
A High-Performance Heterogeneous
Critical Path Analysis Framework

Yasin Zamani
Department of Electrical & Computer Engineering

University of Utah, Salt Lake City, UT

Tsung-Wei Huang
Department of Electrical & Computer Engineering

University of Utah, Salt Lake City, UT

Abstract—Emphasis on static timing analysis (STA) has shifted
from graph-based analysis (GBA) to path-based analysis (PBA)
for reducing unwanted slack pessimism. However, it is extremely
time-consuming for a PBA engine to analyze a large set of critical
paths. Recent years have seen many parallel PBA applications,
but most of them are limited to CPU parallelism and do not
scale beyond a few threads. To overcome this challenge, we
propose in this paper a high-performance graphics processing
unit (GPU)-accelerated PBA framework that efficiently analyzes
the timing of a generated critical path set. We represent the
path set in three dimensions, timing test, critical path, and pin,
to structure the granularity of parallelism scalable to arbitrary
problem sizes. In addition, we leverage task-based parallelism to
decompose the PBA workload into CPU-GPU dependent tasks
where kernel computation and data processing overlap efficiently.
Experimental results show that our framework applied to an
important PBA application can speed up the state-of-the-art
baseline up to 10× on a million-gate design.

Index Terms—Parallel Programming, Static Timing Analysis (STA),
Path-Based Analysis (PBA), CUDA Graph

I. INTRODUCTION

Static-timing analysis (STA) is an essential step of the integrated
circuit (IC) design flow to verify timing behaviors. STA consists of
graph-based timing analysis (GBA) and path-based timing analysis
(PBA). GBA performs a linear scan on the circuit graph and estimates
the worst timing quantities at each endpoint. GBA is fast, but the
results are pessimistic. Hence, PBA is performed after GBA to reduce
unwanted pessimism by reanalyzing the timing with path-specific
updates [1]. However, PBA is very time-consuming, typically 10-
1000× slower than GBA [2], due to the enormous amount of paths
in modern circuits. There are various strategies to reduce the long
runtimes of PBA [3]–[6]. However, nearly all of them use central
processing unit (CPU) parallelism, and their scalabilities saturate at
a few CPU cores. For example, state-of-the-art PBA algorithms that
leverage task-based parallelism [4], [5] saturates at 8–10 cores. Figure
1 highlights the runtime challenge of PBA.

To reduce the long runtimes of PBA, we must harness the power of
new high-performance parallelism comprising manycore CPUs and
graphics processing units (GPUs). GPUs have become the primary
workhorse behind modern advances in high-performance computing
(HPC) applications. Moreover, since HPC is one of the essential
tools fueling the advancement of electronic design automation (EDA),
therefore, GPU-accelerated EDA tools are one of the fascinating
fields to explore. Compared to the CPU, GPU is very powerful in
data-intensive applications. This unique performance characteristic of
GPU is particularly beneficial for the PBA problem that computes a
large number of data paths (e.g., millions of paths in large designs).
As a successful example, Guo et al. [7] propose a GPU-accelerated

CPUs
R

un
tim

e

CPA
CPU-based Path Analyzer

GPA
GPU-based Path Analyzer

How can we leverage the high-performance GPU computing
techniques to break the runtime bottleneck of

CPU-based critical path analysis?

Fig. 1: Runtime of CPU-based path analyzer (CPA) under different
number of CPU cores.

algorithm for PBA that shows more than 100× speed-up over a CPU
baseline. However, they only target the generation of critical paths
and do not (re)analyze the timing path by path, which is another
essential step of PBA.

This paper aims to leverage the computation power of GPU to
accelerate the path-based timing reanalysis for a generated critical
path set. The challenge of this problem is threefold. First, comput-
ing critical paths involve very irregular patterns because different
paths can have different lengths across different timing tests (e.g.,
hold/setup checks). This irregularity requires strategic decomposition
between CPU and GPU to benefit from heterogeneous parallelism.
Second, to support a large number of paths, we need efficient data
structures to fit computations into relatively limited GPU memory.
Third, GPU architectures are very different from CPUs in thread
scheduling, synchronization, and memory hierarchy. This difference
requires specially designed algorithms and memory access patterns
to achieve high performance.

