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Abstract—The ever-increasing size of modern deep neural
network (DNN) architectures has put increasing strain on the
hardware needed to implement them. Sparsified DNNs can
greatly reduce memory costs and increase throughput over
standard DNNs, if the loss of accuracy can be adequately
controlled. However, sparse DNNs present unique computational
challenges. Efficient model or data parallelism algorithms are
extremely hard to design and implement. The recent effort
MIT/IEEE/Amazon HPEC Graph Challenge has drawn atten-
tion to high-performance inference methods for large sparse
DNNs. In this paper, we introduce SNIG, an efficient inference
engine for large sparse DNNs. SNIG develops highly optimized
inference kernels and leverages the power of CUDA Graphs to
enable efficient decomposition of model and data parallelisms.
Our decomposition strategy is flexible and scalable to different
partitions of data volumes, model sizes, and GPU numbers. We
have evaluated SNIG on the official benchmarks of HPEC Sparse
DNN Challenge and demonstrated its promising performance
scalable from a single GPU to multiple GPUs. Compared to the
champion of the 2019 HPEC Sparse DNN Challenge, SNIG can
finish all inference workloads using only a single GPU. At the
largest DNN, which has more than 4 billion parameters across
1920 layers each of 65536 neurons, SNIG is up to 2.3× faster
than a state-of-the-art baseline under a machine of 4 GPUs.

Index Terms—Sparse Neural Network, Task Graph Parallelism

I. INTRODUCTION

Larger deep neural network (DNN) models have brought

significant quality improvement to several fields, including

natural language processing, speech recognition, and image

classification [1]–[3]. To relieve the increasing strain on the

hardware needed to deploy them, much research over the past

decades has focused on the sparsification of DNNs in the inter-

est of reduced storage and runtime costs [4]–[6]. Computing

large sparse DNNs presents unique computational challenges

and scaling difficulties. Sparseness can make the application

of the DNN on current processors extremely inefficient. This

inefficiency limits the size of data to what can be held in

GPU memory, or it requires a high-end, expensive cluster of

computers to make up for this inefficiency [7]. Also, sparse

DNN inference presents unique computational challenges from

training, because the kernel efficiency largely depends on non-

zero entries that vary from layer to layer. To address these

problems for advancing emerging sparse machine learning

(ML) systems, the 2019 MIT/IEEE/Amazon HPEC Graph

Challenge has developed Sparse DNN Challenge to encourage

new solutions for sparse DNN inference [8]. Table I lists the

statistics of each sparse DNN. The largest network contains

over 4 billion nonzero parameters across 1920 layers each of

65536 neurons, adding up to 100 GB memory storage.

Neurons/Layers 120 480 1920 Bias Size Image Nonzeros

1024 3.9M 15.7M 62.9M -0.30 1.25 GB 6,374,505
4096 15.7M 62.9M 251.7M -0.35 5.40 GB 25,019,051
16384 62.9M 251.7M 1.0B -0.40 22.70 GB 98,858,913
65536 251.7M 1.0B 4.0B -0.45 94.70 GB 392,191,985

TABLE I
THE STATISTICS OF EACH DNN BENCHMARK IN THE CHALLENGE [8].

The challenge of computing large sparse DNN inference is

twofold, kernel and decomposition algorithms, both of which

require strategic designs to benefit from parallelism. Existing

kernel algorithms focus on optimizing sparse matrix-matrix

multiplication kernels or carefully maintaining data sparsity

during the weight propagation [9]–[12]. However, most of

these approaches require models to sit in the GPU memory,

and they are difficult to operate on partitioned pieces, due

to the cost of maintaining consistent sparse matrix structures

between partitions along with iterations. Existing decomposi-

tion strategies divide large data or models into partitions and

distribute partitions across GPUs [13]–[16]. Partitioning data

and models can both improve parallelism and alleviate the

tension on hardware constraints, including memory limitations

and communication bandwidths on GPUs. However, efficient

decomposition algorithms are extremely hard to design and

implement. We need to address complexity among GPU ca-

pacity, scaling flexibility, and inference efficiency. To simplify

the design, pipeline parallelism has been a popular choice

in existing frameworks [17]–[20]. The idea of the pipeline

is simple and easy to implement, but it suffers from many

performance problems, including synchronous execution, im-

balanced pipeline stages, and limited pipeline depth.

