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Abstract—Recently, CPU-GPU heterogeneous parallelism has
brought transformational performance milestones to static timing
analysis (STA) algorithms. As the computing ecosystem continues
to proliferate, performance portability has emerged as a new
challenge when deploying the result to diverse heterogeneous
computing platforms. Specifically, the optimal code written on
a CPU-GPU architecture may not be optimal for other CPU-
GPU architectures, due to various performance, interoperability,
and availability constraints. As a result, we introduce in this
paper a learning-based framework to enhance the performance
portability of a GPU-accelerated STA program. We parameter-
ize important performance parameters and leverage a neural
network model to adapt performance optimization to any given
computing platforms. We have demonstrated the effectiveness of
our framework in real STA applications.

I. INTRODUCTION

The recent research has demonstrated significant success

in accelerating static timing analysis (STA) algorithms using

CPU-GPU heterogeneous parallelism. For instance, [1] has

leveraged GPU to accelerate time-consuming path-based anal-

ysis (PBA) up to 45× over 40 CPUs. As new applications

continue to harness the power of GPUs, chip vendors have not

stopped investing new GPU products (e.g., Nvidia RTX, AMD

RX, Intel Arc). While this investment offers researchers vari-

ous choices to program heterogeneous computing applications,

performance portability has emerged as a new challenge to

overcome. Specifically, no single heterogeneous programming

model is optimal for all. The same program optimized for a

CPU-GPU architecture may not be optimal for another. To

enhance the performance portability, there is a need for non-

traditional user-level features to adapt performance to various

computing platforms.

Consider a GPU-accelerated STA program in Figure 1.

The program is written in SYCL [2], a new single-source

C++ heterogeneous programming model, to deploy to two

different CPU-GPU computing platforms without changing

the source. We illustrate the performance in a gray scale

(the brighter the better) on a two-dimensional (2D) grid of

GPU kernel configurations, threads per block and iterations

per thread (number of processed elements per thread). We

observe that the optimal configuration on the Nvidia GPU

leads to suboptimal result on the AMD GPU, and the variation

can be up to 24% (170s vs 211s). While it is possible to

count on expert programmers or grid search algorithms to

tune kernel configurations, such process is extremely iterative

and time-consuming. Moreover, this process cannot handle

dynamic performance constraints, such as loads and memory,

that depend on the program runtime.

Fig. 1: Performance results of running the same GPU-accelerated
STA program on two different CPU-GPU computing platforms.

As a result, we introduce in this paper a framework to

enhance the performance portability of a GPU-accelerated

STA engine, OpenTimer [3]. Our contribution is threefold:

(1) We have identified the need for parameterizable kernel

designs to achieve performance portability for heterogeneous

STA algorithms. (2) We have introduced a deep neural net-

work (DNN) model to learn to optimize the STA program

performance in a user’s unique computing platform. (3) We

have demonstrated the effectiveness of our framework by

bridging the performance gap of running a GPU-accelerated

PBA algorithm [1] between different heterogeneous computing

platforms. While this paper targets an STA workload, the

proposed research is framework-neutral and can inspire other

heterogeneous design automation applications.

II. FRAMEWORK

Due to various performance constraints, achieving per-

formance portability is highly parameterizable. This chal-

lenge highlights the need for novel learning-based methods

to achieve adaptive performance optimization. For the given

PBA algorithm [1], our framework learns a DNN model to

recommend an optimized scheduling plan for a PBA problem

to run on a heterogeneous computing platform. We categorize

the feature space into static features and dynamic features.

Static features connect performance with problem-specific

parameters, including the circuit graph size, the fanin cone

size of a flip-flop (FF), and the number of critical paths

to report. Dynamic features connect performance to runtime

statistics, including available GPU memory and CPU load. Our

scheduling plan consists of three important label categories to



infer, kernel execution parameters (block size, iterations per

thread), targeted device for each kernel (remain on GPU or

switch to CPU), and host execution parameters (number of

CPU threads).

Our DNN is trained on a user-specific computing platform.

Feature and label selections are based on extensive experi-

ments we have conducted on different computing platforms.

To maximize the flexibility of learning, we have decided

to implement the PBA algorithm using SYCL [2], which

enables a unified programming and execution environment

for heterogeneous computing. Specifically, a written SYCL

kernel can run on any OpenCL device, including CPU, GPU

(Nvidia, AMD), and other accelerators (e.g., Intel oneAPI

products). This property allows our model to toggle a GPU

kernel to run on a CPU, thereby reducing the GPU traffic

in a contending server environment and vice versa. As we

integrate our framework into OpenTimer [3], [4], an input

PBA problem is represented as a heterogeneous task graph [5],

[6]. We leverage the graph embedding techniques of Google’s

GAP [7] to embed features in nodes as the input for our DNN.

Figure 2 shows the proposed framework.
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Fig. 2: DNN-based framework to recommend a scheduling plan (e.g.,
kernel block size, GPU tasks (G) to run on CPU (C), worker count)
for an input PBA task graph on a computing platform.

III. EXPERIMENTAL RESULTS

We train our DNN using PyTorch and integrate the result

into OpenTimer’s PBA module [3]. Our DNN adapts the

scheduling performance of a PBA problem to the computing

platform from which the DNN is trained. We generated up

to 100K different PBA problem instances by augmenting the

circuit graphs in TAU Contests [3] to different sizes and con-

figuring each PBA algorithm with different input parameters;

90% for training and 10% for testing. We collect runtime data

of these PBA problems on two different computing platforms:

(1) 4 Intel Xeon CPU cores with an Nvidia RTX 3090 GPU

Ti, and (2) 8 AMD Ryzen CPU cores with an AMD RX

6900 GPU XT. Both machines have 128 GB RAM. Our neural

network has 4 fully connected layer; the first layer takes 24

node features and the last layer outputs a per-node scheduling

plan. We train our DNN on the AMD machine, which took

about 18 hours to finish.

Figure 3 shows the performance results of seven PBA prob-

lem instances. The black bar shows the runtime of each PBA

problem on the Intel-Nvidia computing platform, for which

the program was tuned optimally. On the AMD computing

platform, the red bar and the gray bar show the runtimes of

the same program with and without our DNN performance

adaptor. We can see that the optimal scheduling plan for the

Intel-Nvidia platform is not optimal for AMD. For instance,

on the circuit netcard, running the same program directly on

the AMD machine results in 16.3% performance degradation

(61.2s vs 71.2s). With our DNN adaptor, we can close the gap

to 3.3% (61.2s vs 63.2s).

Fig. 3: Performance results of running a GPU-accelerated PBA
program on two different CPU-GPU computing platforms.
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Fig. 4: Inferred scheduling plan for wb dma on the AMD machine.

Another important finding of our adaptor is the significantly

improved performance of tv80 on the AMD machine. Our

adaptor recommends running all tasks on CPUs (i.e., placing

SYCL kernels on host devices) as the problem size of tv80

is too small to benefit GPU computing. However, such a

threshold is difficult to find using general-purpose heuristics

as it depends on many complex parameters with non-linear

interaction with the computing environment. Figure 4 shows

a partial result of the inferred scheduling plan for circuit

wb dma. Our adaptor recommends a different set of kernel

execution parameters (block size × iterations per thread) and

a toggled kernel for the AMD machine.
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