In this work, we propose a novel CPU-GPU heterogeneous frame-
work to accelerate an essential problem of PBA, reanalyzing the
timing of a generated critical path set. We apply our framework
to an important PBA application, common path pessimism removal
(CPPR). Specifically, we perform a path-specific update to remove
unwanted pessimism from the critical path set generated from an
updated STA graph and regenerate a timing path report ranked by
post-CPPR slacks. We summarize our contributions as follows:

• General heterogeneous PBA framework. We propose a three-
dimensional representation in terms of tests, critical paths, and pins
of path traces. With this cubic representation of the path set, we
can structure the granularity of parallelism to arbitrary problem

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

sizes.
• Task graph-based decomposition. We leverage the power of the

modern CUDA graph to design an efficient parallel decomposi-
tion strategy for the PBA workload. Our decomposition strategy
transforms the workload into a task dependency graph that flows
CPU-GPU dependent operations asynchronously with improved
performance.

• Efficient GPU data structures and kernels. We design GPU-
efficient data structures and algorithm kernels to organize and
compute critical paths. The memory complexity of our algorithm
is linear to the requested critical path number. Furthermore, we
break down our kernels into well-defined algorithm primitives that
can compose efficiently on GPUs.

We apply our framework to an important PBA application, CPPR,
and evaluate our algorithm on real circuit designs with a golden
reference generated by TAU 2014 CPPR Timing Analysis Contest [8],
[9]. Our algorithm can analyze millions of critical paths and generate
a timing report that matches the golden reference result. Compared to
the state-of-the-art PBA engine for CPPR [9], we obtain up to 10×
speed-up on million-gate designs using one GPU. At an extreme, our
algorithm of one CPU and one GPU is 5–10× faster than the baseline
of 16 CPUs. Our algorithm can facilitate PBA to be efficiently
integrated into the early design flow to improve the quality of results
(QoR) with a reasonable turnaround time. We believe this research
opens plenty of opportunities for using high-performance computing
techniques to solve STA problems faster.

II. PATH-BASED TIMING ANALYSIS

Static timing analysis (STA) computes the propagation of time
signals in a circuit from its primary inputs to its primary outputs
through various circuit elements and interconnect. STA models the
circuit as a directed acyclic graph (DAG) G = {V,E}. V is the node-
set that specifies pins of circuit elements. E is the edge set which
specifies pin-to-pin connections. Starting from the primary input(s),
we quantify the instant that a signal reaches an input or output of a
circuit element as the arrival time (at). Similarly, starting from the
primary output(s), we quantify the limits imposed for each arrival
time to ensure proper circuit operation as the required arrival time
(rat). Given an arrival time and a required arrival time, we define
the slack at a circuit node to measure how well timing constraints
are met. A positive slack means the required time is satisfied, and a
negative slack means the required time is in violation.

Graph-based analysis (GBA) is a step of STA used to perform a
worst-case (i.e., early and late) analysis of a circuit over all possible
paths to update the graph with timing information, such as parasitics,
slew, delay, and arrival time [1]. The early-late timing analysis tries
to cover on-chip variations, such as temperature fluctuations and
voltage drops, using the worst-case scenarios. The advantage of
GBA is its fast, linear-time complexity. However, GBA inherently
adds unnecessary pessimism because it only considers the worst-case
timing values, which can lead to an over-conservative design [1].

Path-based analysis (PBA) is another step of STA that is typically
applied after GBA to reanalyze timing with path-specific updates,
such as common path pessimism removal (CPPR), advanced on-chip
variation (AOCV), and slew repropagations. PBA can remove unnec-
essary pessimism from GBA [4]. However, this process is extremely
time-consuming because it involves analyzing an exponential number
of paths. It has been highlighted that EDA vendors should improve
the runtime performance of PBA with new parallel paradigms [10].
Therefore, this paper aims to propose a general PBA framework

Common Point

Clock

Data Path

Clock Path

Common Path

Flip-Flop
Launching

Flip-Flop
Capturing

Circuit
Elements

Combinational

Fig. 2: Clock network pessimism incurs in the common path between
the capturing clock path and the launching clock path of a data path.

by harnessing the power of GPU parallelism and applying it to an
important PBA application, CPPR.