As a consequence, we introduce SNIG1, an efficient large

sparse DNN inference engine using task graph parallelism.

SNIG develops highly optimized inference kernels that can

effectively avoid unnecessary computation incurred by zero

entries during the inference iterations. We leverage the power

of modern CUDA Graph [21], [22] to enable efficient decom-

1source code: https://github.com/dian-lun-lin/SNIG



position of model and data parallelisms. Our decomposition

strategy transforms a partitioned inference workload into a task

dependency graph that flows CPU-GPU operations naturally

with the graph structure, providing improved scheduling effi-

ciency and runtime asynchrony. Compared with pipeline-based

frameworks, SNIG is more flexible and cost-efficient in fitting

together partitioned data and models into different GPUs

under hardware constraints. We demonstrate the flexibility and

efficiency of SNIG on the 12 large sparse DNNs provided by

the 2019 HPEC Sparse DNN Challenge [8]. SNIG is able

to complete all DNNs using only one RTX 2080 Ti GPU

of 11 GB memory, and we solve the largest DNN by 2.27×
faster than the 2019 champion solution developed by Bisson

and Fatica (“BF" method for brevity) [17]. Compared with a

pipeline baseline inspired by GPipe [18], SNIG is faster at

almost all networks (up to 2.19× speed-up) and scales better

on multiple GPUs. We believe SNIG stands out as a unique

inference engine for large sparse DNNs, given the ensemble

of algorithm tradeoffs and decomposition decisions we have

made.

II. PROBLEM FORMULATION OF LARGE SPARSE DNN

INFERENCE

We target on the 2019 HPEC Sparse DNN Challenge, which

is based on a mathematically well-defined DNN inference

computation and can be implemented in any programming en-

vironment [8]. The input data, Y0, is derived from the MNIST

handwritten letters by resizing each 28×28 pixel image to

32×32 (1024 neurons), 64×64 (4096 neurons), 128×128

(16384 neurons), and 256×256 (65536 neurons). The weight

matrices of each sparse DNN, including the bias vectors, are

generated by the RadiX-Net synthetic sparse DNN generator

with a number of desirable properties such that participants can

focus on the difficult, computational part of the problem [23].

The inference problem is to compute Yl+1 = h(YlWl+Bl) for

each layer where h(y) = max(y, 0) is a nonlinear function of

rectified linear unit (ReLU). For the Sparse DNN Challenge,

h(y) has an upper limit set to 32. The surrounding I/O and

verification provide the context for each sparse DNN inference

that allows rigorous definition of both the input and the output.

Table I lists the statistics of each sparse DNN and its input

image set. Loading the smallest DNN can take gigabytes of

memory using single-precision floating numbers. Preloading

all matrices to GPUs is impractical and discouraged.

III. STATE OF THE ART: THE BF AND PIPELINE METHODS

The BF method [17] is implemented with CUDA+OpenMP.

Each GPU owns a part of the input matrix and computes

the inference kernel iteratively by one OpenMP thread. At

each iteration, each GPU executes two kernels, one for the

inference and the other for calculating the non-empty row

indices in the resulting matrix. After all GPUs complete

execution, the OpenMP threads compute the new global list

of non-empty rows and repartition the non-empty rows evenly

among the GPUs. However, such a load-balancing method

requires communication between CPUs and GPUs at each

iteration, resulting in huge overhead. Also, to compute the

list of non-empty rows, all GPUs need to be synchronized

at each iteration. Synchronization can lead to unnecessary

waiting time and waste computing power of GPUs. Besides,

BF requires the entire input data to sit in GPUs for imple-

menting load balancing. Similar problems also exist in other

pipeline-based frameworks. For example, GPipe [18] proposes

pipelining computation across GPUs and synchronizing data

transfers stage by stage. The efficiency and scalability are

largely limited by the size of partitioned data and available

GPU resources that decide the degree of pipeline parallelism.

