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Abstract—Path-based Analysis (PBA) is a pivotal step in
Static Timing Analysis (STA) for reducing slack pessimism and
improving quality of results. Optimization flows often invoke
PBA repeatedly with different critical path constraints to verify
correct timing behavior under certain logic cone. However, PBA
is extremely time consuming and state-of-the-art PBA algorithms
are hardly scaled beyond a few CPU threads under constrained
search space. In order to achieve new performance milestone, in
this work, we propose a new GPU-accelerated PBA algorithm
which can handle extensive path constraints and quickly report
arbitrary number of critical paths in constrained search space.
Experimental results show that our algorithm can generated
identical path report and achieve up to 102× speed up on a
million-gate design compared to the state-of-the-art algorithm.

I. INTRODUCTION

Path-based Analysis (PBA) is an important step in Static

Timing Analysis (STA) for reducing slack pessimism and

improving quality of results [1]. However, PBA is also well-

known for its extremely high runtime complexity. PBA can

be 10-1000× slower than Graph-based Analysis (GBA) [2],

[3]. As a key routine in PBA, critical path generation takes

a significant amount of time and it is very challenging to

parallelize. Existing works closely rely on CPU parallelism

to accelerate the process of critical path generation [4], [5],

[6], [7], [8], [9]. Nevertheless, CPU-based parallel approaches

do not scale beyond a few CPU cores. For example, speed-up

of state-of-the-art PBA algorithm [4], [6] stagnates at 16 CPU

cores.

This problem becomes more challenging when path con-

straints are considered during the generation process. Opti-

mization flows often invoke PBA repeatedly with different path

constraints to verify correct timing behavior under certain logic

cone. For instance, Figure 1 illustrates an example where the

timer needs to report critical paths passing through Inst1/A1

and then Inst4/Zn. Two paths satisfying this constraint are

marked as green and red. Path constraints limit the search

space and make the state-of-the-art path generation algorithms

almost sequential. There are a few existing works that focused

on critical path generation under constraints [10], [11], but

both of them are mainly sequential algorithms and target

at CPU architectures. Lai [10] proposes a cache framework

which intends to save runtime from repeated constraints in

multiple requests, but it has little improvement to each single

request. Guo [11] introduces a faster sequential algorithm

for a single timing request, but it has limited parallelization

benefit. Both of them try to improve runtime performance on

top of their frameworks by CPU multi-thread parallelization.

However, they can only achieve 3× speed-up at maximum.

In most of the time, constrained subgraphs can still contain

hundreds of thousands of pins and the number of requested

paths can be thousands as well. Existing speed-up by CPU

parallelism is far from desirable.

   Inst1

Inst2

Inst3

In1

In2

In3

In4

Out1

report_timing  -max_path 2  -through Inst1/A1  -through Inst4/Zn

Inst4

A1

A1

A1

A1

A2

A2

A2

A2

Zn

Zn

Zn

Zn

Path 1

Path 2

Fig. 1: An example of report timing request with path constraints.

Therefore, we seek new solutions to accelerate the gen-

eration of critical paths with path constraints by leveraging

the power of Graphic Processing Unit (GPU) parallelism.

However, it is a very challenging task to generate critical

paths with constraints using GPU, mainly due to the following

three reasons. Firstly, we need to construct GPU-efficient

data structures to identify constrained subgraphs from an STA

graph and filter out unwanted paths. Secondly, since critical

path generation is a highly dynamic process, we need a

specialized path search method that utilizes the power of data

parallelism on GPU. Lastly, we must combine the generation

of critical paths with path filtering to maximize the perfor-

mance of GPU kernels. To overcome these challenges, in this

work, we propose a GPU-accelerated critical path generation

algorithm considering path constraints. We highlight three key

contributions of our work as follows:

• Efficient Filters for Constraint Satisfaction. Our critical

path filters are array-based and easy to manage on GPU

architectures. We construct a special ranking array to replace

topological orders and a scanning array to label regions in

a constrained subgraph. By comparing values within these



two arrays, we can quickly identify if critical path candidates

satisfy the constraints.

• Data-oriented Path Verification and Generation. We

design our critical path searching and filtering for high

data throughput. Multiple GPU threads can update different

memory locations simultaneously in our filtering arrays

construction. During the path search phase, we dispatch

GPU threads to explore new path candidates and verify if

each new path candidate passes values comparison in our

filter at the same time.

• High Scalability on Large Constrained Subgraphs. Our

path search strategy enables thousands of GPU threads to

search for candidate critical paths simultaneously. Since path

constraints are translated into array-based filters, all active

GPU threads will participate in searching and filtering by

referring to different memory locations of the arrays. It has

high parallelization benefit especially for large constrained

subgraphs.

