
Invited Paper: Programming Dynamic Task
Parallelism for Heterogeneous EDA Algorithms

Cheng-Hsiang Chiu
Department of ECE

University of Wisconsin-Madison
Madison, USA

chenghsiang.chiu@wisc.edu

Dian-Lun Lin
Department of ECE

Universiity of Wisconsin-Madison
Madison, USA

dianlun.lin@wisc.edu

Tsung-Wei Huang
Department of ECE

University of Wisconsin-Madison
Madison, USA

tsung-wei.huang@wisc.edu

Abstract—Many EDA applications are extremely sparse,
irregular, and control-flow intensive. Parallelizing this type
of application can benefit from the ability to express dynamic
task parallelism across arbitrary decision-making points at
runtime. Unlike the traditional construct-and-run models,
dynamic task parallelism offers programmers great flexibil-
ity to parallelize EDA algorithms that incorporate complex
execution logic under dynamic control flow, such as branch-
and-bound techniques, on-the-fly pruning, and recursive
decomposition strategies. In this paper, we introduce a new
programming model that supports the dynamic building
of a computational task graph. We will cover scheduling
details and best practices for exploring task parallelism under
dynamic control flow. We will present a real use case of
our model that has successfully parallelized a static timing
analysis workload.

Index Terms—Dynamic task graph, task parallelism

I. Introduction

Task graph programming (TGP) has inspired many new
parallel and heterogeneous electronic design automation
(EDA) algorithms [1]–[21] and large-scale machine learning
problems [22]–[28]. Different from traditional loop-based
models that explore parallelism across parallel loops, TGP
formulates a workload as a task graph that models a function
call as a task and a functional dependency as an edge.
Figure 1(a) gives a task graph example of four tasks and
four dependencies. By leveraging TGP, applications can en-
able top-down optimization to implement irregular parallel
decomposition strategies that consist of many tasks and
dependencies. Then, a TGP runtime can scale these dependent
tasks across a large number of processors with dynamic load
balancing [29]. As a result, the parallel computing community
has yielded many successful TGP in various application do-
mains, such as OpenMP [30], Kokkos-DAG [31], PaRSEC [32],
[33], OpenCilk [34], [35], HPX [36], Taskflow [37]–[41], and
Fastflow [42].

Typically, TGP is categorized to two types: static task graph
programming (STGP) and dynamic task graph programming
(DTGP). In STGP, applications define the task graph first and
submit it to an STGP runtime for execution, as shown in Fig-
ure 1(b). Since the graph structure is known in advance, the
runtime can perform whole-graph optimization. On the other
hand, DTGP defines the task graph structure dynamically.

Tasks and dependencies are created on the fly depending on
runtime variables and control-flow results, allowing the task
creation time to overlap with the task execution time (see
Figure 1(c)). Thus, DTGP is often more flexible than STGP
when dealing with many EDA algorithms that frequently
incorporate dynamic control flow to implement irregular
parallel decomposition strategies.

A

B

D

C

(a) Task graph

A B DC

A B

C

D

(c) Dynamic task graph parallelism Runtime

A B DC A B

C

D

(b) Static task graph parallelism Runtime

Fig. 1: An illustration of the execution diagram of a task
graph. White blocks denote the task creation and gray
rectangles denote the task execution. Edges refer to the
dependencies. (a) A task graph. (b) The execution diagram
of STGP. (c) The execution diagram of DTGP.

i n t main () {
Execu to r e x e cu t o r ;
au to [A , fu A]= ex e cu t o r . dependent async ([] () {

p r i n t f (” Task A\n ”) ;
}) ;
au to [B , fu B]= ex e cu t o r . dependent async ([] () {

p r i n t f (” Task B\n ”) ;
} , A) ;
au to [C , fu C]= ex e cu t o r . dependent async ([] () {

p r i n t f (” Task C\n ”) ;
} , A) ;
au to [D , fu D]= ex e cu t o r . dependent async ([] () {

p r i n t f (” Task D\n ”) ;
} , B , C) ;
fu D . g e t () ; / / wa i t u n t i l D f i n i s h e s

}

Listing 1: AsyncTask implementation of Figure 1(a).

In this paper, we introduce a new DTGP library called
AsyncTask to assist EDA applications in quickly leveraging
the power of DTGP. Compared to existing DTGP libraries,
such as OpenMP [30] and PaRSEC [32], [33], AsyncTask

is more expressive and transparent. For example, Listing 1
demonstrates the AsyncTask code for Figure 1(a). The code
explains itself through a clean graph description language.
The program creates a task graph of four tasks, A, B, C, and
D. The dependency constraints state that task A runs before
task B and task C, and task D runs after task B and task C.
We summarize our contributions as follows.

• Programming Model. We present a simple and efficient
dynamic task graph programming model. Our program-
ming model provides a clear graph description language
for applications to easily and quickly describe dynamic
task graph parallelism. The expressiveness of our model
improves programmer’s productivity when coding large
and complex task graphs for EDA applications.

• Task Scheduling Algorithm. We present an efficient
task scheduling algorithm to support our programming
model. Unlike existing solutions that mostly count on
heavy mutexes to schedule dependent tasks [30], [32],
[33], we only use lightweight atomic counters to resolve
dependencies between tasks, enabling a more efficient
task scheduling algorithm.

