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Abstract—Task graph programming model (TGPM) has be-
come central to a wide range of scientific computing applications
because it enables top-down optimization of parallelism that
governs the macro-scale performance. Existing TGPMs focus on
expressing tasks and dependencies of a workload and leave the
scheduling details to a library runtime. While maximizing the
task concurrency is a typical scheduling goal, many applications
require task parallelism to be constrained during the graph
execution. Examples are limiting the number of worker threads
in a subgraph or relating a conflict between two tasks. How-
ever, mainstream TGPMs have largely ignored this important
feature of constrained parallelism in a task graph. Users have
no choice but to implement a separate and often sophisticated
scheduling solution that is neither generalizable nor scalable. In
this paper, we propose a semaphore programming model and a
scheduling method both of which can be easily integrated into
an existing TGPM to support constrained parallelism. We have
demonstrated the effectiveness and efficiency of our approach in
real applications. As an example, our semaphore model speeds
up an industrial circuit placement workload up to 28%.

I. INTRODUCTION

Task-based parallel computing system plays an essential

role in advanced scientific computing [43]. Unlike loop-based

models, task-parallel systems typically leverage a task graph

programming model (TGPM) to encapsulate function calls

and their dependencies in a top-down task graph. TGPM is

advantageous in dealing with irregular parallel decomposition

strategies and scaling them to a large number of processors

comprising manycore central processing units (CPUs) and

graphics processing units (GPUs). As a result, a great deal

amount of TGPM research has been proposed in recent years.

A representative but incomplete list of work includes Task-

flow [26], oneTBB FlowGraph [1], StarPU [11], Legion [12],

Kokkos-DAG [19], PaRSEC [13], HPX [30], and Fastflow [9].

These systems have enabled vast success in a variety of

scientific computing applications, such as machine learning,

data analytics, and simulation.

When programmers describe a workload in a task graph,

the system runtime takes care of all the scheduling details,

including load balancing and concurrency control. While max-

imizing the task concurrency is a main goal to fast completion

time, many applications require constrained task parallelism

inside a task graph. For example, an embedded application

task graph may only allow a fixed number of workers to

enter a subgraph of restricted computing resources; a circuit

routing workload may not invoke two workers to compute two

regions that have a conflict. Unfortunately, existing TGPMs

have largely ignored this type of constrained task parallelism.

As a result, users resort to a different scheduling heuristic

or a client-side partition algorithm, both resulting in rather

sophisticated implementation. Also, this workaround makes it

challenging to take advantage of important features that have

been established in an existing runtime, such as dynamic load

balancing that is known difficult to program correctly.

Consequently, in this paper we introduce a lightweight

programming model and scheduling method to overcome the

challenge of constrained parallelism in a task graph. Our

model is very general and can handle common task paral-

lelism constraints, including counting semaphores, limiting

subgraph concurrency, and resolving conflict parallelism. More

importantly, our approach can be easily integrated into an

existing TGPM and its scheduling runtime, taking advantage

of all established library features. We have evaluated the

effectiveness of our approach atop two TGPMs, Taskflow [5]

and oneTBB FlowGraph [1], and demonstrated its efficiency

on real applications. As an example, our semaphore model

speeds up an industrial circuit placement workload up to 28%.

II. MOTIVATION: PARALLEL CAD ALGORITHMS

This research is motivated by our parallel computing

projects on high-performance computer-aided design (CAD)

algorithms. CAD is a software method to help people de-

sign integrated circuits (ICs) or very-large-scale integration

(VLSI) systems [47]. It takes a high-level hardware description

language (HDL) of an electronic component and run design

automation algorithms (e.g., placement, routing) to generate

a physical layout. As the design complexity continues to

increase, new CAD algorithms must harness the power of

parallelism to reduce the ever-increasing runtime [42]. How-

ever, parallelizing CAD is an extremely challenging job as it

involves many special constraints that are rarely addressed by

existing high-performance computing (HPC) systems.