IV. SNIG

At a high level, SNIG describes the inference workload in a

task graph comprising both data- and model-level parallelisms.

Our task graph can scale to arbitrary sizes of DNN and input

data under different numbers of GPUs. We develop an efficient

kernel inside the task graph that computes only necessary

entries during the inference iterations. Our in-kernel pruning

strategy avoids unwanted computation incurred by sparsified

network and data, in no need of additional CPU-GPU or GPU-

GPU synchronization to redistribute input data among GPUs.

A. Task graph parallelism

Fig. 1. Architecture of SNIG.

Figure 1 shows the overview of SNIG. SNIG defines the

inference workload as a task dependency graph that iterates

two stages: fetch and infer. At the fetch stage, a CPU task

grabs a batch of input data of up to size batch_size. Users

can tune batch_size based on available GPU memory. To

have multiple threads fetch data at the same time, we use

an atomic counter to represent the remaining size of data. At

the infer stage, a GPU task computes the inference of the

batch on a GPU. Each GPU task consists of a GPU task

dependency graph where each node represents one of the

three GPU operations, host-to-device (H2D) copy, device-to-

host (D2H) copy, and kernel tasks; each edge represents the

dependency of two GPU operations. We leverage the power

of modern cudaGraph [21] to offload a GPU task dependency

graph using a single CPU call, thus reducing overheads. The

architecture of SNIG is decentralized. There is no local or

global CPU-GPU synchronization during the inference on a

dataset.

We transpose weight matrices and store them using the

Compressed Sparse Column (CSC) format. Since preloading

all models to the GPU is impossible due to memory limit, we



only keep up to num_weights weight buffers (W 0, W 1, ...,

Wnum_weights−1) on a GPU at a time. All weight buffers have

the same size equal to the maximum size of Wl. More weight

buffers result in a higher overlap between data communication

and kernel computation. Since the inference at one layer only

depends on the result from the previous layer, we allocate

for each GPU two result buffers Y 0 and Y 1 each of size

batch_size×num_neurons (number of neurons) to perform

rolling swap for space optimization. Each buffer can be

accessed via modulo operation on 2; Inferl%2(l) represents

applying the inference kernel to Wl using Y l%2 as input and

Y (l+1)%2 as output. After completing the inference at the

last layer, the GPU identifies the categories (predicted digits).

Users can configure different batch_size and num_weights
based on available GPU memory to fit arbitrary sizes of models

and input data.

B. Inference kernel

Fig. 2. Illustration of our inference kernel (Algorithm 1).

At the infer stage, our inference kernel consists of two

parts: forward feeding and incremental memory resetting.

Figure 2 illustrates one iteration of one row of input data

in our kernel. To improve parallelism, we divide each input

data into num_secs sections where each of sec_size is

num_neurons/num_secs. Since each GPU keeps Y 0 and

Y 1 to perform rolling swap, we allocate for each GPU two

batch_size × num_secs boolean buffers, is_nonzero_row0

and is_nonzero_row1, to record whether a section of data

contains nonzero elements. At the beginning of the inference

kernel, we inspect each entry in is_nonzero_row0[r]. If there

exists at least one true value, meaning that there is at least one

nonzero element in rth input data, we enter forward feeding.

The forward feeding performs matrix multiplication followed

by ReLU and passes the result to the next layer via rolling

swap. We skip input section si (Y 0[r][k], sec_size×si ≤ k <
sec_size× (si + 1)) that contains only zero entries indicated

by is_nonzero_row0[r][si] to avoid unnecessary computation.

During the matrix multiplication, we can further skip zero

input entries. Taking advantage of rolling swap, we perform

incremental memory resetting to reset buffers. If all entries

in is_nonzero_row0[r] are false, we reset the output section

so (Y 1[r][k], sec_size × so ≤ k < sec_size × (so + 1))

including nonzero elements based on is_nonzero_row1[r][so].
This largely avoids the overhead to reset the entire linear buffer

for the next iteration to use. Our implementation computes

each output section so of each data in parallel and calculates

only necessary entries during inference iterations.

