses the

computation of a gate and the edge denotes the propagation

direction. In this experiment, we use these schedulers to

execute the task graph built in OpenTimer [24], an open-

source VLSI timer. We randomly generate a set of operations

which incrementally modify a given circuit and then perform

STA to update the timing. We use the circuits from TAU

2015 timing contest [25] and the statistics of the circuits are

listed in Table I. For each circuit we ran OpenTimer five

times and report the average runtime and CPU utilization

recorded by perf. Figure 4 show the runtime (left) and

CPU utilization (right) of each circuit respectively.

We categorize the circuits into different groups based on

their sizes and discuss the results. On the smallest circuit

c6288, the runtime does not scale with the number of cores

because the size of the circuits is small. The CPU utilizations

of all schedulers increase along with the number of cores,

and ABP has the highest CPU utilization followed by the

MBWS and ours is the smallest. Next for the medium size

circuit tv80, the runtimes of all schedulers decrease after

adding more cores. ABP is faster than others except at single

core and the runtimes at 40 cores are 60.4 (ours), 60.8

(MBWS) and 52.5 (ABP), respectively. We attribute this to

the overhead of notifying workers. Both ours and MBWS

will put thieves into sleep and wake them up when tasks

present, while in ABP all thieves are stay awake in waiting

for tasks. In terms of the CPU utilization, ABP is still the

highest, and ours and MBWS are very close. Lastly, for the

large circuit with over 100,000 gates: b19, the performance

scales with the number of cores in all schedulers. When

using multiple cores, ABP is slower than others even though

ABP’s CPU utilization remains the highest. For instance,
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Figure 4. Runtime and CPU utilization comparisons between ours, MBWS,
and ABP on OpenTimer.

on 40 cores the runtime of ours is 5% and 15% less than

MBWS and ABP, respectively, and the CPU utilizations are

22.7 (ours), 21.7 (MBWS) and 38.5 (ABP). This experiment

shows that our scheduler has competitive performance and it

can utilize the CPU resource efficiently under a large-scale

workload.

Next we demonstrate the energy usage of each scheduler

with OpenTimer. Intel has provided the Running Average

Power Limit (RAPL) [26] interface for power management

on recent processors. We use perf, which can access

RAPL to measure the energy consumed by the packages

during the execution (The command is perf stat -e

power/energy-pkg/ -a), and we let perf report the

average value of five runs.

Figure 5 is the average energy usage (left) reported by

perf and the throughputs (right). For energy usage, ABP

is the highest in most cases. MBWS is very close to ours

with ours performs slightly better in most cases. On smallest

circuit c6288 the energy usage of ABP increases along with

the number of cores even the performance does not scale. For

example, the energy usage of ABP is 2x of ours at 40 cores

but the runtime of ABP is only 8% less than ours. For other
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Figure 5. Energy usage and throughput of ours, MBWS, and ABP on
OpenTimer.

circuits, the energy usage of all schedulers decreases after

adding more cores as those circuits have good scalability.

However, ABP’s energy usage is still much higher than

others. For example, in the largest circuit b19 ABP’s energy

usage is 1.57x of ours and 1.48x of MBWS when using 40

cores.

For throughput, we simulate the real working environment

which is typically shared by multiple users such as servers

or cloud computing platforms. In those environments

users can run multithreaded applications concurrently, and

applications might request computing resources more than

their actual parallelism. In this experiment, we run multiple

OpenTimers simultaneously on the same circuit and every

timer can use all cores (40 on our machine). The number

of OpenTimers in the co-runs ranges from 2 to 8 and

we use the time command to measure the runtime (wall

clock time) of each timer. We repeat each co-run five times

and use the average to derive the throughput. For each

scheduler, we take the runtime of its solo-run as the baseline

and compute the throughput using the weighted-speedup

method [4] [27]. The weighted-speedup method sums the

speedup of each process in the co-runs, where the speedup
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of a process is defined as Tbaseline/Tproc. As shown in

Figure 5 (right), ABP has the lowest throughput in all

co-runs regardless of the circuit size. For example, when

co-running 8 OpenTimers, the throughputs of ABP are 1.49
and 1.9 on b19 and c6288, respectively, while ours is 1.89
and 6.6 and MBWS is 1.95 and 4.36. The throughputs of

MBWS and ours are quite close except at c6288 where

ours is much higher.

IV. CONCLUSION

In this paper, we have introduced a work-stealing sched-

uler for executing task dependency graph. We have designed

an efficient worker management method that can adapt the

number of working threads to the available task parallelism.

This method not only prevents resource from being underuti-

lized but also mitigates resource waste. We have evaluated

the scheduler on a set of micro-benchmarks and a VLSI

timing analyzer. The results show our scheduler achieved

comparable performance to existing approaches with effec-

tive resource utilization. For instance, in a real workload, our

scheduler achieved 15% less runtime with 36% less energy

usage than the baseline method. We have also demonstrated

our scheduler is very energy-efficient and can maintain good

throughput when co-running multithreaded applications.
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