CPPR removes common clock buffer delays from a data path
between its launching path and capturing path. Considering the ex-
ample in Figure 2, when we perform early-late analysis, we compute
the early and the late delays of the common segments between the
launching path and the capturing path. However, this computation
incurs unnecessary pessimism because the signal cannot simultane-
ously experience early and late delays. Unnecessary pessimism can
lead to tests being marked as failing (having negative slack) when in
actuality, they should be passing (having positive slack). CPPR is a
particular step in STA to remove unwanted pessimism by introducing
a path-specific credit, which is the amount of delay of common
segments, to add to the path slack (common point (cp) is the clock
reconverging node of clock-pin of launching and capturing flip-flops):

credit = atlatecp − atearlycp ,

slackpost CPPR = slackpre CPPR + credit.

Problem formulation: Given a set of generated critical paths from
an updated STA graph after GBA, rank these paths based on the
increasing order of their post-CPPR slacks.

While this paper concentrates on an important PBA application,
CPPR, we aim to propose several framework-neutral GPU algorithms
and parallel decomposition strategies that are generally applicable to
other PBA problems. Our emphasis is on reanalyzing the timing of
generated critical paths with path-specific updates rather than tailor-
ing GPU algorithms to a specific PBA problem. This architectural
decision makes our work general and complements the state-of-the-
art GPU-accelerated path generator [7] which can be our input.

III. GPU-ACCELERATED PATH ANALYSIS FRAMEWORK

Figure 3 shows the overview of our GPU-accelerated PBA frame-
work with a specific focus on CPPR application. The gray blocks
and the white blocks denote the computation on GPU and CPU,
respectively. On the GPU side, pentagons show the copying data
between host and device, and rectangles show compute kernels. We
start by constructing a circuit graph from given delay and timing data
files. Then, we build some look-up tables via Euler tour starting at
the root of the clock tree. Then, on the GPU side, we make the sparse
table. After that, We group different paths in different timing tests
and transfer them to the GPU memory. Analyzing critical paths on
the GPU side consists of three main primitive steps: (1) find if. (2)
transform. (3) reduce. In the end, for generating the timing report, we
sort the timing tests and containing critical paths based on computed
post-CPPR slacks.

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

GPU

CPU

Euler Tour

Get Slacks

Make Circuit-Graph

Sort

Make Sparse Table

(a) Analyze Paths

copy

kernel

transform

transform

level table

sparse table

CUDA Graph

(b) Make Sparse Table

path

find_if

reduce

transform

path

find_if

reduce

transform

paths

slacks

test

path

find_if

reduce

transform

path

find_if

reduce

transform

paths

slacks

test

CUDA Graph CUDA Graph

(c) Get Slacks

Fig. 3: Overview of our GPU-accelerated PBA algorithm. We lever-
age the power of the modern CUDA graph to decompose the PBA
workload into a task dependency graph that offloads dependent
GPU operations asynchronously with low kernel launch overheads.
Furthermore, we break down our GPU kernels into general algorithm
primitives, such as find if, transform and reduce, that can be executed
efficiently with existing highly optimized CUDA toolchains.

Path

Test Critical Path Set

Pin

Fig. 4: Parallel decomposition of our path analysis framework in
terms of tests, critical paths, and pins.

0

5

0

8

0

16

Test
Path

P
in

s27

0 5

0

8

Test

P
at
h

s27

0

16

#Pins

Fig. 5: Uneven distribution of paths among tests causes irregular
parallelism on GPU. s27 is a benchmark from TAU 2014 CAD
Contest [8]

A. GPU Data Structures for Circuit Graph and Critical Paths

To offload PBA to GPU, we must efficiently represent the circuit
graph on GPU. We collect all fan-out or outgoing edges of each
vertex is denoted as graph G. Because G is a sparse graph, we use the
Compressed Sparse Row (CSR) format to represent it. CSR is one of
the most common graph formats used in GPU applications [11], [12].
CSR requires three one-dimensional arrays to represent a weighted
directed graph. The format includes a vertex array for row offsets, an
edge array for column values, and a weight array for weights of all
edges. Therefore, CSR is highly memory efficient. The total size of
CSR is only N + 2M for a graph with vertex number N and edge
number M .