Algorithm 1 presents the details of our kernel. The

grid dimension is (batch_size, num_secs) and the block

dimension is (2, 512). We allocate 4×sec_size byte

of external shared memory. The kernel is launched by

<<<(batch_size, num_secs), (2, 512), 4×sec_size>>>.

Each block computes an output section so of one row of input

data independently.

At the beginning, each block Blockr,so in the grid de-

termines to execute either forward feeding or incremental

memory resetting. We use is_all_zero to record if all entries

in is_nonzero_row0[r] are false (line 5-8). If is_all_zero is

true, that is, all elements in Y 0[r] are zero, Blockr,so enters

incremental memory resetting. During incremental memory re-

setting, if is_nonzero_row1[r][so] is true, Blockr,so resets all

elements of so to zero and toggles is_nonzeero_row1[r][so]
to false (line 10-16). Otherwise, it returns directly (line 17).

Blockr,so starts forward feeding if is_all_zero is false (line

19-52). Each block declares a shared memory array results
size of sec_size to store results (line 19) and initializes

results to the bias value directly (line 20-22). To avoid

synchronization, we use a boolean array is_nonzero size of

2 to record whether results has nonzero values (line 23-

24, line 49). Blockr,so iterates all input sections to compute

results (line 26). If the current entry in is_nonzero_row0[r]
is false, meaning that the current input section si contains

only zero elements, we skip all elements in si directly (line

27-29). Otherwise, all threads along y dimension loop through

all entries in si (line 31). We further skip to the next one if

the current input value is zero (line 33-35). All threads along

x dimension read col_w (line 36-37) and iterate the weight

values and the weight row indices (line 38-40). To compute

each so independently, we transform the dimension of each

CSC weight matrix from (num_neurons, num_neurons) to

(num_neurons, num_secs × num_neurons). All column

indices are shifted by j = j+num_neurons× (i/sec_size),
where (i, j) is the nonzero index of the weight matrix. In line

36-37, we read column indices of the weight matrix via adding

the offset. Then, we multiply each nonzero input entry with

weight value and add the result to the corresponding location

of results (line 41).

After computing results, Blockr,so loops through the

results (line 46). It computes ReLU, writes the result to

each element in so, and sets is_nonzero[1] to true if there

exists a nonzero result in so (line 47-49). Finally, we tog-

gle is_nonzero_row1[r][s] to either true or false based on

is_nonzero[1] (line 52).

V. EXPERIMENTAL RESULTS

We evaluate SNIG’s performance on the official

MIT/IEEE/Amazon HPEC Sparse DNN Challenge Dataset [8].

All experiments ran on a Ubuntu Linux 5.0.0-21-generic x86



Algorithm 1: Inference kernel

Input: col_w: array of column offsets of the weight matrix
Input: row_w: array of row indices
Input: val_w: array of values

1 r ← block.x
2 so ← block.y
3 tid← thread.y * blockDim.x + thread.x
4 num_threads← blockDim.x * blockDim.y
5 is_all_zero← true
6 for si ← 0; si < num_secs; ++si do

7 is_all_zero &= !is_nonzero_row0[r][si]
8 end
9 if is_all_zero == true then

10 if is_nonzero_row1[r][so] == true then
11 for j ← tid; j < sec_size; j += num_threads do

12 Y 1[r][sec_size * so + j] = 0
13 end
14 __syncthreads()

15 is_nonzero_row1[r][so]← false
16 end
17 return
18 end
19 extern __shared__ results[]
20 for k ← tid; k < sec_size; k += num_threads do
21 results[k]← bias
22 end
23 __shared__ is_nonzero[2]
24 is_nonzero[1]← false
25 __syncthreads()
26 for si ← 0; si < num_secs; ++si do