We evaluate our algorithms on real designs generated by an

industrial standard timer [12]. We randomly select common

pin sequences in full timing report as path constraints so that

we can test on various constrained subgraphs. Our algorithm

can generate critical paths that fully satisfy path constraints.

Furthermore, path traces in our timing report exactly match

the report generated by the state-of-the-art algorithm [4],

[11]. Compared with the baseline, we achieve up to 102×
speed-up on a large design of 1.6 million gates. We also

provide an SYCL implementation of our algorithm to study

the advantage of single-source heterogeneous parallelism and

performance portability. By running our algorithm on CPU

with the same source code in SYCL, we can still achieve

2.59× overall speed-up over the baseline on benchmarks with

large constrained subgraphs.

II. PATH-BASED TIMING ANALYSIS

PBA is a pivotal step in STA [1]. In STA, we abstract the de-

sign circuit as a Directed Acyclic Graph (DAG) G = {V,E}.

Each pin in the circuit is modeled as a vertex in the STA

graph. A pin-to-pin connection is modeled as an edge. Edge

directions are oriented so that the STA graph flows from

inputs to outputs. We use an ordered sequence of vertices or

edges to represent a path. In STA, we measure the amount of

timing violation by taking the difference between signal arrival

time and signal required arrival time. This amount of timing

violation is often denoted as slack. If slack is negative, STA has

to report the path causing the violation as a critical path. GBA

often happens before PBA to propagate timing information

across the STA graph, including slew, delay, arrival time,

and required arrival time. Critical paths can be identified in

the phase of GBA. However, since GBA assumes worst-cast

scenarios during timing updates, PBA is needed to reduce

pessimism with path-specific updates such as common path

pessimism removal (CPPR) and advanced on-chip variation

(AOCV). Therefore, the generation of critical paths is a very

important routine in PBA. Since the number of paths can

be exponential to the graph size, the critical path generation

process can take an extremely long time. Additionally, path

constraints also complicate the generation process.

III. CRITICAL PATH CONSTRAINTS

Critical path constraints define the rules that each path has

to follow. These rules can be categorized into the following

types:

• -max path: The timer reports an arbitrary number of critical

paths. The number is specified by this parameter. We often

denote this number as k as well. Different from previous

work that only tests on k < 32 [10], [11], we aim at better

performance for a larger number of critical paths.

• -from: This parameter specifies the path starting point. It

can be combined with an optional transition (rise or fall) ,

if a transition starting from this pin is required.

• -through: Each occurrence of this parameter specifies a pin

that the critical path must pass through. A sequence of these

parameters means the critical path must pass through these

pins in sequence. Figure 1 gives an example usage.

• -to: This parameter specifies critical path endpoint. A op-

tional transition can also be specified.

These are the most important types of constraints that define

the constrained subgraph. There are other constraints like

-split, which requires an analysis mode (min or max).

IV. PROPOSED ALGORITHM

Figure 2 shows an overview of our critical path generation

algorithm considering path constraints. The majority of the

steps are executed on GPU. We use CPU for algorithm flow

control and result collection. Our algorithm begins with global

ranking, where each vertex is assigned with a rank value based

on the vertex’s connectivity. Then we use the rank values

and sequence in path constraints to scan the STA graph. The

constrained subgraph is labeled and used for later steps. We

leverage the implicit critical path representation [4] in our path

search strategy. We construct a suffix sub-forest that contains

all path suffix information in the constrained subgraph. Then

we explore critical path candidates by alternating path prefix

and save the prefix information in a prefix sub-forest. Details

and explanations of each step are given in the subsequent

sections.

A. STA Graph Structure on GPU

As the first step to generate critical paths on GPU, we need

efficient data structures to represent the STA graph. We take

the collection of all fan-in or incoming edges of each vertex

and denote it as graph G− = {V,E−}. Similarly, we take the

collection of all fan-out or outgoing edges of each vertex and

denote it as graph G+ = {V,E+}. The graph representations

G− and G+ are saved on GPU in the Compressed Sparse Row

(CSR) format. CSR is one of the most common graph formats

used in GPU applications [13]. CSR requires three 1D arrays

to represent a weighted directed graph. The format includes a

vertex array for row offsets, an edge array for column values,
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Fig. 2: Overview of our GPU-accelerated critical path generation
algorithm with path constraints.

and a weight array for weights of all edges. This array-based

designs make CSR very memory-efficient. An STA graph with

vertex number N and edge number M can be represented in

CSR with memory complexity N + 2M .