We have evaluated AsyncTask on a real-world static tim-
ing analysis application. Compared with the widely-used
OpenMP [30] library, AsyncTask achieves a significant speed-
up of 3.41× on a large design of 420K tasks and 530K
dependencies.

II. Related Works and Their Limitations
Mainstream DTGP libraries used by EDA applications

include OpenMP [30], PaRSEC [32], [33], and OpenCilk [34],
[35]. In this section, we discuss their implementations of
Figure 1(a) and compare them with AsyncTask (Listing 1).
Then, we discuss their scheduling algorithms and highlight
their limitations.

A. OpenMP

OpenMP is a popular library that simplifies the devel-
opment of parallel applications by adding parallelism to
existing serial code through the use of compiler directives,
pragmas, and runtime library routines. To implement Figure
1(a), OpenMP uses #pragma omp task construct to define a
task and depend clause to specify that task’s dependencies.
Since OpenMP relies on a task’s input and output data
to describe a task’s dependencies, applications need a data
storage to store the data of every task. Listing 1 demonstrates
the OpenMP implementation. Applications define a dynamic
array dependency to store the execution results of the four
tasks in the A-B-C-D order. Then applications use the entries
in dependency as the inputs and outputs for a task. For
example, applications use #pragma omp task to create task
D and specify D’s inputs to be dependency[1] (i.e., B’s
output) and dependency[2] (i.e., C’s output), and output to
be dependency[3] in the dependend clause with in or out
flags. To schedule tasks, OpenMP implements a lock-based
hash table, in which the key of each entry is the address of a
task’s input or output data, and the value of that entry is a list

of tasks accessing that address. As scheduling tasks require
frequent accessing and updating the hash table, the overhead
of using mutexes is heavy and can impact the overall runtime
performance when running large and complex task graphs
with multiple threads.
i n t main () {

i n t ∗ dependency = new i n t [4] ;
pragma omp p a r a l l e l
{

#pragma omp s i n g l e
{

#pragma omp t a s k depend (out : dependency [0])
{ p r i n t f (” Task A\n ”) ; }
#pragma omp t a s k depend (in : dependency [0])

depend (out : dependency [1])
{ p r i n t f (” Task B\n ”) ; }
#pragma omp t a s k depend (in : dependency [0])

depend (out : dependency [2])
{ p r i n t f (” Task C\n ”) ; }
#pragma omp t a s k depend (in : dependency [1] ,

dependency [2])
depend (out : dependency [3])

{ p r i n t f (” Task D\n ”) ; }
}

}
d e l e t e [] dependency ;

}

Listing 2: OpenMP implementation of Figure 1(a).

B. PaRSEC
PaRSEC is a task-based runtime for distributed system. It

leverages Domain Specific Languages (DSL) in its dataflow
model to implement applications. To program a PaRSEC
implementation, applications need the following steps: 1)
Initialize a Message Passing Interface (MPI) engine as PaRSEC
is a runtime for distributed system. 2) Define an application
data structure using PaRSEC memory allocator to correctly
build up the dependencies between tasks. 3) Initialize a
PaRSEC taskpool to execute the tasks. 4) Define PaRSEC tasks
and their function definitions. We simplify some implemen-
tation details to save more space and do our best to keep the
implementation as real as possible. For instance, the original
API of creating task D in Figure 1(a) needs 15 arguments and
we simplify those to 8 arguments. Listing 3 implements the
PaRSEC code for Figure 1(a). Applications first define a MPI
engine, an application data structure dependency, and a PaR-
SEC taskpool. Since PaRSEC specifies dependencies through a
task’s input and output data as OpenMP does, the data struc-
ture dependency is used to store the computation results
of the four tasks in the A-B-C-D order. Next, applications
create tasks using the parsec dtd insert task API. The
arguments of the API include the task’s function label, the
task’s input and output data, and an end-of-argument PAR-
SEC DTD ARG END flag. The task’s inputs (flagged
with INPUT) and outputs (flagged with OUTPUT) are
referenced using tile of key together with the correspond-
ing index in dependency. For the individual task’s function
definition, applications unpack the arguments in the exact
order as they are specified in parsec dtd insert task. For
example, applications specify task D’s two inputs (indexed

1 and 2 at dependency) in parsec dtd insert task first
and then one output (indexed 3 at dependency). Applications
must obey the order to unpack them using unpack args.
To mark the end of a function definition, applications need
to use the PARSEC HOOK RETURN DONE flag. The
task scheduling algorithm of PaRSEC is similar to OpenMP’s
design. Both of them rely on a lock-based hash table to
manage the dependencies between tasks. The main difference
is that PaRSEC additionally considers where to execute tasks
that are created at a remote machine.
i n t A(parsec task t ∗ t h i s t a s k) {

i n t ∗ out ;
unpack args (th i s t a sk , &out) ;
p r i n t f (” Task A\n ”) ;
r e t u r n PARSEC HOOK RETURN DONE ; }

i n t B (parsec task t ∗ t h i s t a s k) {
i n t ∗ in , ∗ out ;
unpack args (th i s t a sk , &in , &out) ;
p r i n t f (” Task B\n ”) ;
r e t u r n PARSEC HOOK RETURN DONE ; }

i n t C (parsec task t ∗ t h i s t a s k) {
i n t ∗ in , ∗ out ;
unpack args (th i s t a sk , &in , &out) ;
p r i n t f (” Task C\n ”) ;
r e t u r n PARSEC HOOK RETURN DONE ; }

