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Abstract—Common path pessimism removal (CPPR) is a key
step to eliminating unwanted pessimism during static timing
analysis (STA). Unwanted pessimism will force designers and
optimization algorithms to waste a significant yet unnecessary
amount of effort on fixing paths that meet the intended timing
constraints. However, CPPR is extremely time-consuming and
can incur 10–100× runtime overheads to complete. Existing
solutions for speeding up CPPR are architecturally constrained
by CPU-only parallelism, and their runtimes do not scale
beyond 8–16 cores. In this paper, we introduce HeteroCPPR,
a new algorithm to accelerate CPPR by harnessing the power
of heterogeneous CPU-GPU parallelism. We devise an efficient
CPU-GPU task decomposition strategy and highly optimized
GPU kernels to handle CPPR that scales to large numbers of
paths. Also, HeteroCPPR can scale to multiple GPUs. As an
example, HeteroCPPR is up to 16× faster than a state-of-the-
art CPU-parallel CPPR algorithm for completing the analysis of
10K post-CPPR critical paths in a million-gate design under a
machine of 40 CPUs and 4 GPUs.

I. INTRODUCTION

Static timing analysis (STA) is an important step in the
overall VLSI design flow [1]. It analyzes the best-case and
worst-case timings of a design and reports timing violations
for the given setup and hold tests. This type of analysis
enables fast linear-time graph-based analysis (GBA) at a cost
of pessimism [1]. Specifically, signals do not experience both
early and late propagations on the common clock path of the
launching path and capturing path for a data path in a flip-flop
(FF) pair. Common path pessimism removal (CPPR) is thus
an imperative step in STA to remove unnecessary pessimism.
However, CPPR is extremely time-consuming because it re-
quires enormous path enumerations across all FF pairs. For
instance, [2], [3] shows that turning on CPPR can incur 10–
100× runtime overheads to complete.

Existing research has been focused on CPU-based al-
gorithms to reduce the long runtimes of CPPR, such as
iTimerC [4], iitRace [5], HappyTimer [6], and so on [7],
[8]. These algorithms employ different pruning heuristics and
parallel decomposition strategies to reduce the search space
of arrival time propagation and path generation, and have
demonstrated promising speed-up on industrial designs [9].
The popular open-source STA engine, OpenTimer [10], [11],
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Fig. 1: Recent research on CPPR and its runtime improvement
for analyzing a million-gate circuit design using different types
of parallelism.

speeds up CPPR by parallelizing independent computations
between FF pairs. Guo proposes a new algorithm to replace
the enumeration of FFs with clock-tree depth and gains 3–51×
speed-up over existing CPPR algorithms [12]. Commercial
tools, such as [13], count on tag-based approach to approxi-
mate CPPR with linear graph update [9]. While new research
continues to speed up CPPR, they are fundamentally limited
to CPU parallelism. For large designs of millions of gates and
paths, CPPR can still take several hours to complete, resulting
significant turnaround time in timing closure. Also, it has been
shown that CPU-based CPPR algorithms do not scale beyond
8–16 cores [12].

Figure 1 draws the logarithmic runtimes of state-of-the-
art CPPR algorithms and highlights the motivation of this
work. To achieve transformational performance milestones for
CPPR, new CPPR algorithms must harness the power of
heterogeneous parallelism comprising manycore CPUs and
GPUs. Designing a GPU-accelerated CPPR algorithms is
not easy, due to the following computational challenges: (1)
First, CPPR requires expensive enumerations of FF pairs
and/or clock tree levels to identify common segments between
launching and capturing paths. This process can peak on
giant memory usage that is challenging to fit in relatively
limited GPU memory. (2) Second, CPPR is path-specific and
graph-oriented. Computations are very irregular and need very
specialized data structures and algorithms to exploit GPU
parallelism. GPU usually brings only 2–4× speedup for similar



problems [14], [15], [16], [17]. (3) Third, CPPR needs to
analyze a large amount of paths. A practical GPU-accelerated
CPPR algorithm must be scalable to multiple GPUs.

In this paper, we propose HeteroCPPR, a novel algorithm to
overcome the runtime challenges of CPPR by harnessing the
power of heterogeneous CPU-GPU computing. HeteroCPPR
introduces new GPU-efficient data structures and computation
kernels to break the limit of CPU-based scalability. To the
best of our knowledge, this is the first work to accelerate
CPPR with GPU parallelism. We summarize our technical
contributions as follows:

1) We introduce GPU-optimized kernels for critical path
generation and pessimism removal. Our kernels address
the computational challenges of CPPR and enable fast
and accurate CPPR analysis using data parallelism.