Consider an abstract task graph in Figure 1. The task graph

(partially) models a detailed placement algorithm to optimize

cell locations in a chip using minimal wirelength [40]. The

middle four tasks call an algebra library to solve a linear

system. From the algorithm standpoint, the four solver tasks

can run in parallel. In practice, however, the algebra library

only allows a certain amount of parallelism, such as two

worker threads to enter the loop, as a result of license and
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Fig. 1: A task graph of a circuit placement algorithm that

restricts two worker threads to run the four solver tasks.

implementation restrictions. A common solution adopted by

CAD developers is to partition the constrained region out of

the task graph and execute it with two threads. This solution

is simple, but it requires running an expensive partitioning

algorithm and adding an additional synchronization mecha-

nism before and after the partition. Also, this organization

can potentially degrade the performance because tasks like

reduce1 and reduce2 should have immediately started

whenever their dependencies are met.

Another example is the conflict graph parallelism, which

frequently happens in many parallel physical design algo-

rithms, such as routing [32], [41]. Consider the example in

Figure 2. The left task graph represents a routing algorithm

and the right undirected graph imposes four conflict constraints

among four routing tasks, route_B, route_C, route_E,

and route_F. Individual routing tasks can run in parallel

as long as their routing regions (e.g., bounding box of a net)

do not overlap. In this example, route_B and route_C

cannot run simultaneously as there is a conflict between

net_B and net_C; same for route_B and route_F and

so on. A common solution adopted by CAD developers is

to transform the conflict graph to a directed acyclic graph

(DAG) and induce additional task dependencies in the task

graph. For instance, we can induce a direction from net_B to

net_F, which results in a task dependency from route_B to

route_F. However, this solution is static and often require

expensive decision algorithms, such as finding a maximum

independent set (MIS), to maximize the parallelism [32].

After years of research, we have arrived at the key con-

clusion that there is a need for new programming model and

scheduling algorithm to handle constrained parallelism in a

task graph. Instead of redesigning everything from scratch,

which is not practical, we favor a drop-in solution that can be

easily integrated into an existing task graph computing system.

III. SEMAPHORE PROGRAMMING MODEL

For the purpose of demonstration, we explain our program-

ming model for constrained parallelism atop the popular open-

source software, Taskflow [26]. Taskflow is a general-purpose

parallel and heterogeneous task programming system. It in-

troduces a new control taskflow graph (CTFG) programming

model that enables end-to-end expressions of dependent tasks

with in-graph control flow. A simple CTFG program is shown

in Listing 1. The code explains itself.

t f : : T askf low t a s k f l o w ;
t f : : E x e c u t o r e x e c u t o r ;
a u t o [A, B , C, D] = t a s k f l o w . emplace (

[ ] ( ) { s t d : : c o u t << ” Task A” ; } ,
[ ] ( ) { s t d : : c o u t << ” Task B” ; } ,
[ ] ( ) { s t d : : c o u t << ” Task C” ; } ,
[ ] ( ) { s t d : : c o u t << ” Task D” ; }

) ;
A. p r e c e d e (B , C ) ; / / A r u n s b e f o r e B and C
D. s u c c e e d (B , C ) ; / / D r u n s a f t e r B and C
e x e c u t o r . run ( t f ) . w a i t ( ) ;

Listing 1: A task graph of four tasks and four task dependen-

cies.

t f : : E x e c u t o r e x e c u t o r ;
t f : : T askf low t a s k f l o w ;
/ / c r e a t e s a semaphore wi th t h e c o u n t e r = 2
t f : : Semaphore semaphore ( 2 ) ;
s t d : : v e c t o r <t f : : Task> t a s k s {

t a s k f l o w . emplace ( [ ] ( ) { s t d : : c o u t << ”A” ; } ) ,
t a s k f l o w . emplace ( [ ] ( ) { s t d : : c o u t << ”B” ; } ) ,
t a s k f l o w . emplace ( [ ] ( ) { s t d : : c o u t << ”C” ; } ) ,
t a s k f l o w . emplace ( [ ] ( ) { s t d : : c o u t << ”D” ; } ) ,
t a s k f l o w . emplace ( [ ] ( ) { s t d : : c o u t << ”E” ; } )