B. GPU-Accelerated Ranking

To quickly verify connectivity between two vertices, we

propose a global ranking strategy to replace topological sort.

The rank value represents the maximum number of edges to

the graph endpoints. Therefore, multiple vertices can share

the same rank values. This ranking strategy preserves the

property of topological orders. For any edge eu→v ∈ E,

rank(u) > rank(v). Figure 3 shows an example of how we

rank vertices in Figure 3a and obtain rank values in Figure 3b.

All endpoints, H, I, and J, in the STA graph, are initialized

with rank value 0. Then rank values are propagated from

endpoints to startpoints. We notice that vertex F is adjacent to

the endpoint I, but rank(F ) is 2 because it has a longer path

F → E → H . Compared to topological orders, the advantage

of our method is less synchronization. We do not need to

assign unique order value to each vertex. All GPU threads can

freely propagate their rank values to corresponding neighbor

pins.

Our rank propagation kernel is shown in Algorithm 1.

We launch a 2D kernel where each thread in the x axis

corresponds to a pin (line 1) and each thread in the y axis

corresponds to a rise or fall transition. We choose this kernel

configuration because each pin is mapped to two vertices in an

STA graph, representing the same pin under two transitions.

In our memory layout, these two vertices are saved in adjacent

memory locations (line 3). For all the GPU threads that have

received a rank update (line 7), we propagate their rank values

plus one to their neighbors (line 15 and 16). All the neighbor

received new rank values validate the update by comparing

with their old ranks. We see that all threads are writing

into multiple memory locations and the only synchronization
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Fig. 3: Global ranking on GPU.

Algorithm 1: Propagate Rank Kernel

Input : G−in CSR format, N as #vertices, M as #edges,
vertices[N ], edges[M ], weights[M ]

Input : Previous rank values, ranks[N/2]
Input : Rank cache, rankCache[N/2]
Input : Array indicating vertices with updated ranks,

rankUpdated[N/2]
Result: Rank values array, ranks[N/2]

1 pinId ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 riseFall ← threadIdx.y;
3 tid ← 2*pinId + riseFall;
4 if tid ≥ N then
5 return;
6 end
7 if rankUpdated[pinId] is false then
8 return;
9 end

10 rankUpdated[pinId] ← false;
11 edgeStart ← vertices[tid];
12 edgeEnd ← (tid == N-1) ? M : vertices[tid+1];
13 for eid ← edgeStart to edgeEnd do
14 neighborPin ← edges[eid]/2 ;
15 newRank ← ranks[pinId] + 1;
16 atomicMax (&rankCache[neighborPin], newRank);
17 end
18 return;

happens in the atomic operation (line 16). Atomic operations

are distributed over different memory locations so we can

expect less thread contention compared to topological sort.

Since multi-threading topological sort requires sychronization

over a single counter, it introduces a higher overhead.

C. Constrained Subgraph Scanning

At this step, we use GPU kernels to scan and label the

subgraph defined by path constraints. Moreover, based on

connectivity to the sequence of pins in path constraints,



different labels are assigned to vertices. All the labels are

saved in a 1D array logicCone[N] for memory efficiency.

Before we launch our kernel, we perform the following

initialization. For each pair of consecutive pins u, v appear

in the path constraints, the label of vertex associated with

latter pin v is the rank value of the previous pin u. For

instance, if -through u -fall_through v appear in

the constraints, where u, v already denote their pin indices,

we have logicCone[2*v+1] = rank[u]. For the first

pin in the constraints, we simply assign INT_MAX as label.
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Fig. 4: Subgraph scanning results.

Figure 4 shows the subgraph scanning results given the

STA graph in Figure 3a and path constraints -through C

-through E. To simply this example, we do not consider

transitions. A pin is equivalent to a vertex in the graph. All

labels are initialized with zeros. Vertices from endpoints up

to the last through pin E (not including) get labels equal to

the rank of last through pin. Therefore, H and J get label

values 1. Vertices from E up to C (not including) get labels as

rank(C) = 3. Vertices C and upwards get labels INT_MAX.

Vertices G and J are not connected to the last through pin,

so their labels remain 0.

We scan the STA graph with the subgraph scanning kernel

shown in Algorithm 2. The idea of this subgraph scanning

kernel is to propagate labels until the label value exceeds the

rank value of the neighbor pin. We launch this kernel with

1D configuration. Each thread is assigned with a vertex in the

STA graph (line 1). For the vertex that has recently received

a label update (line 5), propagate the same label value to its

neighbors (16). The propagation stops when the label exceeds

the rank value of the neighbor pin (line 15). Since there are no

read-after-write operations, no atomic operations are required.