i n t D(parsec task t ∗ t h i s t a s k) {
i n t ∗ in1 , ∗ in2 , ∗ out ;
unpack args (

th i s t a sk , &in1 , &in2 , &out) ;
p r i n t f (” Task D\n ”) ;
r e t u r n PARSEC HOOK RETURN DONE ; }

i n t main () {
/ / 1 . I n i t i a l i z e MPI
/ / 2 . I n i t i a l i z e a p p l i c a t i o n data , dependency
/ / 3 . I n i t i a l i z e PaRSEC ta skpoo l , dtd tp
pa r sec d td in se r t t a sk (A ,

t i l e o f key (dependency , 0) , INPUT ,
PARSEC DTD ARG END

) ;
pa r sec d td in se r t t a sk (B ,

t i l e o f key (dependency , 0) , INPUT ,
t i l e o f key (dependency , 1) , OUTPUT ,
PARSEC DTD ARG END

) ;
pa r sec d td in se r t t a sk (C ,

t i l e o f key (dependency , 0) , INPUT ,
t i l e o f key (dependency , 2) , OUTPUT ,
PARSEC DTD ARG END

) ;
pa r sec d td in se r t t a sk (D ,

t i l e o f key (dependency , 1) , INPUT ,
t i l e o f key (dependency , 2) , INPUT ,
t i l e o f key (dependency , 3) , OUTPUT ,
PARSEC DTD ARG END

) ;
par sec ta skpoo l wa i t () ;

}

Listing 3: PaRSEC implementation of Figure 1(a).

C. OpenCilk

OpenCilk is a software infrastructure for task-parallel
programming. A typical OpenCilk code is to spawn threads
for tasks’ operations and explicitly join threads for synchro-
nization. Listing 4 demonstrates OpenCilk implementation of
Figure 1(a). Applications spawn a thread to run A using the

cilk spawn directive, and explicitly join the thread to finish
A’s execution using cilk sync, ensuring the completion
of A. The same pattern applies to task B, C, and D as
well. As OpenCilk uses explicit synchronization directives
to manage dependencies between tasks, the task scheduling
algorithm is to wake up a thread from its thread pool to do
a task’s operation, and release that thread to the thread pool.
When reaching the synchronization directives, the program
execution halts until all threads finish and return to the
thread pool.
vo id A() { p r i n t f (” Task A\n ”) ; }
vo id B () { p r i n t f (” Task B\n ”) ; }
vo id C () { p r i n t f (” Task C\n ”) ; }
vo id D() { p r i n t f (” Task D\n ”) ; }
i n t main () {

ci lk spawn A () ;
c i l k sync ;
c i lk spawn B () ;
c i lk spawn C () ;
c i l k sync ;
c i lk spawn D () ;
c i l k sync ;

}

Listing 4: OpenCilk implementation of Figure 1(a).

D. Limitations of Existing DTGP Libraries
Although OpenMP, PaRSEC, and OpenCilk have been

used in many applications, we find several limitations of
using them for DTGP: 1) Describing a task’s dependencies
through that task’s input and output data is not expressive.
Applications need to figure out the dataflow between two
tasks to represent the task dependency, which is an indirect
description and could reduce the code readability. 2) Pro-
gramming a large task graph is very verbose. Applications
have to explicitly indicate a task’s input and output data, such
as using in and out in OpenMP or INPUT and OUTPUT in
PaRSEC. For PaRSEC users, they have to additionally write
PARSEC DTD ARG END to denote the end of input
arguments and PARSEC HOOK RETURN DONE to
indicate the end of function definition. 3) Relying on a
lock-based hash table to schedule tasks is not efficient.
Their runtimes have to acquire a mutex when accessing the
hash table, which introduces non-negligible lock overheads
especially when running with multiple threads to schedule a
complex task graph.
Because of the above limitations, we have arrived at a

conclusion that we need a new DTGP library that provides
an expressive programming model to simplify the building
of dynamic task graph parallelism. Additionally, we need an
efficient task scheduling algorithm to support the program-
ming model without much synchronization overhead.

III. AsyncTask
At a high level, AsyncTask enables an efficient implemen-

tation of irregular parallel decomposition strategies through
a top-down dynamic task graph. We provide an expressive
programming model for applications to describe the task
graphs easily. We also introduce a task scheduling algorithm

to support our programming model with only atomic coun-
ters to reduce the overhead of managing the dependencies
between tasks.

A. Dynamic Task Graph Programming Model

To enable expressive DTGP, we directly specify a task’s
dependencies with its dependent tasks without describing
the dependencies through the task’s input and output data.
Our programming model provides a simple interface depen-
dent async for applications to create tasks easily. Appli-
cations specify a lambda to encapsulate a task’s operation
followed by a list of dependent tasks in the input arguments.
dependent async will return a pair consisting of an instanti-
ated task object and a future object which holds the execution
result of that task.