2) We introduce GPU-friendly data structures for graph
analysis and pruning techniques for path generation.
Our algorithms enable efficient GPU memory usage for
analyzing large numbers of critical paths.

3) We introduce GPU-scalable parallel decomposition
strategies to exploit task parallelism across independent
iterations of our CPPR algorithms. Our decomposition
strategies scale up the CPPR analysis to multiple GPUs
for further performance benefits.

We have evaluated HeteroCPPR on industrial benchmarks
from the TAU contests [9]. On a million-gate design, our result
using 1 GPU and 1 CPU is 9× faster than the state-of-the-
art CPU-based CPPR timer that saturates at 8 CPUs. Using 4
GPUs, we further bring the speed-up up to 19× for analyzing
one post-CPPR critical path, and 16× for analyzing 10K post-
CPPR critical paths. By leveraging heterogeneous CPU-GPU
parallelism, HeteroCPPR can complete the CPPR analysis for
tens of thousands of data paths across million-scale circuit
benchmarks in just a few seconds.

The rest of this paper is organized as follows. Section II in-
troduces the background of CPPR and its problem formulation.
Section III presents details of HeteroCPPR algorithm. Section
IV demonstrated the experimental results. Finally, Section V
concludes the paper.

II. PRELIMINARIES

A. Common Path Pessimism Removal
STA represents a circuit as a directed acyclic graph (DAG),

where nodes denote pins and edges denote pin interconnec-
tions. Each edge is annotated with a delay value for the signal
to pass through. We denote the earliest and the latest arrival
time of a pin u as atearly(u) and at late(u), which are the sums
of minimal and maximal delays from a primary input to this
pin. A timing path p starts from a primary input and stops
at the input pin of a capturing FF (Fc:D), also referred to as
the endpoint of a data path p. To ensure that FF Fc captures
the input value correctly, we require the following relations
between at(Fc:D) and at(Fc:CK) [18]:

slacksetup(p) = atearly(Fc:CK) + T − Tsetup − at late(Fc:D),

slackhold(p) = atearly(Fc:D)− Thold − at late(Fc:CK),

slacksetup(p), slackhold(p) ≥ 0,

(1)
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Fig. 2: Example of common path pessimism. The launching
clock path and the capturing clock path has a common segment
through a buffer that introduces unnecessary pessimism in
GBA.

where T , Tsetup, Thold denote clock period, setup constraint,
and hold constraint, respectively.

The two slack values defined in Equation (1) quantify the
timing violation of a path p in the worst case. However,
as illustrated in Figure 2, the slack values can be overly
pessimistic because there exists a common path between the
driving path of Fc:D and Fc:CK. Specifically, there is a root
clock pin among the primary inputs of the circuit, which drives
all FFs in the circuit DAG through a clock tree formed by a
subset of pins and edges of the DAG. The common driving
path is thus above the lowest common ancestor (LCA) of the
launching FF and capturing FF on the clock tree. Edges on this
common path accumulate both earliest delay and latest delay
in Equation (1), which is not possible and thus introduces
pessimism. To fix this unnecessary pessimism, we add a credit
to slack setup(p) and slackhold(p) as follows [18]:

credit(p) = at late(cp)− atearly(cp), (2)

where cp = LCA(Fl:CK, Fc:CK).
Given the circuit graph and an integer k, the goal of CPPR

is to find the top-k paths in an increasing order of their post-
CPPR slacks (i.e., decreasing order of criticality).

B. Depth-based CPPR and Pessimism-free Arrival Time

One key challenge of CPPR is that the amount of pessimism
is path-specific. In other words, we cannot determine the
amount of pessimism to remove from a data path without
knowing its launching and capturing FFs. Such path-specific
pessimism is hard to discover in GBA that cares about only the
worst-case timing quantities at each node. To this end, a line of
previous works [6], [7], [11], [4], [5], [8] enumerates all pairs
of capturing and launching FFs and performs CPPR analysis
for each pair independently. As the number of FFs can be
numerous in large designs, these algorithms become difficult
to scale and parallelize. Also, storing all pairs of FFs on GPU
is not practical due to relatively limited global memory.