In addition to the STA graph, we need to transfer the critical
path set data to the GPU memory. We propose a cubic model to
represent the critical paths. As Figure 4 shows, the set of critical
paths is represented in terms of timing-test, critical path, and pin
of path traces. This model can help us to structure the granularity
of parallelism to arbitrary problem sizes. Another important thing,
in addition to a large number of critical paths, is the very different
lengths of paths. Figure 5 shows this issue for the simple circuits
s27 [8]. We know that subgroups of different paths usually have
the same properties that can be shared for less execution time and
more efficient use of memory (for example, a subset of paths may
have the same required arrival time, or they may all have the same
sub-path). Therefore, we separate paths into different groups based
on these similarities and then dispatch each group into thousands
of GPU threads. Our strategy scales to millions of paths during the
analyzing process.

This step aims to leverage the power of the CUDA graph to design
an efficient parallel decomposition strategy for the PBA workload
that can transform the workload into a task dependency graph that
flows GPU-dependent operations (e.g., kernel or memory copy) asyn-
chronously with improved performance. Figure 6 shows the part of
the CUDA graph for benchmark s27. CUDA has recently introduced
a new graph programming model, namely CUDA graph [13], that
allows users to describe a large GPU workload in a single task
graph and offload the task graph directly onto a GPU using a single
CPU call. The new CUDA graph execution model has demonstrated
significant success. For instance, the recent research at 2021 Nvidia
GTC has shown over 3× performance improvement in TensorFlow
by replacing stream-based execution with CUDA graph [14].

Because the number of critical paths is extremely large and we need
to call several kernels to process each path, it spends a significant
amount of time on the CPU to offload kernels to the GPU. Therefore,
by launching multiple GPU operations through a single CPU call, we
can overcome the overheads of many kernel calls. For this reason,
we first categorize critical paths into corresponding timing tests, then
put several tests in groups. By describing a GPU workload in a
task dependency graph, rather than aggregated GPU operations and
dependencies, we allow the runtime to run whole-graph scheduling
optimization to improve performance significantly.

B. GPU Kernels for Critical Path Analysis

Algorithm 1 shows the overall path analysis function. It consists
of two main stages in the GPU side: making sparse table and getting
pessimism-free slacks. The first stage aims to tabulate the common
path information for a quick lookup of credit, while the goal in the
second stage is calculating the post-CPPR slacks to identify the top-
k critical paths from a given test. The generic framework of our
project is developed based on analyzing timing tests (i.e., hold and
setup tests) independently. In other words, each test is treated as an

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

AnalyzePaths

CUDAGraph::MakeSparseTable CUDAGraph::GetSlacksCUDAGraph::GetSlacks

MakeSparseTable

barrier

GetSlacksGetSlacks

level_table

transform

transform

paths

find_if find_if

transform transform

slacks

reduce reduce

paths

find_if find_if

transform transform

slacks

reduce reduce

paths

find_if find_if find_if

transform transform transform

slacks

reduce reduce reduce

Fig. 6: Partial CUDA graph for s27 benchmark. We use the CUDA graph to design an efficient parallel decomposition strategy for the PBA
workload. We transform the workload into a task dependency graph that can flexibly extend to accommodate different groups of tests. Each
CUDA graph of many GPU-dependent operations (e.g., kernel, memory copy) will be submitted to the CUDA runtime using a single CPU
call to reduce the kernel call overheads. The CUDA runtime will schedule these GPU operations asynchronously.

independent input without dependency on the others. For structuring
the granularity of parallelism, a readily available parallel extension
can be carried out by evoking multiple threads with each operating
on each test. With the shared lookup table and the circuit graph,
we impose the low memory requirement by maintaining only private
information for each thread. We can simultaneously send several tests
to the maximum number of CPU cores supported by the machine can
to the GPU side for path analysis.

Algorithm 1 ANALYZEPATHS

Input: critical paths grouped in tests
Output: sort paths in each test based on post-CPPR slacks

1: delay, at← MAKECIRCUITGRAPH

2: E,L,H ← EULERTOUR

3: M ← MAKESPARSETABLE(L)
4: slacks← GETSLACKS(tests, delay, at, E, L,H,M)
5: comp← (a, b)⇒ slacks[a] < slacks[b] . comparison
6: for all test ∈ tests do
7: SORT(paths ∈ test, comp)

1) Make Saprse Table on GPU: The goal of this step is to make
a sparse table on GPU. With the shared sparse table, we impose the
least memory requirement by maintaining only private information
about the critical paths for each thread. By creating the sparse table
on the GPU side, we save time transferring sparse table data from
host to device. Since each row in the sparse table depends only on
the previous row, we can use the transform function to construct each
row according to the information in the previous row.