} ;
/ / c o n s t r a i n s 2 worker s t o run 5 p a r a l l e l t a s k s
f o r ( a u t o t a s k : t a s k s ) {

t a s k . a c q u i r e ( semaphore ) ;
t a s k . r e l e a s e ( semaphore ) ;

}
e x e c u t o r . run ( t a s k f l o w ) . w a i t ( ) ;

Listing 2: Our semaphore programming model.

Listing 2 shows our programming model for constrained

parallelism, which leverages the concept of semaphore to limit

the maximum concurrency in a section or subgraph of tasks.

Here, it lists five parallel tasks. Under normal circumstances,

these five tasks can be executed simultaneously. However, we

create a semaphore with an initial count 2, and have each task

acquire and release that semaphore before and after executing

its work, respectively. This semaphore limits the number of

concurrently running tasks to only two. Figure 3 shows one

possible execution result of Listing 2.

t f : : Semaphore semaphore ( 1 ) ;
i n t c o u n t e r = 0 ; / / non − atom ic i n t e g e r c o u n t e r
f o r ( i n t i =0 ; i <6; i ++) {

t f : : Task f = t a s k f l o w . emplace (
[ & ] ( ){ c o u n t e r ++; }

) . name (
” from −” s + s t d : : t o s t r i n g ( i )

) ;
t f : : Task t = t a s k f l o w . emplace (

[ & ] ( ){ c o u n t e r ++; }
) . name (

” to −” s + s t d : : t o s t r i n g ( i )
) ;
f . p r e c e d e ( t ) ;
f . a c q u i r e ( semaphore ) ;
t . r e l e a s e ( semaphore ) ;

}
e x e c u t o r . run ( t a s k f l o w ) . w a i t ( ) ;
a s s e r t ( c o u n t e r == 1 2 ) ;

Listing 3: Sequential execution of Figure 4 using a binary

semaphore.



Fig. 2: A task graph (left) of a circuit routing algorithm that incorporates four conflict constraints (right).
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Fig. 3: One possible execution result of Listing 2. The

semaphore restricts at most two workers to run five indepen-
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Fig. 4: A task graph of six parallel group pairs.

Our semaphore model is very flexible. A task can acquire

and release a semaphore, or just acquire or just release it.

Acquiring and releasing a semaphore can occur across differ-

ent taskflows, as long as the two operation counts equal each

other. For example, Listing 3 creates a binary semaphore to

sequentially run six parallel groups of two linearly dependent

task. Without semaphores, each group (e.g., from-0 →
to-0), can run simultaneously. However, the program asks

each “from” task to acquire the semaphore before running its

work and not to release it until its “to” task is done. This

constraint forces each pair of tasks to run sequentially. When

the program finishes, we can safely assert the non-atomic

counter to be 12.

t f : : Semaphore BC ( 1 ) , CE ( 1 ) , EF ( 1 ) , BF ( 1 ) ;
rou te B . a c q u i r e (BC ) . r e l e a s e (BC ) ;
rou te C . a c q u i r e (BC ) . r e l e a s e (BC ) ;
rou te C . a c q u i r e (CE ) . r e l e a s e (CE ) ;
r o u t e E . a c q u i r e (CE ) . r e l e a s e (CE ) ;
r o u t e E . a c q u i r e ( EF ) . r e l e a s e ( EF ) ;
r o u t e F . a c q u i r e ( EF ) . r e l e a s e ( EF ) ;
rou te B . a c q u i r e (BF ) . r e l e a s e (BF ) ;
r o u t e F . a c q u i r e (BF ) . r e l e a s e (BF ) ;

Listing 4: Implementation of the conflict task parallelism in

Figure 2.