Listing 1 exemplifies the code of Figure 1(a) using depen-
dent async. We define an executor which is a thread-safe
object that manages a set of worker threads and executes
our tasks. We create four tasks, A, B, C, and D. Every
task defines its own lambda as the first argument followed
by a list of dependent tasks. The dependent tasks must be
created before the current task. For instance, task B defines
its operation to print a string in the lambda and specifies one
dependent task A which is created before B. Upon returning
from dependent async, we obtain a pair consisting of an
instantiated task object and a future object holding the
execution result of that task. After constructing all tasks, we
call fu D.get to wait for task D to finish. As we construct
tasks in the order A-B-C-D, the completion of D in turns
means that all the other tasks have finished their executions.
This programming model is simple and expressive. Ap-

plications only need to write a callable (or lambda) and
a list of dependent tasks to create a task. There is no
extra flag needed, such as in and out in OpenMP or
INPUT, OUTPUT, PARSEC DTD ARG END, and
PARSEC HOOK RETURN DONE in PaRSEC. With-
out these flags, our AsyncTask implementation is easy to
read and debug, enabling EDA developer’s high productivity
when programming large and complex task graphs.

B. Algorithm

To support our programming model, we design a new
task scheduling algorithm, as illustrated in Figure 2. After
applications call dependent async to create a task, the
executor checks if the new task has any dependent tasks.
If yes, AsyncTask builds up the dependencies between the
new task and each one of its dependents (denoted with 1),
and then the new task waits until all of its dependents finish
executions (denoted with 2). Otherwise, AsyncTask directly
executes the new task (denoted with 3). Next, we dive into
the three parts in more details.

1 Building up the dependencies. If a new task has
any dependent tasks, we need to build up the dependencies
between the new task and each one of its dependent tasks.
(see 1 in Figure 2). In AsyncTask, we express every depen-
dency with the new task presenting in the successor list of

Call

executor.dependent_async

Execute

the task
Build dependencies

between

dependents and

the task

dependents = 0 # dependents > 0

Wait until

all dependents

finish

1

2

3

Fig. 2: A flowchart of our task scheduling algorithm.

every dependent task. Assigning every task a successor list
and representing dependencies using successor lists simplifies
our design when it comes to resolving a dependency. For
example, for the task graph in Figure 1(a), both task B and
C have task A as the dependent task, and A’s successor
list would have two successor tasks B and C. When A
finishes, AsyncTask can quickly resolve the dependencies
by directly checking A’s successor list rather than iterating
every existing task to see what dependency to resolve. To
safely and successfully add tasks into a dependent task’s
successor list, there are two concerns. First, when an executor
adds tasks into a dependent task’s successor list, we need to
ensure that dependent task is alive. Since every task is an
instantiated task object, it will be destroyed and returned
to the operating system after it finishes the execution. To
avoid adding tasks in an empty task object’s successor list
(see Figure 3(a)), we leverage the logic C++ smart pointer
std::shared ptr to retain shared ownership of a task between
the main thread and the executor, ensuring that task remains
alive throughout the entire program (see Figure 3(b)). When
a worker thread finishes a task’s execution, it will remove the
task from the executor, decrementing the number of shared
owners by one. If that counter reaches zero, the task is then
destroyed.
Second, we need to protect every successor list from data

race as multiple threads can add tasks in a successor list
simultaneously. To avoid data race, we assign every task
an atomic variable to protect its own successor list. Every
atomic variable has three states FINISHED, UNFINISHED,
and LOCKED. FINISHED denotes a task completion, UN-
FINISHED denotes an ongoing execution of a task, and
LOCKED denotes that another task is adding itself to the
successor list of the current task. Figure 4 visualizes how a
three-state atomic variable can protect a successor list from
data race. In (a), assume A has finished its execution and its

Fig. 3: An illustration of shared ownership of task A and B
in Figure 1(a). (a) A finishes and returns to operating system
(OS). An executor relates task B to an empty task. (b) Main
thread owns A. An executor successfully relates B and A.

state is set to FINISHED. There is no need to add B and
C in A’s successor list. No data race on A’s successor list.
In (b), three tasks are performing compare-and-swap (CAS)
operations on A’s state at the same time. If A succeeds in this
operation, then we are in the situation of (a). If B succeeds,
then B changes A’s to LOCKED and can add itself in A’s
successor list solely, as illustrated in (c). After B finishes the
adding, B changes A’s state back to UNFINISHED, and the
whole process repeats for C.

AF

B

C

AU

B

C

AL

B

C

Adding a task

Compare and swap

F FINISHED

U UNFINISHED

L LOCKED(a) (c)(b)

Fig. 4: An illustration of using the atomic variable to change
task A’s state. A, B, and C refer to the tasks in Figure 1(a).
A is trying to change the state to FINISHED. B and C are
trying to add themselves to A’s successor list. (a) A is at the
FINISHED state. (b) A is at the UNFINISHED state. (c) A
is at the LOCKED state.

2 Waiting for dependent tasks to finish. After
AsyncTask successfully creates a new task and builds up its
dependencies, the next step for the new task is to wait for
its dependent tasks to finish (see 2 in Figure 2). To achieve
this, we assign every task an atomic counter to keep track
of the number of its unfinished dependent tasks. The initial
value is the number of dependent tasks specified in depen-
dent async API. When one of its dependent tasks finishes
the execution, the dependent task will decrease the atomic
counter of that task by one. If that atomic counter becomes
zero, meaning the task has no unfinished dependent task and
is ready to execute. Figure 5 visualizes the process. In (a),
task B’s initial atomic counter is one and it is performing
the CAS operation in order to add itself in A’s successor
list. In (b), task B successfully added itself in A’s successor
list. In (c), task A finishes the execution and decreases the
atomic counter of its successor B by one. Task B now has
the atomic counter equal to zero and is ready to execute. We

refer the atomic counter to join counter later and would use
them interchangeably in the paper.