In graph theory, the clock reconverging node of two nodes in the
clock tree is equivalent to the two nodes’ lowest common ancestor
(LCA). The LCA of two nodes u and v in a tree is the lowest (i.e.,
deepest) node with both u and v as descendants, where we define
each node to be a descendant of itself. The arrival time information

of each node in the clock tree can be precomputed, and therefore
the credit of two nodes can be obtained immediately once their LCA
is known. Many state-of-the-art LCA algorithms have been invented
over the last decades. The table-lookup algorithm by [5] is employed
as our LCA engine due to its simplicity and efficiency. Since circuit
graph values will not change, the sparse table is allowing O(1) query
answering with O(N logN) build time [9]. For a given clock tree,
we build four tables as follows:

• The Euler table E records the identifiers of nodes in the Euler
tour of the clock tree; E[i] is the identifier of ith visited node.

• The level table L records the levels of nodes visited in the Euler
tour; L[i] is the level of node E[i].

• The occurrence table H[v] records the index of the first occur-
rence of node v in the array E.

• Two-dimensional table M [i][j] stores the index of the minimum
value in the level table starting at i having length 2i [15].

Tables E, L, and H can be built using depth-first search starting
at the root of the clock tree [16]. The procedure of building these
tables is done before calling the Algorithm 2. Algorithm 2, fullfiles
the table M via bottom-up dynamic programming with the follow
[9]:

M [i][j] =


i, j = 0

M [i][j − 1], L[M [i][j − 1]] ≤
L[M [i+ 2j−1][j − 1]]

M [i+ 2j−1][j − 1], o.w.

Provided the table M has been processed, the value of minL(a, b)
can be computed by selecting two blocks that entirely cover the
interval between a and b and returning the minimum between them.
Let c be blog(b− a+ 1)c and assume b > a, the following formula

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

is used for computing the value of minL:

minL(a, b) =


M [a][c], L[M [a][c]] ≤

L[M [b− 2c + 1][c]]

M [b− 2c + 1][c], o.w.

As a result, the LCA of a node pair (u, v) is the node situated on
the smallest level between the first occurrence of v and the first
occurrence of u. Denoting the index of the node with the smallest
level between the index a and b in the level table L as minL(a, b),
the LCA of a given node pair (u, v) is

lca(u, v) = E[minL(H[u], h[v])].

Algorithm 2 MAKESPARSETABLE

Input: level table L
Output: sparse table M

1: n← |L| . number of columns
2: m← dlog(n)e . number of rows
3: M ← GPU::MALLOC(n×m)
4: first← address of M [0][0]
5: last← address of M [0][n]
6: GPU::IOTA(first, last, 0) . first row (i = 0)
7: for i← 1 to m do . other rows (i > 0)
8: first1 ← address of M [i− 1][0]
9: last1 ← address of M [i− 1][n− 2i−1]

10: first2 ← address of M [i− 1][2i−1]
11: output← address of M [i][0]
12: op← (a, b)⇒ L[a] < L[b] ? a : b . binary operation
13: GPU::TRANSFORM(first1, last1, first2, output, op)

2) Get Slacks on GPU: This step aims to update slacks of paths in
parallel by removing common path pessimism using GPU. Updating
slacks is the most time-consuming step due to a large number of
critical paths. Using algorithms find-if, transform, and reduce as
primitive, we can identify the top-k critical paths. We first find the
clock pin of the launching flip-flop using the find if function for a
given path. Since we know the arrival time of the founded pin, we
consider only the part from this pin to the end of the path (data pin
of capturing flip-flop) to continue the analysis. Using the transform
function, we map both consecutive pins to arc delay between them.
Finally, using the reduce function, we add all the delays mapped from
the previous step and calculate the delay of the path.