27 if !is_nonzero_row0[r][si] then
28 continue
29 end
30 j ← thread.y + si ∗ sec_size
31 for j; j < (si + 1) * sec_size; j += blockDim.y do

32 yval ← Y 0[r][j]

33 if yval == 0 then
34 continue
35 end

36 w− ← col_w[so * num_nurons + j] + thread.x

37 w+ ← col_w[so * num_neurons + j + 1]
38 for k ← w−; k < w+; k += blockDim.x do
39 wrow ← row_w[k]
40 wval ← val_w[k]
41 atomicAdd(&results[wrow - so * sec_size],

yval * wval)
42 end
43 end
44 end
45 __syncthreads()
46 for i ← tid; i < sec_size; i += num_threads do
47 v ← min(32, max(results[i], 0))

48 Y 1[r][so * sec_size + i]← v
49 is_nonzero[v 6= 0]← true
50 end
51 __syncthreads()

52 is_nonzero_row1[r][so] = is_nonzero[1]

64-bit machine with 40 Intel Xeon Gold 6138 CPU cores

at 2.00 GHz, 4 GeForce RTX 2080 Ti GPUs with 11 GB

memory, and 256 GB RAM. We compiled all programs using

Nvidia CUDA nvcc 10.1 on a host compiler of GNU GCC-

8.3.0 with C++14 standards -std=c++14 and optimization

flags -O2 enabled. All data is an average of ten runs with

float type.

A. Baseline

We consider BF and GPipe∗ methods for our baseline. The

BF method is the champion solution of the 2019 HPEC Sparse

DNN Challenge [17]. We implemented the BF method and

its kernel using CUDA streams and OpenMP. The original

BF method relies on NVLink to transparently exchange data

among GPUs using unified addressing. Since we do not have

NVLink, such a process can be very time-consuming. We

manually partition the input data in the beginning evenly

across GPUs and spawn one OpenMP thread to call the

inference function per GPU. We implemented the GPipe∗

method based on GPipe [18]. GPipe is an iterative framework

for training large DNNs. We extended its idea to inference by

partitioning the DNN into multiple stages across GPUs and

pipelining each data batch’s execution over these stages using

CUDA streams and OpenMP threads. For fair purposes, the

inference kernel inside the pipeline is the same as SNIG. We

configure the block dimension of all kernels to 2 × 512 , the

batch size of input data to 5000 for SNIG and GPipe∗, , and

the number of weight buffers to 2 for SNIG . We will discuss

the effect of different parameters in the later section.

B. Performance Comparison

Table II compares the overall inference rate and runtime

performance between SNIG, BF, and GPipe∗ using one, two,

three, and four GPUs. The result of BF method is different

from BF paper due to different GPU platforms. SNIG out-

performs BF and GPipe∗ across nearly all benchmarks. With

4 GPUs, SNIG is 2.3× faster than BF on the largest DNN

of 65536 neurons and 1920 layers and is 2.2× faster than

GPipe∗ on the DNN of 65536 neurons and 120 layers. The

BF method failed to finish the largest DNN of 65536 neurons

and 1920 layers within a reasonable amount of time (> 1800
seconds) under one and two GPUs. This is because BF

requires the entire input data to sit in the GPU under unified

memory addressing to implement load balancing. CUDA will

keep fetching in and out data between CPUs and GPUs if

partitioned data does not fit in a GPU’s memory. Its kernel

design is architecturally constrained by the number of GPUs

and available memory. Similar problems exist in the GPipe∗

method as well since GPipe∗ requires the entire model to sit

in GPUs. We observe long runtime of GPipe∗ to complete the

DNNs of 65536 neurons and 1920 layers.

Figure 3 plots the scalability over increasing number of

GPUs. Our runtime scales the best among the three methods.