AU B

AC = 1

AL B

AC = 1

AF B

AC = 0
Compare and swap

Adding a task

Decrease counter

F FINISHED
U UNFINISHED
L LOCKED
AC Atomic counter(a) (b) (c)

Fig. 5: An illustration of using atomic counters to represent
the number of dependent tasks. A and B refer to the tasks
in Figure 1(a). (a) B is performing the CAS operation on A’s
state. (b) B is adding itself in A’s successor list. (c) A finishes
its execution and decreases B’s atomic counter by one.

3 Executing a task and resolve dependencies. Async-
Task executes a task when a task has no dependent task or all
of its dependent tasks have finished their executions(see 3
in Figure 2). When a task finishes the execution, we need to
resolve the associated dependencies between it and all of its
successor tasks. To achieve this, a task iterates its successor
list and decrease the atomic counter of every successor by
one. Figure 6 visualizes how a task resolves the associated
dependencies after it finishes the execution. In (a), task A
finishes the execution, iterates its successor list, and decrease
the atomic counter of B and C by one. Now, B and C have
zero join counter and are ready to execute. In (b), B and
C have finished the execution and both decrement D’s join
counter by one. D has zero join counter and is ready to
execute.

A

B

C

AC = 0

B

D

AC = 1

C

D

AC = 1

D

AC = 2

(a)

0 0

A

AC = 0

B

D

AC = 0

(b)

C

D

AC = 0

D

AC = 2 0

Fig. 6: An illustration of resolving dependencies after a task
finishes. A, B, C, and D refer to the tasks in Figure 1(a). (a) A
finishes the execution and decreases the atomic counter (AC)
of B and C by one. (b) B and C finish, and both decrease
D’s AC by one.

C. Pseudocode

In this section, we implement the flowchart in Figure 2
based on the design overview presented in the previous

section. Algorithm 1 implements the dependent async API
which takes a callable (or lambda) and a list of dependent
tasks (deps) and returns a pair consisting of the created task
and a future. We first define a future object future which
will hold the calculation result of the task (line 1). Then, we
calculate how many dependent tasks the new task has (line
2). We initialize the new task task (line 3). Next, we iterate
every dependent task and build the dependencies (lines 4:6).
We build the dependencies between task and every depen-
dent task in line 5 (details are given in Algorithm 2). Since we
are in a multi-threaded environment, some dependent tasks
may have finished before we build the dependencies between
them and task. If all dependents finished or the task has no
dependent task specified (lines 7:10), we can directly schedule
task (line 8). In the end, we return a pair of the created task
task and the future object future (line 10).

Algorithm 1 dependent async(callable, deps)
1: Create a future
2: num deps← sizeof(deps)
3: task ←initialize task(callable, num deps, future)
4: for all dep ∈ deps do
5: process dependent(task, dep, num deps)
6: end for
7: if num deps == 0 then
8: schedule async task(task)
9: end if
10: return (task, future)

Algorithm 2 implements process dependent in which
we build the dependency between a task and one of its
dependent tasks. This API takes the task task, a dependent
task dep, and the number of dependent tasks num deps in
its inputs. We add task in dep’s successor list if dep has
not finished. First, we store the state of dep in dep state
(line 1). We create a variable target state to store the
state UNFINISHED (line 2). Next, we perform the CAS
atomic operation on dep state (line 3). If dep state is
equal to target state (i.e. dep has not yet finished), we
swap dep state to LOCKED, which means we now enter
the critical region and have the exclusive access to dep’s
successor list (lines 4:5). We add task in the successor list
(line 4) and resume dep state back to UNFINISHED (line
5). If dep state is not equal to target state, target state
would be set to dep state atomically by the CAS operation.
If target state is set to FINISHED, that means dep has
finished and we decrement task’s join counter by one and
update num deps accordingly (lines 6:7). If target state
is set to LOCKED, that means some other task enters the
critical section in lines 4:5 first, we reiterate to the beginning
to try the whole process again (line 9).

Algorithm 3 implements the schedule async task API
in which we execute a task, change its state to FINISHED,
and then resolve the dependencies for its successors. This
API takes the task task in the input. Before executing task,
we change its state to FINISHED to prevent any other tasks

Algorithm 2 process dependent(task, dep, num deps)
1: dep state← dep.state
2: target state← UNFINISHED
3: if dep state.CAS(target state, LOCKED) then
4: dep.successors.push(task)
5: dep state← UNFINISHED
6: else if target state == FINISHED then
7: num deps←AtomDec(task.join counter)
8: else
9: goto line 2
10: end if

from adding themselves in the task’s successor list. We define
target state to be UNFINISHED (line 1). Then we perform
the CAS operation on task.state. If succeed, that means
task.state is equal to target state (i.e. UNFINISHED) and
is then set to FINISHED (line 2). If failed, that means some
other task enters the critical section in lines 4:5 in Algorithm
2 and is adding itself in task’s successor list. In such case, we
reset target state to UNFINISHED and perform the CAS
operation again (line 3). When we successfully set task.state
to FINISHED, we can execute task (line 5). Next, we iterate
the successor list and decrement the join counter of each
successor by one (lines 6:10). If any successor whose join
counter becomes zero after the decrementation, we schedule
that successor directly (line 8). Now, we finish executing
task, we can decrement the number of task’s shared owners
(ref count) by one (line 11). If task does not have any shared
owner, we can delete task and return its allocated resource
to the operating system (OS) (line 12).