Algorithm 3 calculates post-CPPR slacks for all paths of a given
test. The outermost for loop starts at line 1, is developed based
on one test at one time. In other words, each test is treated as
an independent input without dependency on the others. We can
simultaneously transfer data of several tests with up to the maximum
number of CPU cores supported by the machine to the GPU side for
path analysis. The inner loop starts at line 2, is a parallel extension
to operating on each path of the selected test. Line 6 finds the clock
pin of launching flip-flop. Line 13 calculates the pre-CPPR slacks of
the given path. Using tables E, L, H , and M as infrastructure, we
can retrieve Line 16 calculates the credit of two given nodes in the
clock tree in constant time.

IV. EXPERIMENTAL RESULTS

This section demonstrates that our GPU-Accelerated algorithm can
generate an accurate path report (tests/paths must be sorted based on
post CPPR slacks) on numerous critical paths faster than the CPU
path analyzer. We performed our experiments on a 64-bit CentOS

Algorithm 3 GETSLACKS

Input: critical paths grouped in tests
Input: arc delays delay
Input: clock-tree arrival times at
Input: Euler table E, level table L, occurrence table H , and sparse

table M to calculate lca
Output: post-CPPR slacks

1: for all test ∈ tests do . parallel on CPU
2: for all path ∈ test do . parallel on GPU
3: first← address to the beginning of path
4: last← address to the end of path
5: p← (pin)⇒ pin ∈ clock-tree . unary predicate
6: src← GPU::FIND IF(first, last, p)
7: next← address to the successor of src
8: output← address of delay
9: op← (u, v)⇒ delayu→v . binary operation

10: GPU::TRANSFORM(src, last, next, output, op)
11: first← address to the beginning of delay
12: last← address to the end of delay
13: slacks[path]← GPU::REDUCE(first, last, atsrc)
14: tgt← clock-pin of capturing flip-flop
15: cp← lca(src, tgt) . common point
16: credit← atlatecp − atearlycp

17: slacks[path]← slacks[path] + credit

Stream 8 Linux machine with one NVIDIA GeForce RTX 3060 GPU
(Compute Capability 8.6) and eight 2.90GHz Intel Core i7 CPU cores.
We compiled our programs with Nvidia CUDA NVCC 11.1 device
compiler and GNU GCC 9.2.1 host compiler, where optimization flag
-O3 and C++17 standard -std=c++17 are enabled. We used 1024
threads per block for all kernel configurations and used Taskflow [17]
for our task graph programming. We considered the top-ranked UI-
Timer from TAU 2014 CAD Contest [9] as our CPU path analyzer
baseline. We evaluated our algorithm on the largest TAU 2014 Timing
Contest benchmarks [8] which are described in Table I.

A. Path Report Accuracy

Our algorithm can generate an accurate timing report. In order to
evaluate its accuracy, we used our algorithm and UI-Timer to generate
separate timing reports with the same number of critical tests/paths.
We took the absolute slack difference between every pair of critical
tests/paths in two reports and recorded the maximum difference value.
We performed this evaluation with up to a million critical paths (1024
tests and 1024 paths for each test) on the eight largest TAU 2014
Timing Contest benchmarks. The statistics of each benchmark are
shown in Table I. Our algorithm reports identical critical paths as
UI-Timer.

B. Runtime Performance

Our algorithm can accelerate finding top critical tests/paths. We
compared the runtime of our algorithm (1 GPU) with the runtime
of the UI-Timer as CPU path-based analyzer by reporting top
critical paths on the eight largest benchmarks in TAU 2014 Timing
Contest [8]. Details of our experimental results are shown in Table I.
We can observe that our algorithm achieves speed-up on million-gate
designs over UI-Timer. We speed-up the baseline 6.7× on vga lcd
(0.5M gates), 6.1× on Combo7 (2.8M gates), and 9.7× on Combo6
(3.6M gates). Our algorithm also achieves speed-up on medium
benchmarks, such as 1.9× on des perf, 2.5× on Combo4.

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

TABLE I: Elapsed time (seconds) comparison between CPA and GPA. Benchmarks are from TAU 2014 CAD contest [8].

