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ABSTRACT
Graph-based propagation (GBP) is a common parallel pattern in
many graph computing applications. Many GBP applications com-
pose pipeline parallelism for each linear segment in the graph,
where each task encapsulates a sequence of linearly dependent
functions. This type of task-parallel pipeline parallelism is hard to
express using mainstream programming frameworks (e.g., oneTBB)
that count on data-parallel models to perform pipeline scheduling.
In this paper, we introduce a new task-parallel method to com-
pose pipeline parallelism in a GBP workload by leveraging the
state-of-the-art control taskflow graph model. We demonstrate the
promising performance of our method on a real circuit simulation
workload.
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1 INTRODUCTION
Graph-based propagation (GBP) is a task graph-based parallel pat-
tern to describe many graph computing applications. In GBP, each
task encapsulates a sequence of linearly dependent functions and
each edge denotes dependency between two tasks. Figure 1(a) gives
an example. There are nine tasks A to I and each task encapsulates
a sequence of five functions f1 to f5. In a circuit simulation work-
load [2, 3], the nine dependent tasks model the computation on a
circuit network, and each encapsulated function computes a certain
timing quantity (e.g., slew, delay, arrival time) in a global graph
database.
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A typical GBP workload can exhibit many linear segments, such
as the linear chain B→F in Figure 1(a). The functions in each lin-
ear segment can run in parallel using pipeline parallelism. For
example, f3 of B, f2 of C, and f1 of D can overlap in time. As
there is no explicit dataflow between adjacent functions but task
dependency, we refer to this type of parallelism as task-parallel
pipeline. Task-parallel pipeline parallelism is not easy to express
using existing pipeline programming models (PPMs) (e.g., oneTBB’s
tbb::parallel_pipeline [1]). There are two reasons: First, ex-
isting PPMs are data-parallel and count on explicit dataflow (e.g.,
tbb::make_filter) to perform pipeline scheduling. Second, exist-
ing PPMs are often standalone and lack composability with task
graph parallelism that is essential for a GBP workload to explore
both structural and pipeline parallelisms.
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Figure 1: (a) A graph-based propagation example. Each task
encapsulates five linearly dependent functions. (b) The flat
task graph of unrolled pipeline parallelism in (a).

As a result, a common workaround is to unroll the task-parallel
pipeline into a flat task graph, as shown in Figure 1(b). The un-
rolled task-parallel pipeline results in a total of 29 tasks and 44
dependencies. For large GBP problems with many segments and
lengthy function sequences, this workaround becomes inefficient
because the flat task graph grows in proportion to the product of
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the segment length and the number of encapsulated functions in
each task.

To overcome this challenge, we leverage the state-of-the-art
Control TaskFlow Graph (CTFG) model [4] to express task-parallel
pipeline in an end-to-end task graph with in-graph control flow. We
have demonstrated the efficiency of our solution on a real circuit
simulation workload [2] and improved runtime up to 31%.

2 THE PROPOSED METHOD
As introduced by the Taskflow system [4], a CTFG is a task depen-
dency graph with in-graph control flow tasks, namely condition
tasks, to describe end-to-end parallelism. A condition task is a
callable that returns an integer index indicating the next successor
task to execute, and it can support cycles for iterative tasking. In
addition to condition tasks, a CTFG is composable, in which a task
graph can be composed of modular and reusable blocks, namely
module tasks.
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Figure 2: The pipeline diagram of Figure 1(b) running on
three parallel lines in a circular fashion.

We express a task-parallel pipeline without unrolling by using
condition and module tasks. Our idea is to consider each running
task in a linear segment as a scheduling token and overlap different
tokens across parallel lines in a circular fashion. In Figure 2, the
pipeline propagates each token through five functions f1-f5 and
simultaneously processes up to three tokens at three parallel lines
(maximum parallelism). When a token finishes a function, it clears
its horizontal and vertical dependencies for the next function on
the same line and the same function on the next line, respectively.
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Figure 3: The control taskflow graph of Figure 2.

Figure 3 shows the CTFG of Figure 2. We use (1) a pipeline
module task to compose the task-parallel pipeline and (2) four
condition tasks to define one coordinator (coor) and three parallel
lines (C0, C1, C2) in the module task. coor decides which line to run
when the pipeline starts. Each one of C0-C2 either returns 0 or 1,
indicating a horizontal or a vertical move. Since the pipeline runs in
a circular manner, there is a dependency from C2 to C0. Although

Table 1: Benchmark statistics and comparisons of graph size
and performance between ours (“o”) and the baseline (“b”).

circuit ∥G∥ ∥Gunroll ∥ ∥Go ∥ Tb To

s526_1 2007 8327 4578 31ms 25ms
s526_2 2027 8459 4633 32ms 27ms
s526_3 1887 7439 4188 29ms 24ms
s526_4 2287 10375 5473 36ms 25ms

vga_lcd_1 897K 3.5M 1.9M 13s 11s
vga_lcd_2 897K 3.5M 1.9M 13s 11s
wb_dma_1 30K 113K 63K 432ms 354ms
wb_dma_2 32K 129K 71K 483ms 361ms

the execution involves many scheduling tokens, our CTFG uses
only four condition tasks instead of performing unrolling, as in
Figure 1(b).

3 EXPERIMENTAL RESULTS
We evaluate the performance of our task-parallel pipeline using an
actual circuit simulation workload [2]. We implement our method
atop the Taskflow system [4] and compile it using clang++ v10.2
with -std=c++17 and -O2 on a Linux machine with Intel i7-9700K
8 Cores at 3.6 GHz and 32 GB RAM. All results are an average of
five runs. We use OpenTimer [2] as the baseline, which implements
the method in Figure 1(a).

In Table 1, ∥G∥ represents the graph size of the derived task graph
from each of the eight circuits (e.g., Figure 1(a)), and ∥Gunroll ∥ rep-
resents the unrolled versions (e.g., Figure 1(b)). The unrolled version
is much larger because additional tasks and edges are constructed
for expanding functions from a linear segment. For the biggest cir-
cuit vga_lcd_1, the unrolled graph size is 3.5M, 4× bigger than its
original task graph size. In fact, according to our experiments [2],
the unrolled task graph has worse performance than its original
version due to the overheads of constructing and scheduling too
many tasks. Thus, we report here the runtime of the original task
graph, denoted as Tb . With our pipeline, the task graph size in-
creases by about 2× as a consequence of additional module and
condition tasks and their dependencies. Nevertheless, the benefit is
significant–we improve the runtime by 13–31%.
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