In this work, we instead adopt the idea of a recent work by
Guo et al [12]. They propose to enumerate clock tree depths
instead of FFs and demonstrate its efficiencies in practical
designs. They identify the common paths by predetermining



TABLE I: Notations in this paper

Notation Description
Fl(p), Fc(p) The launching FF and capturing FF of path p.
fd(u) The first ancestor of node u with depth ≤ d.
slack(p) The pre-CPPR slack of path p.
slack(p, d) The slack of path p without pessimism above level d.
AT

setup/hold
d (p) The pessimism-free arrival time of path p at level d.

LCAs and process FF pairs in LCA depth groups. For com-
pleteness, we present here the definition of pessimism-free
arrival time in [12], using the notations in Table I.

Extended from Equation (1), the slack of path p eliminating
the pessimism above clock level d is defined as follows [12]:

slack(p, d) = slack(p) + credit(fd(Fl(p))),
setup
= atearly(Fc(p))−AT setup

d (p) + T − Tsetup,
hold
= AThold

d (p)− at late(Fc(p))− Thold,

(3)

where the pessimism-free arrival time of path p is defined as,

AT setup
d (p) = at late(Fl(p)) + delay late(p)− credit(fd(Fl(p))),

AThold
d (p) = atearly(Fl(p)) + delayearly(p) + credit(fd(Fl(p))).

(4)
In Equation (4), the pessimism-free arrival time is only related
to the launching FF, not the capturing FF. As a result, it can be
defined for all nodes regardless of the path p considered. The
resulting pessimism-free arrival time at timing endpoints can
then be used to compute path slacks. The top-k paths ranked
by slack(p, d) are called path candidates. For different d, dif-
ferent path candidates are computed in independent iterations
of the circuit graph. There are a total of D + 2 iterations,
where D denotes the number of clock tree levels [12]. These
path candidates can then be combined to yield the top-k paths
ranked by post-CPPR slacks (i.e. slackCPPR(p)), which is a
central theorem proved in [12].

C. CPPR with Heterogeneous CPU-GPU Parallelism

Although [12] has reported a considerable runtime improve-
ment compared to existing CPPR algorithms, they are all
limited to CPU parallelism and do not scale beyond 8–16
cores. To achieve transformational performance milestones,
we must incorporate new parallel paradigms comprising het-
erogeneous CPUs and GPUs. However, designing GPU-
accelerated CPPR algorithms is challenging. Specifically, we
must take into account the distinct performance characteristics
and memory architectures of GPU when designing a GPU-
accelerated CPPR algorithm. This type of GPU parallelism
is very different from CPUs and thus requires very strategic
parallel decomposition of the CPPR problem to into data-
parallel and memory-efficient GPU tasks. Furthermore, to
support large numbers of critical paths, we need to scale the
parallel decomposition to multiple GPUs.

III. ALGORITHMS

In this section, we present our GPU-accelerated CPPR
algorithm, HeteroCPPR, to overcome the runtime challenges
of CPPR and break the scalability bottleneck of CPU-based
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Fig. 3: Algorithm diagram of HeteroCPPR. Blocks indicate
computation tasks, where GPU tasks are colored in green.
Arrows indicate task dependencies.

parallelism. Figure 3 shows the overview of HeteroCPPR. Our
algorithm consists of three steps: (1) levelization, (2) path can-
didates computation, and (3) path candidates merging. Path
candidates computation is done iteratively. In each iteration,
there are three substeps: (1) arrival time initialization, (2)
propagation, and (3) progressive path candidates generation.
All the above steps are implemented on GPU. The circuit data
is copied from CPU to GPU at the beginning of computation,
and the top-k post-CPPR critical paths are copied back to CPU
in the end.

A. Circuit Graph Levelization

The goal of levelization is to build level-by-level depen-
dencies of the circuit graph, including the clock tree network,
to facilitate the enumeration of clock tree depths on GPU.
The enumerated clock tree depth implies the pessimism for a
group of data paths. Specifically, we divide the graph into
levels, such that nodes within the same level do not have
mutual dependencies, and they only depend on nodes from the
previous levels. Based on the levelized graph, we can run the
arrival time updates of nodes within the same level in parallel,
which forms the basis of GPU-accelerated graph analysis in
HeteroCPPR.

Figure 4 shows an example circuit and its levelized layout.
A circuit consists of a clock tree and a DAG representing
combinational logics. We need to identify the border between
the clock tree and the DAG, and levelize each of them
separately into a list of levels. We use the levels of the DAG
(i.e. logic levels) to propagate the arrival time of nodes. We
use the clock tree levels to update group tags of nodes, based
on the fact that each clock tree level is essentially a set of
nodes with the same depth.