Benchmark |V| |E| |C| # Tests # Paths CPA GPA CPA GPA
(1 CPU) (1 CPU, 1 GPU) (8 CPUs) (8 CPUs, 1 GPU)

des perf 330538 404257 88751 19764 1682 14.130 7.550 (1.9x) 10.402 7.524 (1.4x)
vga lcd 449651 525615 172065 50182 5281 35.738 5.368 (6.7x) 30.250 5.312 (5.7x)
Combo2 260636 284091 171529 29574 62938 21.288 20.525 (1.0x) 13.951 20.235 (0.7x)
Combo3 181831 284091 73784 8294 129854 10.606 16.067 (0.7x) 7.892 16.077 (0.5x)
Combo4 778638 866099 469516 53520 19227963 76.661 30.264 (2.5x) 70.771 29.543 (2.4x)
Combo5 2051804 2228611 1456195 79050 19227963 293.538 58.676 (5.0x) 270.182 58.658 (4.6x)
Combo6 3577926 3843033 2659426 128266 19227963 786.822 81.402 (9.7x) 729.348 80.934 (9.0x)
Combo7 2817561 3011233 2136913 109568 19227963 532.569 87.558 (6.1x) 501.214 87.519 (5.7x)

|V|: size of node set. |E|: size of edge set. |C|: size of clock tree. #Tests: number of hold/setup tests. #Paths: max number of data paths per test.

1 2 4 8 16

40

60

80

Number of CPUs

Ti
m

e
(s

)

Combo4

CPA
GPA

1 2 4 8 16

40

60

80

Number of CPUs

Ti
m

e
(s

)

Combo5

CPA
GPA

1 2 4 8 16

200

400

600

800

Number of CPUs

Ti
m

e
(s

)

Combo6

CPA
GPA

1 2 4 8 16

100

200

300

400

500

Number of CPUs

Ti
m

e
(s

)

Combo7

CPA
GPA

Fig. 7: Runtime comparison of CPA and GPA under a different
numbers of CPUs for the four largest benchmarks.

To demonstrate our performance advantage over the baseline,
Figure 7 plots the speed-up curve of our algorithm over the baseline
across different numbers of CPU cores. We observe that baseline
saturates’ performance improves as the number of cores increases,
and there is always a significant performance margin to ours. With the
baseline at any CPU concurrency of multiple cores, our algorithms are
still faster than baseline on the four largest designs Combo4, Combo5,
Combo6, and Combo7. In fact, according to our experiments, our
GPU-accelerated PBA algorithm is always faster than baseline in all
designs larger than vga lcd (Table I shows that for small circuits such
as Combo2 and Combo3, the CPA is faster than the GPA), regardless
of the number of CPU cores the baseline used.

Finally, we investigate the scalability of our GPU-accelerated PBA
algorithm by varying the input parameter of the path count from 256
to 4096 for 1024 tests and test count from 256 to 4096 for the 1024
paths. The performance comparing GPA with CPA on the largest
circuit, Combo6, is characterized in Figure 8. We see that all runs
are accomplished by our GPA algorithm faster than CPA, and the
runtime gap is evident. To sum up, in precise, these results have
justified the practical viability of our GPA algorithm.

V. ACKNOWLEDGMENT

This work is supported by an NSF Grant CCF-2126672 and
NumFOCUS Small Development Grant under the Taskflow project.

256 1,024 2,048 4,096

0

200

400

600

800

Number of Paths

Ti
m

e
(s

)

1 CPU

CPA
GPA

256 1,024 2,048 4,096

0

200

400

600

Number of Paths

Ti
m

e
(s

)

8 CPUs

CPA
GPA

256 1,024 2,048 4,096

0

200

400

600

800

Number of Tests

Ti
m

e
(s

)

1 CPU

CPA
GPA

256 1,024 2,048 4,096

0

200

400

600

800

Number of Tests

Ti
m

e
(s

)

8 CPUs

CPA
GPA

Fig. 8: Runtime comparison of CPA and GPA under a different
number of Path/Tests for the largest benchmark, Combo6.