Algorithm 3 schedule async task(task)
1: target state← UNFINISHED
2: while not task.state.CAS(target state, FINISHED)

do
3: target state← UNFINISHED
4: end while
5: Invoke(task.callable)
6: for all successor ∈ task.successors do
7: if AtomDec(successor.join counter) == 0 then
8: schedule async task(successor)
9: end if
10: end for
11: if AtomDec(task.ref count) == 0 then
12: Delete task
13: end if

IV. Case Study in Static Timing Analysis
We implemented AsyncTask using C++20 and evaluated

its performance on an industrial static timing analysis (STA)
application [1], [2] that leverages task graph parallelism
to parallelize graph-based analysis (GBA). We consider the
state-of-the-art open-source STA engine, OpenTimer [43], as
our experimental environment. OpenTimer formulates the

TABLE I: Task (∥V ∥) and edge (∥E∥) counts of three circuits.

Circuits ∥V ∥ ∥E∥ ∥V ∥+ ∥E∥
wb dma 13125 16593 29718

tv80 17038 23087 40125
ac97 ctrl 42438 53558 95996

GBA algorithm into a task graph and schedules dependent
tasks across many heterogeneous cores for parallel execution.
The task graph represents the circuit graph itself and can
contain millions of tasks and dependencies for large designs.
Each task computes the required timing information at its
corresponding node in the circuit graph (e.g., slew, delay, ar-
rival time), while each edge represents a dependency between
two tasks. Table I lists the statistics of the three circuits we
use. ∥V ∥ denotes the number of the tasks in a circuit and
∥E∥ denotes the number of the edges.
We compiled programs using Clang++17 with -

std=c++20 and -O3 enabled. We ran all the experiments
on a Centos Stream 8 machine with 8 Intel i7-9700K CPU
at 3.60GHz and 32 GB RAM. All data is an average of ten
runs. The implementation of AsyncTask is available in the
Taskflow project [37].

A. Baseline

Given the large number of parallel libraries, it is imprac-
tical to compare AsyncTask with all of them. We consider
OpenMP [30] as the baseline because it is a mainstream
DTGP library that has been widely employed by many EDA
applications. Compared with other existing DTGP libraries,
OpenMP allows applications to more flexibly define task
dependencies using directive-based programming (e.g., range
iterator clauses).

B. Performance Comparison

Figure 7 compares the memory and runtime between
AsyncTask and OpenMP with up to 16 threads for completing
the analysis of the three circuits. In terms of memory usage,
we see that OpenMP consistently consumes more memory
than AsyncTask in all cases. This is because OpenMP im-
plements a global lock-based hash table to track tasks and
their dependencies. The key of each entry in the table is the
memory address of a task’s input or output data and the value
is the tasks that access the corresponding memory address.
The number of entries in the table grows in proportion to the
edge counts. On the other hand, AsyncTask does not need a
global data structure but assigns each task a successor list,
which can largely reduce the overhead of lock access.

Regarding runtime performance, AsyncTask outperforms
OpenMP in all cases. For example, AsyncTask is 3.19×,
3.19×, and 3.41× faster than OpenMP at 16 threads for
wb dma, tv80, and ac97 ctrl, respectively. The reason for
the runtime difference comes from the design that OpenMP
needs mutexes to access its global hash table in order to
resolve dependencies between tasks. However, AsyncTask

only uses lightweight atomic counters to resolve task de-
pendencies.

1 2 4 8 16
60

80

100

Number of threads

M
em

or
y
(M

B)

Memory (wb dma)

OpenMP
AsyncTask

1 2 4 8 16

20

40

60

80

Number of threads

Ru
nt
im

e
(m

s)

Runtime (wb dma)

OpenMP
AsyncTask

1 2 4 8 16
80

100

120

Number of threads

M
em

or
y
(M

B)

Memory (tv80)

OpenMP
AsyncTask

1 2 4 8 16
20

40

60

80

100

120

Number of threads

Ru
nt
im

e
(m

s)

Runtime (tv80)

OpenMP
AsyncTask

1 2 4 8 16

200

250

300

Number of threads

M
em

or
y
(M

B)

Memory (ac97 ctrl)

OpenMP
AsyncTask

1 2 4 8 16
50

100

150

200

250

300

Number of threads

Ru
nt
im

e
(m

s)

Runtime (ac97 ctrl)

OpenMP
AsyncTask

Fig. 7: Memory and runtime comparison of the STA workload
on three circuits (wb dma, tv80, ac97 ctrl) between Async-
Task and OpenMP.

V. Conclusion

In this paper, we have introduced a new DTGP library
called AsyncTask to support the programming of dynamic
task graph parallelism. AsyncTask has introduced a new
expressive programming model supported by an efficient
scheduling algorithm. We have also presented a real use case
in static timing analysis and demonstrated the promising
performance of AsyncTask over a mainstream DTGP library,
OpenMP. AsyncTask has been integrated into the open-
source Taskflow project. Future work will focus on applying
AsyncTask to other EDA applications, such as distributed
computing [44]–[47], macro modeling [48], and path-based
analysis [49]–[53].