Another important application of our semaphore is the ex-

pression of conflict task parallelism. Conflict task parallelism

is a very frequently occurring constraint in CAD algorithms

because nets that are connected to each other introduce com-

putational task dependencies. Listing 4 implements the conflict

graph in Figure 2 using four binary semaphores, each repre-

senting a conflict edge. For each conflict edge, we have both

of its tasks acquire and release the corresponding semaphore.

For example, route_C will acquire and release BC and CE,

to avoid the conflict with route_B and route_E. Since the

semaphore counts on 1, only one task of the edge will run at

a time.

IV. SEMAPHORE DESIGN AND SCHEDULING

At a high level, the design and scheduling of our semaphore

model is as follows: A tf::Semaphore object starts with

an initial count. As long as the count is above zero, tasks can

acquire the semaphore and do their work. If the count becomes

zero, the task trying to acquire the semaphore will not run its

work but goes to a waiting list of that semaphore. That is,

each semaphore has a vector to keep track of which task is

waiting on it. When the semaphore is released by a task, it

informs the scheduler to schedule tasks from the waiting list.

Since a semaphore may be accessed by multiple tasks (and

hence worker threads), we protect all semaphore operations

using a lock.

Algorithm 1: Acquire and release algorithms in

tf::Semaphore

Per semaphore: counter: internal counter

Per semaphore: mutex: lock to protect the counter

Per semaphore: waiters: vector of tasks waiting on

this semaphore

1 Semaphore acquire(task):

2 scoped lock(mutex);

3 if counter > 0 then

4 counter← counter − 1;

5 return true;

6 end

7 waiters← waiters ∪ task;

8 return false;

9

10 Semaphore release():

11 scoped lock(mutex);

12 counter← counter + 1;

13 return move(waiters);

Algorithm 1 shows the acquire and release methods in

tf::Semaphore. Unlike the typical semaphore implemen-



tation, both methods are designed to work with a generic

task graph scheduler in a wait-free fashion (except the lock

protection). When a task fails to acquire the semaphore, it joins

the waiting list and returns false to inform the scheduler not

to run its work. Each time a task releases a semaphore, it will

pull out all waiting tasks and return them to the scheduler.

Notice that the release method always returns waiting tasks

(using the cheap move semantic) regardless of its counter

value, because the scheduler can reschedule at least one task

from the waiting list of this semaphore.

Algorithm 2: Acquire and release algorithms in a

library task

Per task: S+: the set of semaphores to acquire

Per task: S−: the set of semaphores to release

1 Task acquire_all(tasks):

2 A← null;

3 foreach s ∈ S+ do

4 if s.acquire(this) = false then

5 foreach a ∈ A do

6 tasks← tasks ∪ a.release();

7 return false;

8 end

9 end

10 A← A ∪ s;

11 end

12 return true;

13

14 Task release_all():

15 R← null;

16 foreach s ∈ S− do

17 R← R ∪ s.release();

18 end

19 return R;

Based on the semaphore design in Algorithm 1, we can

extend the task interface of most existing task graph libraries

to include two methods, acquire_all and release_all,

as shown in Algorithm 2. The two methods will be called

by the scheduler to acquire and release all semaphores that

are assigned to a task. The first method, acquire_all,

tries to acquire all semaphores in S+. If one semaphore

fails, it releases all acquired semaphores so far and returns

their waiting tasks to the scheduler. The second method,

release_all, simply releases all semaphores in S− and

returns all their waiting tasks to the scheduler.

A key advantage of Algorithm 2 is its drop-in integra-

tion with existing task graph schedulers. Most task graph

schedulers define a pluggable prologue-epilogue interface that

allows developers to run custom functions before and after the

execution of a task. A common use case is adding observers

to track thread activities during the execution of a task graph,

i.e., which worker thread is running which task. As a result,

the acquire and release guards for scheduling a task with its

semaphores can be efficiently implemented as in Algorithm 3.