Algorithm 1 presents our GPU-accelerated levelization algo-
rithm that levelizes both the clock tree and the DAG. Inspired
by [16], we first levelize the logic starting from the primary
outputs (lines 4-12), by maintaining a set of nodes F indicating
the current level of nodes to process and exploring the next
F ′ by a parallel scan of the input edges of F . Different from



D

Clk

Q

&.
D

Clk

Q

&.

clock tree comb. logic

&.

clock 
tree

level 0
comb. logic

level 0
clock tree

level 1
comb. logic

level 1
comb. logic

level 2

FF1

FF2

FF1.Clk

FF1.Q

FF2.Clk

FF2.Q
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Algorithm 1: Levelization of clock tree and logic

1 D ← array of input degree of nodes;
2 F ← nodes without output edges;
3 G← {};
4 while F is not empty do
5 Output a logic level with nodes in F ;
6 F ′ ← {};
7 GPU parallel for node u in F do
8 for input edge v → u do
9 if atomicAdd(D[v], -1) = 1 then

10 if v is a FF clock pin then add v to G;
11 else add v to F ′;
12 F ← F ′;
13 while G is not empty do
14 Output a clock level with nodes in G;
15 G′ ← {};
16 GPU parallel for node u in G do
17 There is only one input edge v → u;
18 Set u.parent = v;
19 if atomicAdd(D[v], -1) = 1 then
20 Add v to G′;
21 G← G′;

[16], we need to identify FF clock pins and put them into
G instead of F ′, because they belong to the clock tree. We
then levelize the clock tree in a similar fashion as shown in
lines 13-21, based on the fact that a node on the clock tree
has at most one input edge originating from its parent.

B. Graph-based Analysis: Arrival Time Propagation

Arrival time propagation is the central step in GBA. The
goal of arrival time propagation is to compute the worst-
case signal arrival time at each node, by the definition in
Section II-B. Based on the arrival time of timing endpoints, we
can generate critical paths with worst slack values. For a large
circuit benchmark, the circuit graph contains millions of nodes,

Algorithm 2: Group indices propagation

1 D ← the number of clock tree levels;
2 for i=0 to d do
3 GPU parallel for node u in clock tree level i do
4 Set groupid [u] as invalid (-1);
5 GPU parallel for node u in clock tree level d+ 1 do
6 groupid [u]← u;
7 for i=d+ 2 to D − 1 do
8 GPU parallel for node u in clock tree level i do
9 groupid [u]← groupid [u.parent ];

10 return groupid ;

and the propagation is repeated many times to account for
different pessimism settings, making it very time-consuming.
In this section, we present our GPU-accelerated arrival time
initialization and propagation which correspond to (c) and (d)
in Figure 3.

1) Parallel Node Grouping: To ensure that the paths have
LCA depth ≤ d, we use a technique called node grouping [12].
Specifically, we group the clock tree nodes by fd+1(u) (see
Table I for notations), i.e. based on their ancestor with depth
d+1. Equivalently, we break the clock tree between level d and
level d+1, and regard all subtrees below level d+1 as groups.
An example of node grouping is shown in Figure 5. It has been
proved by [12] that two nodes coming from different groups
must have LCA depth ≤ d. In arrival time propagation, we
propagate the group indices of launching FFs along with the
arrival time to make sure the group constraint can be checked
at timing endpoints.

We propose a GPU-accelerated node grouping algorithm
that initializes the group indices of all clock tree nodes. We
derive two facts about node grouping: (1) every depth-(d+1)
node resides in its own group, and (2) every node with depth
> d+1 resides in the same group as its parent. Using these two
facts, we propagate the group indices on the clock tree level by
level on GPU, as presented in Algorithm 2. First, nodes with
depth ≤ d are tagged as invalid (lines 2-4) because they do
not contribute to the arrival time at level d. Next, depth-(d+1)
nodes are each assigned its own index as group index (lines 5-
6). Finally, the group indices are inherited by the descendants
at larger depth (lines 7-9).

2) Parallel Arrival Time Tuples Propagation: We now
describe the detailed arrival time structure and its computation
on the DAG through propagation. To allow path recovery, we
record the index of the previous node along with the arrival
time. To deal with node grouping constraints, we record the
group index of the originating launching FF along with the
arrival time.