The subgraph can be quickly scanned and labeled. All the

non-zero entries define the size of our constrained subgraph.

D. Critical Path Filtering and Searching

The goal of this step is to identify all critical paths satisfying

the constraints and order them based on their criticality.

After the preprocessing steps in the previous sections, we can

quickly filter paths that fail to satisfy the path constraints. We

only have to integrate our filters with the path generation pro-

cess. Our critical path generation relies on two complementary

data structures, suffix forest, and prefix forest. Since both of

the forests are constructed within the constrained subgraph,

Algorithm 2: Scan Subgraph Kernel

Input : G−in CSR format, N as #vertices, M as #edges,
vertices[N ], edges[M ], weights[M ]

Input : Rank values, ranks[N/2]
Input : Previous label values, logicCone[N ]
Input : Label cache, logicConeCache[N ]
Input : Array indicating vertices with updated labels,

labelUpdated[N ]
Result: Label array, logicCone[N ]

1 tid ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 if tid ≥ N then
3 return;
4 end
5 if labelUpdated[tid] is false then
6 return;
7 end
8 prevRank ← logicCone[tid];
9 labelUpdated[pinId] ← false;

10 edgeStart ← vertices[tid];
11 edgeEnd ← (tid == N-1) ? M : vertices[tid+1];
12 for eid ← edgeStart to edgeEnd do
13 neighbor ← edges[eid] ;
14 neighborPin ← neighbor/2 ;
15 if ranks[neighborPin] < prevRank then
16 logicConeCache[neighbor] ← prevRank;
17 end
18 end
19 return;

we denote them as suffix sub-forest and prefix sub-forest. As

shown in Figure 2, the suffix sub-forest is fully built for once.

Then we iteratively grow prefix sub-forest until we reach the

maximum number of paths required or no more paths can

be explored. In the following sections, we first explain a key

definition in our path generation algorithm. Then we show

how each sub-forest is constructed in details.

1) Implicit Path Representation: We leverage the idea of

implicit path representation [4] for efficient memory usage

on GPU. Each path is separated into two complementary

parts, a prefix, and a suffix. For a single endpoint, all suffix

information are saved in a suffix tree. The suffix tree is simply

the shortest path tree. The prefix tree, on the other hand,

contains all edges not in the suffix tree. These edges are also

defined as deviation edges. In the prefix tree, each tree node

is a deviation edge and it implicitly represents a path. For

instance, Figure 5 shows how path < e3, e8, e11, e14 > can be

implicitly represented by the tree node e11 in the prefix tree.

Since e11 has no parents, it means e11 is the only deviation

edge in the path. By complementing with edges from the suffix

tree (e3, e8, and e11), we can obtain the full path trace. Readers

can refer to [4] for more details on suffix-prefix representation.

2) Suffix Sub-forest Construction: The state-of-the-art algo-

rithm [4] constructs individual pair of suffix trees and prefix

trees with respect to each endpoint. However, the constrained

subgraph often contains multiple endpoints. Such individual

tree construction wastes both runtime and memory because it

is common for these endpoints to share logic cones. Therefore,

we introduce the notion of suffix sub-forest by unifying all
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Fig. 5: Example of implicit path representation [4].

suffix tree at different endpoints. To make sure all path suffix

follow the constraints as well, we use the following filtering

rules when we traverse each fan-in edge. For each fan-in edge

eu→v ,

label(u) = label(v) or rank(⌊u/2⌋) = label(v)

The first assertion checks if the neighbor vertex u share the

same label as v. This assertion verifies if edge eu→v stays in

the same region. The second assertion verifies if the neighbor

vertex u is the boundary to the previous region. Passing either

one of the assertions suggests edge eu→v is permissible under

constraints. Besides, a non-zero label proves that the vertex is

in the constrained subgraph.
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Fig. 6: Assume two additional edges exist which do not affect the
ranking and scanning results. Apply the filtering rules.

Given the same STA graph and path constraints from Figure

4, we assume there are two additional edges eD→I , eD→F

which do not affect ranking and scanning results. We use

Figure 6 to demonstrate our filtering rules. First vertices G

and J can be removed because they are labeled as 0. Then for

each of the additional edges, we apply the filtering rules. For

fan-in edge eD→I , label(D) 6= label(I) means they are not in

the same region. We check the other rule: rank(D) 6= label(I)
suggests that D is not the boundary vertex before I. By looking

at the diagram, we know that the only boundary vertex before

I is E. Therefore, edge eD→I has to be filtered. Apply same

rules again to eD→F , we have label(D) 6= label(F ) and

rank(D) 6= label(F ), so eD→F has to be filtered as well.