Acknowledgment

We are grateful for the supports of four National Science
Foundation (NSF) grants, CCF-2126672, CCF-2144523 (CA-
REER), OAC-2209957, and TI-2229304.

References
[1] T.-W. Huang, G. Guo, C.-X. Lin, and M. Wong, “OpenTimer v2: A New

Parallel Incremental Timing Analysis Engine,” in IEEE TCAD, 2021, pp.
776–789.

[2] T.-W. Huang and M. D. F. Wong, “OpenTimer: A High-Performance
Timing Analysis Tool,” in IEEE/ACM ICCAD, 2015, p. 895–902.

[3] D.-L. Lin, H. Ren, Y. Zhang, B. Khailany, and T.-W. Huang, “From rtl to
cuda: A gpu acceleration flow for rtl simulation with batch stimulus,”
in Proceedings of the 51st International Conference on Parallel Processing,
2023, pp. 1–12.

[4] G. Guo, T.-W. Huang, and M. Wong, “Fast STA Graph Partitioning
Framework for Multi-GPU Acceleration,” in IEEE/ACM DATE, 2023, pp.
1–6.

[5] C.-H. Chiu and T.-W. Huang, “Composing Pipeline Parallelism Using
Control Taskflow Graph,” in ACM HPDC, 2022, p. 283–284.

[6] ——, “Efficient Timing Propagation with Simultaneous Structural and
Pipeline Parallelisms: Late Breaking Results,” in ACM/IEEE DAC, 2022,
p. 1388–1389.

[7] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated Critical
Path Generation with Path Constraints,” in IEEE/ACM ICCAD, 2021, pp.
1–9.

[8] Z. Guo, T.-W. Huang, and Y. Lin, “HeteroCPPR: Accelerating Common
Path Pessimism Removal with Heterogeneous CPU-GPU Parallelism,”
in IEEE/ACM ICCAD, 2021, pp. 1–9.

[9] ——, “A Provably Good and Practically Efficient Algorithm for Common
Path Pessimism Removal in Large Designs,” in ACM/IEEE DAC, 2021,
pp. 715–720.

[10] Y. Zamani and T.-W. Huang, “A High-Performance Heterogeneous
Critical Path Analysis Framework,” in IEEE HPEC, 2021, pp. 1–7.

[11] G. Guo, T.-W. Huang, C.-X. Lin, and M. Wong, “An Efficient Critical
Path Generation Algorithm Considering Extensive Path Constraints,”
in ACM/IEEE DAC, 2020, pp. 1–6.

[12] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-Accelerated Static Timing
Analysis,” in IEEE/ACM ICCAD, 2020.

[13] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Pan, “Abcdplace: Ac-
celerated batch-based concurrent detailed placement on multithreaded
cpus and gpus,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, pp. 5083–5096, 2020.

[14] S. Liu, P. Liao, R. Zhang, Z. Chen, W. Lv, Y. Lin, and B. Yu, “FastGR:
global routing on CPU-GPU with heterogeneous task graph scheduler,”
Proceedings of the 2022 Conference and Exhibition on Design, Automation
and Test in Europe, pp. 760–765, 2022.

[15] E. Dzaka, D.-L. Lin, and T.-W. Huang, “Parallel And-Inverter Graph
Simulation Using a Task-graph Computing System,” in IEEE IPDPSw,
2023, pp. 923–929.

[16] D.-L. Lin, Y. Zhang, H. Ren, S.-H. Wang, B. Khailany, and T.-W.
Huang, “GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic
Algorithm with Multiple Inputs,” in ACM/IEEE DAC, 2023.

[17] T.-W. Huang and L. Hwang, “Task-Parallel Programming with Con-
strained Parallelism,” in IEEE HPEC, 2022, pp. 1–7.

[18] T.-W. Huang, “Enhancing the Performance Portability of Heteroge-
neous Circuit Analysis Programs,” in IEEE HPEC, 2022, pp. 1–2.

[19] T.-W. Huang, D.-L. Lin, Y. Lin, and C.-X. Lin, “Taskflow: A General-
Purpose Parallel and Heterogeneous Task Programming System,” IEEE
TCAD, vol. 41, no. 5, pp. 1448–1452, 2022.

[20] T.-W. Huang, “qTask: Task-parallel Quantum Circuit Simulation with
Incrementality,” in IEEE IPDPS, 2023, pp. 746–756.

[21] C.-X. Lin, T.-W. Huang, T. Yu, and M. D. F. Wong, “A distributed power
grid analysis framework from sequential stream graph,” in GLVLSI, ser.
GLSVLSI ’18, 2018, p. 183–188.

[22] Z. Jia, S. Lin, C. R. Qi, and A. Aiken, “Exploring hidden dimensions in
accelerating convolutional neural networks,” in Proceedings of the 35th
International Conference on Machine Learning, 2018, pp. 2274–2283.

[23] Z. Jia, M. Zahari, and A. Aiken, “Beyond data and model parallelism for
deep neural networks,” in Proceedings of Machine Learning and Systems,
2019, pp. 1–13.

[24] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, “GPipe: Efficient Training
of Giant Neural Networks using Pipeline Parallelism,” in Advances in
Neural Information Processing Systems, 2019, pp. 103–112.