Algorithm 3 shows our GPU-accelerated arrival time tuples
propagation algorithm. First, we initialize the arrival time of
pins that are directly connected to the clock tree (lines 1-
5), according to Equation (4). Then, we propagate the arrival
time tuples through successive logic levels (lines 7-13), by
enumerating the input edges of all nodes on the DAG, and
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Algorithm 3: Arrival time tuples propagation

1 GPU parallel for node u in DAG do
2 for edge v → u where v is a clock tree node do
3 at ← at late(v)− credit(fd(v)) . for setup;
4 at ← atearly(v) + credit(fd(v)) . for hold;
5 Update u’s arrival time tuples with arrival time

at , group index groupid [v], previous node v;
6 D′ ← the number of logic levels;
7 for i = 0 to D′ − 1 do
8 GPU parallel for node u in logic level i do
9 for edge v → u where v is a DAG node do

10 for arrival time tuple (at0 , gid0 , prev0 ) of
v do

11 at ← at0 + delay late
v→u . for setup;

12 at ← at0 + delayearly
v→u . for hold;

13 Update u’s arrival time tuples with
arrival time at , group index gid0 ,
previous node v;

updating the current arrival time tuples using the arrival time
tuples of the predecessor.

C. Path-based Analysis: Parallel Path Generation

The goal of path generation is to produce the top-k paths
ranked by post-CPPR slack values, based on arrival times
computed in Section III-B. For a complete timing report,
the number of paths k to generate can be large, making it
the most time-consuming step of CPPR. Path generation on
CPU involves highly sequential processes for maintaining path
priorities, which is not suitable for GPU execution. As a
result, we have to re-design GPU kernels for path generation
to benefit from data parallelism. In this section, we propose
our fully GPU-accelerated path generation algorithm. The
algorithm consists of two steps, which we call (e) progressive
path candidate generation and (f) path candidates merging in
Figure 3.

Original Path

Deviation 1 Deviation 2

Second Deviation 1
Second Deviation 2

Original Path
Root of prefix tree

Deviation 1

Deviation 2

Second Deviation 1

Second Deviation 2

Fig. 6: Illustration of progressive path candidates generation.
The top figure shows a path with two deviation edges (tagged
Deviation 1 and 2). Each deviation edge introduces a new path,
which further introduces other second-level deviation edges
(tagged Second Deviation 1 and 2), and so forth. The bottom
figure arranges these deviation edges into a prefix tree.

1) Progressive Path Candidates Generation: We represent
a path on a timing endpoint by a list of deviation edges from
the top-1 path on that endpoint. As shown in Figure 6, the lists
of deviation edges are arranged as a prefix tree, with the root
being the top-1 path, and each node represents a path. This
prefix tree representation is widely used in path-based STA
[11], [12], [19] as it represents a path using O(1) amount of
memory, and it allows us to generate paths progressively.

A typical CPU implementation of the prefix tree algorithm
requires maintaining prefix tree nodes using a heap [11],
which is inherently sequential and not suitable for GPU
parallelization. A recent work on GPU path-based analysis
[19] proposes a level-by-level prefix tree expansion algorithm
that arranges prefix tree nodes by their levels and uses a set of
GPU threads to expand the next level of nodes based on the
current level. Inspired by this algorithm, our algorithm for path
candidates generation expands an array of prefix tree nodes in
parallel, with two major changes to fit with GPU parallelism:

1) Our algorithm generates path candidates instead of
paths. We consider group constraints of path candidates
in our prefix tree node expansion.

2) Instead of maintaining multiple levels of prefix tree
nodes, we only store one array of nodes and update this
array iteratively, as shown in Figure 7. This allows us
to better prune paths that would not become top-k and
complete the algorithm in fewer iterations.

Algorithm 4 shows our progressive path candidates gener-
ation algorithm. We start by the top-1 paths at every timing
endpoint (lines 3-5). Then, in each iteration, we expand the
prefix tree nodes that are recently generated. Before doing the
expansion, we allocate memory for nodes to store their expan-
sions, by first asking for their memory demands (lines 10-13)
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Fig. 7: Illustration of parallel iterative path expansion on
GPU using the example in Figure 6. In step 1, we explore
the original path for deviation edges and construct two new
prefix tree nodes of larger slacks. In steps 2–3, we sort the
concatenated array of old nodes and new nodes by their slack
values, keep the first k nodes and discard the rest. Notice that
the old node is sorted along with the new nodes, pruning more
new nodes than just sorting the new nodes.

and then doing an in-place prefix sum on the demand array to
allocate memory regions (line 14).