In the 16384×1920 scenario, SNIG speeds up BF by 1.7×,

1.8× , 1.7×, and 1.8× at 1, 2, 3, and 4 GPUs, respectively. In

the 65536×1920 scenario, SNIG speeds up GPipe∗ by 1.9×,

2.1× , 2.0× at 2, 3, and 4 GPUs, respectively. We attribute

this to the synchronization overhead of both methods (BF

at each iteration, GPipe∗ at each pipeline stage). Figure 4

plots the scalability over increasing number of neurons. SNIG



Number of GPUs

1 2 3 4

Neurons Layers BF SNIG BF GPipe∗ SNIG BF GPipe∗ SNIG BF GPipe∗ SNIG

120 345.93 295.28 576.84 589.82 455.46 761.06 695.95 689.85 867.38 768.50 1248.30

(0.682s) (0.799s) (0.409s) (0.400s) (0.518s) (0.310s) (0.339s) (0.342s) (0.272s) (0.307s) (0.189s)

1024 480 477.83 586.52 801.11 1016.93 926.12 1061.55 1273.57 1348.16 1112.87 1483.83 1982.60

(1.975s) (1.609s) (1.178s) (0.928s) (1.019s) (0.889s) (0.741s) (0.700s) (0.848s) (0.636s) (0.476s)

1920 524.50 718.74 852.50 1187.81 1184.45 1133.59 1575.48 1647.69 1220.45 1876.17 2159.53

(7.197s) (5.252s) (4.428s) (3.178s) (3.187s) (3.330s) (2.396s) (2.291s) (3.093s) (2.012s) (1.748s)

120 409.42 586.52 746.02 934.37 980.99 1106.35 1053.25 1460.86 1385.78 1165.08 2241.61
(2.305s) (1.609s) (1.265s) (1.010s) (0.962s) (0.853s) (0.896s) (0.646s) (0.681s) (0.810s) (0.421s)

4096 480 544.55 803.84 962.73 1376.68 1400.69 1431.50 1767.26 2062.77 1743.59 2069.5 2761.42

(6.932s) (4.696s) (3.921s) (2.742s) (2.695s) (2.637s) (2.136s) (1.830s) (2.165s) (1.824s) (1.367s)

1920 586.38 867.28 1032.09 1551.53 1575.48 1538.09 2074.67 2284.34 1879.21 2506.97 2948.54

(25.75s) (17.41s) (14.63s) (9.732s) (9.584s) (9.817s) (7.278s) (6.610s) (8.035s) (6.023s) (5.121s)

120 462.32 851.53 881.36 1290.55 1487.34 1303.47 1521.51 2183.26 1621.50 1684.45 2914.96

(8.165s) (4.433s) (4.283s) (2.925s) (2.538s) (2.896s) (2.481s) (1.729s) (2.328s) (2.241s) (1.295s)

16384 480 616.30 1076.99 1137.01 1887.67 1965.31 1678.28 2454.80 2824.44 2072.39 2894.28 3736.57

(24.50s) (14.02s) (13.28s) (7.999s) (7.683s) (8.997s) (6.151s) (5.346s) (7.286s) (5.217s) (4.041s)

1920 663.34 1113.94 1207.71 2105.92 2127.43 1808.86 2817.06 3022.92 2230.35 3412.31 3963.12

(91.05s) (54.22s) (50.01s) (28.68s) (28.39s) (33.39s) (21.44s) (19.98s) (27.08s) (17.70s) (15.24s)

120 28.79 1021.61 57.52 1323.35 1870.36 1332.70 1486.17 2705.51 1652.74 1565.85 3436.38
(524.3s) (14.78s) (262.5s) (11.41s) (8.073s) (11.33s) (10.16s) (5.581s) (9.136s) (9.643s) (4.394s)

65536 480 1404.60 58.81 2083.40 2583.31 1817.57 2768.00 3784.33 2241.94 3222.94 5071.19
(>1800s) (43.00s) (1027s) (28.99s) (23.38s) (33.23s) (21.82s) (15.96s) (26.94s) (18.74s) (11.91s)

1920 1489.46 1501.50 2810.51 1960.97 1948.32 4149.63 2450.47 2784.27 5561.50

(>1800s) (162.2s) (>1800s) (160.9s) (85.96s) (123.2s) (124.0s) (58.22s) (98.59s) (86.77s) (43.44s)