VI. CONCLUSION

This paper has introduced a novel general CPU-GPU heteroge-
neous PBA framework to overcome the runtime bottleneck of CPU-
based PBA. We decompose the critical path analysis into multiple
GPU-accelerated primitive kernels. Moreover, we leverage the cubic
path representation method to design GPU-efficient data structures
and structure parallelism’s granularity scalable to arbitrary problem
sizes. We apply our framework to an important PBA application,
the CPPR problem. Experiments show that our algorithm achieves
up to 10× speed-up on million gate designs over the state-of-the-
art PBA algorithms. Our algorithm can promote PBA in the earlier
stage of design closure flow to improve QoR and turnaround time.
We believe this research opens plenty of opportunities for using high-
performance computing techniques to solve STA problems faster
and will inspire other workloads that share similar performance
characteristics.

Our future work plans to extend our PBA algorithm to multiple
GPUs and implement a GPU-efficient indirect sorting algorithm to
work well on uneven distribution paths. Furthermore, we plan to
renovate the GPU-parallel infrastructure of existing heterogeneous
STA algorithms [7], [18] using GPU task graph parallelism and
programming models [19].

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

REFERENCES

[1] J. Bhasker et al., Static Timing Analysis for Nanometer Designs: A
Practical Approach. Springer, 2009.

[2] T. Huang, M. Wong, D. Sinha, K. Kalafala, and N. Venkateswaran, “A
distributed timing analysis framework for large designs,” in ACM/IEEE
DAC, 2016, pp. 1–6.

[3] T.-W. Huang and M. Wong, “OpenTimer: A high-performance timing
analysis tool,” in IEEE/ACM ICCAD, 2015, pp. 895–902.

[4] T. Huang and M. Wong, “UI-Timer 1.0: An Ultrafast Path-Based Timing
Analysis Algorithm for CPPR,” IEEE TCAD, vol. 35, no. 11, pp. 1862–
1875, 2016.

[5] T. Huang, C. Lin, G. Guo, and M. Wong, “Cpp-Taskflow: Fast Task-
Based Parallel Programming Using Modern C++,” in IEEE IPDPS, 2019,
pp. 974–983.

[6] T.-W. Huang, G. Guo, C.-X. Lin, and M. Wong, “opentimer v2: A new
parallel incremental timing analysis engine,” IEEE TCAD.

[7] G. Guo, T.-W. Huang, C.-X. Lin, and M. Wong, “Gpu-accelerated path-
based timing analysis,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2021, pp. 1–6.

[8] “Tau 2014 contest: Pessimism removal of timing analysis,” http://sites.
google.com/site/taucontest2014.

[9] T.-W. Huang, P.-C. Wu, and M. D. Wong, “Ui-timer: An ultra-fast clock
network pessimism removal algorithm,” in 2014 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). IEEE, 2014,
pp. 758–765.

[10] “EDA Vendors Should Improve The Runtime of PBA,” https://www.
electronicdesign.com/technologies/eda/article/21796368.

[11] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[12] N. Bell and M. Garland, “Implementing sparse matrix-vector multipli-

cation on throughput-oriented processors,” in IEEE/ACM SC, 2009, pp.
1–11.

[13] “Nvidia cuda graph,” https://developer.nvidia.com/blog/cuda-graphs/.
[14] A. A. Awan, J. Bédorf, C.-H. Chu, H. Subramoni, and D. K. Panda,

“Scalable distributed dnn training using tensorflow and cuda-aware
mpi: Characterization, designs, and performance evaluation,” in 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 2019, pp. 498–507.

[15] M. A. Bender and M. Farach-Colton, “The lca problem revisited,” in
Latin American Symposium on Theoretical Informatics. Springer, 2000,
pp. 88–94.

[16] R. E. Tarjan and U. Vishkin, “Finding biconnected componemts and
computing tree functions in logarithmic parallel time,” in 25th Annual
Symposium onFoundations of Computer Science, 1984. IEEE, 1984,
pp. 12–20.

[17] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A lightweight
parallel and heterogeneous task graph computing system,” IEEE Trans-
actions on Parallel and Distributed Systems (TPDS), 2021.

[18] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing
analysis,” in 2020 ACM/IEEE International Conference on Computer-
aided Design (ICCAD), 2020.

[19] D.-L. Lin and T.-W. Huang, “Efficient GPU Computation using Task
Graph Parallelism,” in 2021 European Conference on Parallel and
Distributed Computing (Euro-Par).

978-1-6654-2369-4/21/$31.00 ©2021 IEEE