After allocating the memory regions, we expand the prefix
tree nodes each in a separate GPU thread (lines 15-24). For
each prefix tree node, we trace through its shortest path (for
hold, longest for setup), and explore the input edges of nodes
we visit (lines 18-24). A deviation edge introduces a non-
negative cost (line 20), which is the difference between the
length of the shortest path and the deviated path. We compute
the length of these two paths using the arrival time tuples and
the group index of the timing endpoint, which is recorded on
the prefix tree node. We compute the slack of new nodes by
adding this cost to the slack of old nodes.

We sort the resulting array in increased slack values, using a
GPU-based parallel merge sort. After that, we prune the array
by keeping the top-k nodes. This is essentially a partial sort
where we only care about the order of the smallest k nodes.
The prune is done on the first array of top-1 paths (lines 7-
8) and on each resulting array after expansion (lines 26-27).
Iterations stop until there are no nodes to expand.

2) Path Candidates Merging: In this step, we compute
the top-k post-CPPR paths based on all path candidates.
They include path candidates from clock tree level d where
0 ≤ d ≤ D, self-loop path candidates and primary input path
candidates [12]. We compute the first kind of path candidates
using Algorithm 3 and 4. We compute the later two kinds of
path candidates similarly on GPU. After computing the path
candidates, we merge them into a single sorted array of paths
and extract the top-k among them. This is a parallel merge of

Algorithm 4: Progressive path candidates generation

1 nodes ← [];
2 slots ← [];
3 GPU parallel for the i-th timing endpoint u do
4 compute slack according to Equation (3);
5 nodes[i]← new prefix tree root node with level=1,

slack=slack , where=u, gid=groupid [u];
6 curlevel ← 1;
7 GPU parallel sort nodes;
8 nodes ← nodes[0 : k];
9 repeat

10 GPU parallel for the i-th node p in nodes do
11 if p.level==curlevel then
12 slots[i]← estimated number of new nodes

to expand from p;
13 else slots[i]← 0;
14 GPU parallel in-place prefix sum on slots;
15 GPU parallel for the i-th node p in nodes with

p.level==curlevel do
16 u ← p.where;
17 j ← k + slots[i];
18 repeat
19 for deviation edge v′ → u do
20 cost ← at(v′, p.gid) + delayv′→u −

at(v, p.gid);
21 nodes[j]← new prefix tree node with

parent=p, level=curlevel + 1,
slack=p.slack + cost , where=u,
gid=p.gid ;

22 j ← j + 1;
23 u← the previous node in u’s arrival time

tuples with different group index than
p.gid ;

24 until u is a clock tree node;
25 curlevel ← curlevel + 1;
26 GPU parallel sort nodes;
27 nodes ← nodes[0 : k];
28 until no new node is expanded;

two or more sorted arrays where we only care about the first
k elements.

D. Multi-GPU Parallel Iterations

The goal of this step is to scale the proposed GPU algorithm
to multiple GPUs for further performance improvement by dis-
covering GPU task parallelism across independent iterations.

In HeteroCPPR, our GPU-accelerated algorithms make use
of parallelism within an iteration. To make use of the par-
allelism between different iterations, we regard GPUs as
workers, and the D + 2 iterations as independent tasks for
GPUs to execute in parallel. For example, when 3 GPUs are
used, each GPU computes approximately (D+2)/3 iterations.
Figure 8 shows the overview of our timer using multiple
GPUs. Each GPU works on a copy of the circuit graph in
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Fig. 8: The overall taskflow of HeteroCPPR using multiple
GPUs. This figure shows an example using 3 GPUs, demon-
strating the dependency of computation and data transfer
operations.

its memory. We distribute the circuit graph to multiple GPUs
in the beginning, and gather the path candidates in the end to
merge them into top-k post-CPPR paths. To reduce the amount
of memory transfer between GPUs, we first merge the local
path candidates on each GPU. In this way, we need to transfer
up to k path candidates from each GPU. Thus, our algorithm
can benefit from the computation power of multiple GPUs to
further reduce the runtime.