Algorithm 3: Acquire and release algorithms in a

library scheduler

1 Scheduler prologue_acquire(task):

2 if task.S+ 6= null then

3 A← null;

4 if task.acquire all(A) = false then

5 schedule(A);

6 signal the scheduler to return;

7 end

8 end

9

10 Scheduler epilogue_release(task):

11 if task.S− 6= null then

12 R← task.release all();

13 schedule(R);

14 end

The algorithm is self-explanatory.

While it is possible to further optimize Algorithms 1–3, such

as pooling semaphores in a scheduler for the given assignment

and reducing contention through fine-grained task control, we

find these optimization strategies often too intrusive to the

library runtime. Also, our application experience leads us to

believe that the proposed semaphore model is simple and

efficient enough for most applications wihout sophisticated

semaphore usage.

V. EXPERIMENTAL RESULTS

We implemented our semaphore programming model and

scheduling algorithm atop two state-of-the-art task graph com-

puting systems, Taskflow [26] and oneTBB FlowGraph [1].

The proposed semaphore model is very lightweight, increasing

fewer than 500 lines of code in either of the systems. We

evaluated the effectiveness of our design on two real CAD

workloads, (1) a placement workload that limits the maximum

concurrency in subgraphs of tasks (e.g., Figure 1) and (2)

a routing workload that imposes a conflict graph on a task

graph (e.g., Figure 2). We compared the performance between

two implementation results: one with our semaphore model

and one with existing heuristics commonly adopted by CAD

developers. All experiments ran on a Ubuntu Linux 5.0.0-21-

generic x86 64-bit machine with 40 Intel Xeon Gold 6138

CPU cores at 2.00 GHz and 256 GB RAM. We compiled all

programs using GNU GCC-9.2.1 with C++17 standards and

optimization flags -O2 enabled. All data is obtained from an

average of ten runs.

A. Placement Algorithm with Constrained Parallelism

Placement is a critical step in layout optimization. The

goal is to optimize the interconnect among millions of logic

gates or instances to improve timing and power. Connected

instances are grouped to a net with interconnect modeled in

Manhattan distance. An example is shown in Figure 5. We

implement a detailed placement algorithm in ABCDPlace [40]



that formulates a local reordering algorithm in a parallel task

graph to optimize the interconnect. The task graph restricts

several sections of tasks to have no more than four or eight

workers calling an internal linear system solver. To handle this

concurrency constraint, we assign each section a semaphore

with the internal counter initialized to four or eight. Our

baseline implements the same algorithm but partitions the task

graph into several subgraphs around sections of constrained

parallelism and execute each partition using a different number

of workers. The baseline implementation essentially repro-

duces the heuristic used in ABCDPlace [40] and other existing

placement engines.
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Fig. 5: Example of a VLSI layout for placement (left) and the

execution of the local reordering algorithm to optimize the

interconnect among gates (right).

Table I shows the benchmark statistics and the perfor-

mance results of baseline and our semaphore design atop

Taskflow and oneTBB. The numbers of tasks, dependencies,

and semaphores in the placement task graph are denoted as

|V |, |E|, and |S|, respectively. The baseline consists of the

graph partition time and the task graph execution time, while

both Taskflow and TBB directly solve the problem using the

proposed semaphore. The first four small circuits (adaptec)

use four semaphores, and the rest four large circuits (bigblue)

use eight semaphores. All these eight circuits are real industrial

designs [44]. The largest design, bigblue4, has over 2.1M gates

and 2.2M nets, and its task graph has over 8K tasks and 15K

dependencies.