[25] S. Jiang, T.-W. Huang, B. Yu, and T.-Y. Ho, “SNICIT: Accelerating Sparse
Neural Network Inference via Compression at Inference Time on GPU,”
in ACM ICPP, 2023.

[26] D.-L. Lin and T.-W. Huang, “Accelerating Large Sparse Neural Network
Inference Using GPU Task Graph Parallelism,” IEEE TPDS, vol. 33,
no. 11, pp. 3041–3052, 2022.

[27] ——, “Efficient GPU Computation Using Task Graph Parallelism,” in
Euro-Par, 2021.

[28] C.-H. Chiu, D.-L. Lin, and T.-W. Huang, “An Experimental Study
of SYCL Task Graph Parallelism for Large-Scale Machine Learning
Workloads,” in Euro-Par Workshop, 2022.

[29] C.-X. Lin, T.-W. Huang, and M. D. F. Wong, “An efficient work-stealing
scheduler for task dependency graph,” in IEEE ICPADS, 2020, pp. 64–71.

[30] “OpenMP,” https://www.openmp.org/.
[31] “Kokkos: Enabling manycore performance portability through poly-

morphic memory access patterns,” in Journal of Parallel and Distributed
Computing, 2014, pp. 3202–3216.

[32] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J.
Dongarra, “Parsec: Exploiting heterogeneity to enhance scalability,” in
Computing in Science Engineering, 2013, pp. 36–45.

[33] R. Hoque, T. Herault, G. Bosilca, and J. J. Dongarra, “Dynamic task
discovery in parsec: a data-flow task-based runtime,” 2017, pp. 1–8.

[34] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and
Y. Zhou, “Cilk: An Efficient Multithreaded Runtime System,” in ACM
PPOPP, 1995, pp. 207–216.

[35] T. Schardl and I.-T. A. Lee, “OpenCilk: A Modular and Extensible
Software Infrastructure for Fast Task-Parallel Code,” in ACM PPoPP,
2023, pp. 189–203.

[36] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “Hpx:
A task based programming model in a global address space,” in PGAS,
2014, pp. 1–11.

[37] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A Lightweight
Parallel and Heterogeneous Task Graph Computing System,” in IEEE
TPDS, 2022, pp. 1303–1320.

[38] T.-W. Huang, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-Taskflow:
Fast Task-based Parallel Programming using Modern C++,” 2019, pp.
974–983.

[39] T.-W. Huang, “A General-Purpose Parallel and Heterogeneous Task
Programming System for VLSI CAD,” in IEEE/ACM ICCAD, 2020.

[40] T.-W. Huang, Y. Lin, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-
Taskflow: A General-Purpose Parallel Task Programming System at
Scale,” IEEE TCAD, vol. 40, no. 8, pp. 1687–1700, 2021.

[41] C.-X. Lin, T.-W. Huang, G. Guo, and M. D. F. Wong, “A Modern C++
Parallel Task Programming Library,” in ACM MM, 2019, p. 2284–2287.

[42] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, FastFlow:
High-Level and Efficient Streaming on Multicore. John Wiley and Sons,
Ltd, 2017, ch. 13, pp. 261–280.

[43] “OpenTimer,” https://github.com/OpenTimer/OpenTimer.
[44] T.-W. Huang, C.-X. Lin, and M. D. F. Wong, “DtCraft: A distributed

execution engine for compute-intensive applications,” in IEEE/ACM
ICCAD, 2017, pp. 757–765.

[45] ——, “DtCraft: A High-Performance Distributed Execution Engine at
Scale,” IEEE ICAD, vol. 38, no. 6, pp. 1070–1083, 2019.

[46] T.-W. Huang, C.-X. Lin, G. Guo, and M. D. F. Wong, “A General-Purpose
Distributed Programming System Using Data-Parallel Streams,” in ACM
MM, 2018, p. 1360–1363.

[47] T.-W. Huang, M. D. F. Wong, D. Sinha, K. Kalafala, and
N. Venkateswaran, “A distributed timing analysis framework for large
designs,” in ACM/IEEE DAC, 2016, pp. 1–6.

[48] T.-Y. Lai, T.-W. Huang, and M. D. F. Wong, “LibAbs: An Efficient and
Accurate Timing Macro-Modeling Algorithm for Large Hierarchical
Designs,” in ACM/IEEE DAC, 2017.

[49] T.-W. Huang, P.-C. Wu, and M. D. F. Wong, “Fast Path-Based Timing
Analysis for CPPR,” in IEEE/ACM ICCAD, 2014, p. 596–599.

[50] ——, “UI-Timer: An Ultra-Fast Clock Network Pessimism Removal
Algorithm,” in IEEE/ACM ICCAD, 2014, p. 758–765.

[51] T.-W. Huang and M. D. F. Wong, “Accelerated path-based timing
analysis with mapreduce,” in ACM ISPD, 2015, p. 103–110.

[52] T.-w. Huang and M. D. F. Wong, “On fast timing closure: speeding up
incremental path-based timing analysis with mapreduce,” in ACM/IEEE
SLIP, 2015, pp. 1–6.

[53] T.-W. Huang and M. D. F. Wong, “UI-Timer 1.0: An Ultrafast Path-Based
Timing Analysis Algorithm for CPPR,” IEEE TCAD, vol. 35, no. 11, pp.
1862–1875, 2016.