IV. EXPERIMENTAL RESULTS

We implement HeteroCPPR in C++ and CUDA v11.1 and
run it on a Linux Ubuntu server with two Intel Xeon CPUs
(2.00GHz, 40 cores), 4 GeForce RTX 2080 Ti GPUs, and 256
GB RAM. We use the Thrust library [20] to perform parallel
sorting on GPUs. We evaluate HeteroCPPR using industrial
benchmarks from TAU contests [9]. The benchmark statistics
are listed in Table II. We compare HeteroCPPR with the
state-of-the-art CPU-based algorithm [12] (“the baseline”) that
proposes a provably good and practically efficient methods to
speed up CPPR. We do not compare HeteroCPPR with other
CPPR algorithms as [12] has demonstrated more than an order
of magnitude speed-up over them. Readers can refer to [12]
for comparisons with other CPU-based CPPR algorithms.

Table III compares the overall runtime performance between
the CPU-based CPPR baseline [12] using 8 cores and Hete-
roCPPR using 1, 2, 3, and 4 GPUs. We use 8 cores for the

TABLE II: Benchmark statistics. This same set of benchmarks
were used in [12] to compare different CPPR algorithms on
CPU.

Benchmark # Edges # FFs # Levels (D)
vga lcdv2 449651 25091 56
Combo4v2 778638 26760 82
Combo5v2 2051804 39525 91
Combo6v2 3577926 64133 101
Combo7v2 2817561 54784 96
netcard iccad 3999174 97831 75
leon2 iccad 4328255 149381 85
leon3mp iccad 3376832 108839 75

baseline where its performance saturates. For HeteroCPPR,
the CPUs and GPUs work in parallel throughout the runtime,
and the runtime includes GPU data setup and memory transfer
overhead, i.e. the entire runtime excluding file I/O. Compared
to the baseline, HeteroCPPR with 1 GPU achieves an average
speed-up of 8.15×, 6.95×, 6.23×, and 5.11× for generating 1,
100, 1K, and 10K post-CPPR critical paths, respectively. The
speed-up becomes even more remarkable when using multiple
GPUs. For example, HeteroCPPR with 2 GPUs achieves
12.57×, 10.93×, 9.93×, 8.28× average runtime speed-ups
over the baseline for generating 1, 100, 1K, and 10K post-
CPPR critical paths, respectively. With 4 GPUs, HeteroCPPR
brings up the speed-ups to 14.61×, 13.17×, 12.11×, and
10.52×. For large benchmarks, the speed-up over baseline
becomes even remarkable. HeteroCPPR is up to 9.95× faster
(leon3mp, k = 1) using 1 GPU and 19.46× (netcard,
k = 1) using 4 GPUs. For netcard with k = 10K,
HeteroCPPR is up to 7.51× and 16.61× faster under 1 GPU
and 4 GPUs, respectively. These runtime results highlight the
performance advantage of HeteroCPPR.

Figure 9 compares the runtimes between the CPU baseline
and HeteroCPPR for generating 1K post-CPPR critical paths
using different numbers of CPUs and GPUs. We can clearly
see that the performance of the CPU baseline does not scale
beyond 8 cores. Besides, we observe a consistent performance
gap between the baseline and HeteroCPPR, regardless of the
numbers of CPU cores and GPUs. For example, in netcard,
our algorithm with 1 GPU is 6.10× faster than the baseline
with 24 cores. The results show that HeteroCPPR is able
to reduce the long runtime of CPPR with new performance
milestones by harnessing the power of GPU computing.

Figure 10 compares the runtimes between the CPU baseline
and HeteroCPPR for generating different numbers of post-
CPPR paths. We assign 8 cores to the CPU baseline and 2
GPUs to HeteroCPPR, in which both perform close to the best
runtimes. Similar to Figure 9, we observe a consistent perfor-
mance gap between the baseline and HeteroCPPR, regardless
of the numbers of generated post-CPPR paths. Also, the gap
continues to enlarge as we increase the number of paths.
For instance, in vga_lcdv2, when increasing the number
of generated post-CPPR paths from 10K to 100K, the runtime
growth of HeteroCPPR is only 2.05× (281 vs 577), whereas
the baseline is 2.61× (1027 vs 2687). Similar trends can be
observed in other three benchmarks, Combo5v2, Combo6v2,



TABLE III: Overall runtime comparisons between the state-of-the-art CPPR timer [12] on CPU and HeteroCPPR under different
numbers of paths (k) and GPUs. Runtime values are in milliseconds.