In terms of runtime performance, our semaphore with Task-

flow achieves 18–26% speed-up over the baseline. The result

is slightly faster than oneTBB in most cases. We attribute this

to the scheduler design of Taskflow [26]. However, our goal is

not to compare different task graph systems but focus on the

advantage semaphore brings. With semaphore, there is no need

to partition the graph, which takes about 8–13% of the total

runtime; for instance, bigblue4 spends 12% of the total time

on partition. More importantly, our semaphore model allows

the entire workload to run in an end-to-end task graph. The

scheduler can more efficiently handle task overlap and load

balancing than the baseline.

B. Routing Algorithm with Conflict Parallelism

Routing is another key step in layout optimization after

placement. The goal is to establish the actual routes of wires

among placed gates using minimal wirelength. Routing is

an extremely time-consuming step (e.g., hours to complete

a million-gate design). Hence, there have been many par-

allel routing algorithms in recent years to reduce the long

runtime [32]. Unlike placement, parallel routing algorithm

(routing task graph) needs to deal with conflict parallelism

induced by overlapped regions of nets. Figure 6 gives an

example of a routing conflict graph induced by net overlaps.

This type of conflict parallelism can be easily expressed by

our semaphore model without changing the routing task graph.

Without semaphore, a common heuristic is to iteratively find

an MIS in the conflict graph and induce linear dependencies

between iterations onwards. We considered the state-of-the-art

FastGR [41] that implements this heuristic as our baseline.
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Fig. 6: Example of a routing problem (left) and its conflict

graph (right) induced by net bounding-box overlaps.

Table II shows the benchmark statistics and the runtimes

of baseline and our semaphore implementation atop Taskflow

and oneTBB. We used six real circuit designs from ICCAD

2019 Contest [45]. The largest design, 19test9, has over 895K

nets to route in a 1337×1433 routing grid, resulting in a task

graph of 895K tasks and 24 dependencies. Notice that the

dependency count is much fewer than the task count because

we use semaphores to capture the conflict graph induced by

nets. Similar to placement, the baseline consists of the time

to find MISs in all iterations and the time to run the routing

task graph.

In terms of runtime performance, our semaphore with Task-

flow is 13–28% faster than the baseline. The implementation

atop Taskflow is slightly faster than oneTBB, due to the

scheduling efficiency of Taskflow [26]. The independent set

decision problem is known to be NP-complete. Even with the

MIS heuristic in FastGR [41], it still accounts for 6–14% of the

total runtime. This overhead, however, can be totally avoided

by our semaphore model that directly solves the problem at

the programming level. For all circuits, the cost of creating

semaphores is less than 1 second, which is acceptable. We be-

lieve our solution can inspire more efficient parallel algorithms

for other CAD problems that exhibit similar characteristics of

conflict parallelism [17], [21]–[24], [27]–[29], [39].

C. Other Use Cases

In addition to the previous two VLSI applications, we want

to highlight other real use cases of our semaphore model. Be-

fore we put together our technical innovations in this writing,

we had integrated our semaphore model into Taskflow [26]



TABLE I: Runtime Performance of Placement Workload

circuit #gates #nets |V | |E| |S|
Baseline Taskflow

(ms)
TBB
(ms)Partition

(ms)
Graph
(ms)

Total
(ms)

adaptec1 211447 221142 5240 10435 4 108.3 1041.3 1149.6 890.3 900.4
adaptec2 255023 266009 5240 10435 4 140.2 1168.7 1308.9 1065.2 1103.4
adaptec3 451650 466758 5240 10435 4 210.6 1949.6 2157.2 1766.8 1832.1
adaptec4 496045 515951 5240 10435 4 214.3 1978.7 2193 1708.4 1792.5
bigblue1 278164 284479 8430 15887 8 141.2 915.4 1056.6 778.5 770.4
bigblue2 557866 577235 8430 15887 8 222.5 2069.8 2292.3 1808.5 1743.5
bigblue3 1096812 1123170 8430 15887 8 411.0 4665.2 5076.2 4029.9 4198.4
bigblue4 2177353 2229886 8430 15887 8 793.2 5367.5 6160.7 4649.7 4834.8