TABLE II
OVERALL INFERENCE RATE (GIGAEDGES PROCESSED PER SECOND) AND RUNTIME PERFORMANCE (SECONDS) OF SNIG, BF, AND GPIPE∗ ACROSS ONE,

TWO, THREE, AND FOUR GPUS. BOLD TEXT REPRESENTS THE BEST SOLUTION IN THE CORRESPONDING BENCHMARK. ALL RESULTS MATCH THE

GOLDEN REFERENCE PROVIDED BY THE MIT/IEEE/AMAZON SPARSE DNN CHALLENGE [8]. SINCE THE GPIPE∗ METHOD IS STAGED ON THE NUMBER

OF GPUS, WE DO NOT REPORT ITS RUNTIME UNDER ONE GPU.
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Fig. 3. Execution time with different numbers of GPUs.

outperforms BF and GPipe∗ in all scenarios. The growth rate

of our runtime is much slower than BF and GPipe∗, due to

our in-kernel pruning strategy and task parallelism. Figure 5

illustrates the peak GPU memory usage of each method. Both
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Fig. 4. Execution time with different neurons under 4 GPUs.

SNIG and BF demand less memory than GPipe∗ because of

buffered rolling swap, whereas GPipe∗ stages the model across

GPUs. Our memory is fewer than BF due to batched input

data.
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Fig. 5. Peak GPU memory usage under 4 GPUs.

Fig. 6. Execution timeline of each method on completing 65536 neurons and
1920 layers under 4 GPUs.

Figure 6 plots a partial GPU execution timeline of each

method using the data extracted from NVIDIA Visual Profiler

[24] under the same time scale. Since SNIG and BF do not

pipeline the model across GPUs, both methods require weight

copy during the inference iterations. However, the time for data

transfers is largely overlapped with the kernel computation

(i.e., task parallelism in SNIG and stream parallelism in

BF). In SNIG, each GPU performs the inference on a data

batch independently, and thus the runtime of each GPU is

different. The execution timeline of GPipe∗ at each GPU is

more fragmented and discontinued than SNIG and BF. This is

because computation and GPU-to-GPU data transfers at each

pipeline level need to synchronize before moving to the next

stage. For example, we can clearly see several white spaces

between successive GPU operations at GPU 1 and GPU 2.

C. Parameter Sensitivity

Figure 7 shows the impact of different block dimensions.

All implementations have the same trend and perform better

at lower dim_x, especially under a large number of neurons.

All kernels read input data along y dimension and iteratively

access weights along x dimension. Since weights are sparse

matrices, the overhead is dominated by reading input data.

Figure 8 shows the impact of different input batch sizes in

SNIG and GPipe∗. Partitioning input data with too small batch

size results in a lousy performance, while a bigger batch size

doesn’t gain speedup. GPipe∗ has a higher growth rate of

runtime than SNIG. We attribute this to the architecture of

GPipe∗ and GPU memory limitation. Since GPipe∗ pipelines

computation across GPUs, large input batch size of large

DNNs causes long CPU-GPU and GPU-GPU data commu-

nication times. SNIG does not require any GPU-GPU data

transfers.
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Fig. 7. Execution time with different block dimensions (dim_x, dim_y) on
1920 layers under 4 GPUs. The total number of threads dim_x × dim_y
remains 1024.
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Fig. 8. Execution time with different batch sizes on 1920 layers under 4
GPUs.

VI. CONCLUSION

In this paper, we have introduced SNIG, an efficient in-

ference engine for large sparse DNNs. We have described

the inference workload in a task graph comprising both

data- and model-level parallelisms. Our decomposition method

can scale to arbitrary sizes of DNN and input data under

different numbers of GPUs. Our in-kernel pruning strategy

avoids unwanted computation incurred by sparsified network

and data, in no need of additional CPU-GPU synchronization

to repartition data. With 4 GPUs, SNIG is 2.3× faster than

BF and is 2.0× faster than GPipe∗ on the largest DNN of

65536 neurons and 1920 layers (more than 4 billion nonzero

parameters).
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