Benchmark

k=1 k=100
CPU [12] GPU Speed-up Ratio CPU [12] GPU Speed-up Ratio

8 cores ×1 ×2 ×3 ×4 ×1 ×2 ×3 ×4 8 cores ×1 ×2 ×3 ×4 ×1 ×2 ×3 ×4
vga lcdv2 836 168 110 98 98 4.98 7.60 8.53 8.53 853 230 152 130 124 3.71 5.61 6.56 6.88
Combo4v2 1624 315 214 181 172 5.16 7.59 8.97 9.44 1594 436 289 238 224 3.66 5.52 6.70 7.12
Combo5v2 4107 504 348 313 315 8.15 11.80 13.12 13.04 4078 632 420 371 354 6.45 9.71 10.99 11.52
Combo6v2 7244 765 516 462 484 9.47 14.04 15.68 14.97 7482 914 603 538 539 8.19 12.41 13.91 13.88
Combo7v2 5546 616 427 390 392 9.00 12.99 14.22 14.15 5795 772 501 457 452 7.51 11.57 12.68 12.82
netcard 12627 1347 820 681 649 9.37 15.40 18.54 19.46 12265 1430 853 706 673 8.58 14.38 17.37 18.22
leon2 13327 1456 870 726 703 9.15 15.32 18.36 18.96 12984 1548 936 766 735 8.39 13.87 16.95 17.67
leon3mp 9491 954 599 523 517 9.95 15.84 18.15 18.36 9445 1036 656 565 547 9.12 14.40 16.72 17.27
Avg. Ratio - 8.15 12.57 14.45 14.61 - 6.95 10.93 12.73 13.17

Benchmark

k=1,000 k=10,000
CPU [12] GPU Speed-up Ratio CPU [12] GPU Speed-up Ratio

8 cores ×1 ×2 ×3 ×4 ×1 ×2 ×3 ×4 8 cores ×1 ×2 ×3 ×4 ×1 ×2 ×3 ×4
vga lcdv2 875 286 192 164 155 3.06 4.56 5.34 5.65 1027 409 281 239 228 2.51 3.65 4.30 4.50
Combo4v2 1616 542 344 293 270 2.98 4.70 5.52 5.99 1842 880 581 537 536 2.09 3.17 3.43 3.44
Combo5v2 4454 761 500 415 394 5.85 8.91 10.73 11.30 4372 1058 671 552 513 4.13 6.52 7.92 8.52
Combo6v2 7271 1011 654 579 591 7.19 11.12 12.56 12.30 7900 1244 791 666 653 6.35 9.99 11.86 12.10
Combo7v2 5640 911 589 515 506 6.19 9.58 10.95 11.15 6201 1210 771 648 620 5.12 8.04 9.57 10.00
netcard 12592 1499 897 735 703 8.40 14.04 17.13 17.91 13168 1753 1037 838 793 7.51 12.70 15.71 16.61
leon2 13219 1670 990 816 768 7.92 13.35 16.20 17.21 13513 2028 1196 966 895 6.66 11.30 13.99 15.10
leon3mp 9551 1157 723 601 587 8.25 13.21 15.89 16.27 10030 1536 923 768 724 6.53 10.87 13.06 13.85
Avg. Ratio - 6.23 9.93 11.79 12.22 - 5.11 8.28 9.98 10.52
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Fig. 9: Runtimes at different numbers of CPU cores and GPUs.

and netcard. This scalability result highlights the effective-
ness of our GPU kernels and iterative path generation.

V. CONCLUSION

In this paper, we have introduced HeteroCPPR, a novel
algorithm to accelerate CPPR by harnessing the power of
heterogeneous CPU-GPU parallelism. We have devised an
efficient CPU-GPU task decomposition strategy and highly
optimized GPU kernels to speed up critical computational
tasks of CPPR that scales to large numbers of paths. Our
parallel decomposition strategies can scale to multiple GPUs
to further bring up the speed-up to another degree. As an
example, HeteroCPPR is up to 16× faster than a state-of-the-
art CPU-parallel CPPR algorithm for completing the analysis
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Fig. 10: Runtimes at different numbers of post-CPPR paths.

of 10K post-CPPR critical paths in a million-gate design
under a machine of 40 CPUs and 4 GPUs. We have also
shown that for large designs, regardless of the number of
CPUs or the number of generated post-CPPR ciritical paths,
HeteroCPPR is consistently faster than the CPU baseline
and the performance gap becomes even remarkable at large
problem sizes. Our future work plans to investigate new GPU
task graph parallelism, CUDA graph [3], to further improve
the performance of HeteroCPPR.
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