TABLE II: Runtime Performance of Routing Workload

circuit #nets Grid Graph |V | |E| |S|
Baseline Taskflow

(s)
TBB
(s)MIS

(s)
Graph

(s)
Total
(s)

18test5 72394 619×613 72426 24 71985 17.7 113.1 130.8 94.4 104.4
18test8 179863 619×613 179895 24 191987 35.2 304.1 339.3 274.8 275.2

18test10 182000 606×522 182032 24 290386 48.8 406.0 454.8 394.2 398.4
19test7 358720 1053×1011 358752 24 359746 74.5 678.5 753 615.9 631.1
19test8 537577 1202×1138 537609 24 539611 34.4 501.8 536.2 403.2 441.7
19test9 895252 1337×1433 895284 24 899341 90.1 703.4 793.5 587.1 600.3

and tested it rigorously. The feedback is encouraging. For

instance, we have collaborated with a company (anonymous

due to intellectual property) to deploy our semaphore interface

in their embedded vision applications for improving energy ef-

ficiency. Additionally, we have helped a robotic vendor design

their motion planning algorithms and incorporate constrained

parallelism in resource-critical sections.

VI. RELATED WORK

Through the evaluation of parallel programming standards,

task-based execution model has been proven to scale well

with the future HPC systems [43]. Directive-based program-

ming models [2]–[4], [20] allow users to augment program

information with task and dependency rules (e.g., OpenMP

dependency clauses) and delegate the code generation to com-

pilers. These models are good at static graph construction but

cannot easily handle dynamic scenarios where graph structure

depends on runtime variables. Functional approaches [1], [9],

[11]–[13], [16], [19], [25], [26], [30], [31], [33], [34], [36]–

[38] offer either implicit or explicit task graph constructs

that are more flexible in runtime control and on-demand

tasking. However, most of these systems focus on modeling

and scheduling the task graph itself, and they do not antici-

pate constrained parallelism which is essential for important

computer engineering applications, such as high-performance

CAD algorithms.

Existing task graph schedulers have largely adopted work

stealing to achieve dynamic load balancing [10]. Depending on

the applications, work-stealing algorithms have many variants.

A list of representative but incomplete algorithms include

general-purpose work-stealing loops [1], [26], balanced worker

management [18], adaptive stealing strategy [8], [35], deter-

ministic design [46], and data locality-aware runtime [15],

[49]. These algorithms typically define a pluggable interface

between task-level scheduling and work-level management,

allowing us to easily integrate our semaphore model into their

runtimes without modifying their work-stealing algorithms.

Scheduling parallel tasks under constrained parallelism has

been addressed in several applications, such as makespan

minimization with machine conflicts [14], conflict graph-based

concurrent transmission scheduling for wireless networks [48],

conflict open-shop scheduling in operation research [6], knap-

sack programming with conflict graph [7], net dependency

breaking in CAD [32], [40], [41], and so on. While these

applications have solved constrained parallelism in certain

aspects, their solutions have been application-specific. There

are no general-purpose solutions for programming task graphs

with constrained parallelism.

VII. CONCLUSION

In this paper, we have introduced a semaphore-based pro-

gramming model and scheduling algorithm to handle con-

strained parallelism in a task graph. Our model is very

general and can handle common task parallelism constraints,

such as limiting the maximum concurrency of a subgraph

and resolving conflict task parallelism. More importantly, our

semaphore model is lightweight and can be easily integrated

into an existing task graph computing system to reuse all

its infrastructure, in particular, dynamic load balancing. We

have evaluated the effectiveness of our approach atop two

state-of-the-art systems, Taskflow and oneTBB FlowGraph,

and demonstrated its efficiency in two real design automation

applications. As an example, our semaphore model speeds up

an industrial circuit placement workload up to 28%.
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