Both edges do not belong to the constrained subgraph because

they fail the filtering rules.

Since the filtering rules have been established, we enforce

these rules in our distance relaxation kernel. The main body

of the kernel is very similar to the rank propagation ker-

nel showed in Algorithm 1 except that we are propagating

minimum distance instead of maximum ranks. Before the

distance relaxation kernel launches, we initialize distances of

all endpoints with the required arrival time. Inside the kernel,

all vertices propagate their latest distances plus edge weights to

neighbors. Whenever a new neighbor is explored, we verify

the neighbor with the filtering rules. Since multiple threads

may read and write to the same memory location, we use

atomic operations to synchronize. The kernel terminates until

no more distance relaxation is possible. The fan-in edge that

contributes to the latest relaxation is saved as an edge in the

suffix sub-forest. Since we allow multiple threads to perform

updates concurrently, the suffix sub-forest can be constructed

efficiently.

TABLE I: Data field of deviation edge

Field Definition

level deviation level number

from deviation starting point

to deviation ending point

parent parent index from previous level

childOffset row offset of children in next level

slack critical path slack value

3) Prefix Sub-forest Expansion: After suffix sub-forest is

constructed, we explore new critical paths by expanding prefix

sub-forest iteratively. In the implicit path representation, we

use deviation level (or just level) to denote the number of

deviation edges in the full path trace. In our algorithm, we

expand all critical paths in the same level at each iteration.

These critical paths in the same level are maintained in an

1D array. Table I shows an overview of data fields for each

deviation edge entry in the array. To set up the connection

between adjacent levels, we use parent to trace back to

parent entry in the previous level. Field childOffset act

as a pointer to child paths in the next level.

In each iteration, we facilitate the deviation level expansion

by multiple GPU kernels. In all GPU kernels, the filtering rules

are still enforced. We use identical filtering rules for each fan-

out edge eu→v.

The first GPU kernel we launch is the offset calculation

kernel. The goal of this kernel is to set up the childOffset

field. Each thread is assigned to a deviation edge in the

current level. By traversing along the path represented by this

deviation edge, the thread can calculate the number of child

paths by accumulating a deviation counter at each vertex. A

prefix-sum kernel is immediately followed so that the count of

child paths is turned into the correct offset. After the prefix-

sum is complete, childOffset of the last entry is the size

of the next deviation level. We use this size to allocate space

for the next deviation level.

When the allocation completes, we launch our second kernel

which fills data into data fields of the next deviation level.

Details of this kernel are shown in Algorithm 3. Similar to

the first kernel, we dispatch each thread a deviation edge at



Algorithm 3: Expand Prefix Sub-Forest Kernel

Input : G+ in CSR format, N as #vertices, M as #edges,
vertices[N ], edges[M ], weights[M ]

Input : Rank array, rank[N/2]
Input : Label array, logicCone[N]
Input : Suffix sub-forest, forest[N ] as edge array,

distances[N ] as distance array
Input : currLevel as current deviation level
Input : levelSize as the number of entries in current

deviation level
Result: Explore critical path candidates in next level

1 tid ← blockIdx.x ∗ blockDim.x + threadIdx.x;
2 if tid ≥ levelSize then
3 return;
4 end
5 offset ← (tid == 0) ? 0 : currLevel[tid-1].childOffset;
6 level ← currLevel[tid].level;
7 slack ← currLevel[tid].slack;
8 v ← currLevel[tid].to;
9 while v is not endpoint do

10 pinId ← v/2 ;
11 prevRank ← logicCone[v];
12 edgeStart ← vertices[v];
13 edgeEnd ← (v == N-1) ? M : vertices[v+1];
14 for eid ← edgeStart to edgeEnd do
15 neighbor ← edges[eid];
16 neighborPin ← neighbor/2;
17 if logicCone[neighbor] > 0 and

(logicCone[neighbor] == prevRank or
ranks[pinId] == logicCone[neighbor]) then

18 weight ← weights[eid];
19 if eid is deviation edge then
20 /* Fill out child path data */

21 newPath ← nextLevel[offset];
22 newPath.level ← level+1;
23 newPath.from ← v;
24 newPath.to ← neighbor;
25 newPath.parent ← tid;
26 newPath.childOffset ← 0;
27 newPath.slack ← slack +

distances[neighbor] + weight -
distances[v];

28 offset ← offset + 1;
29 end
30 end
31 end
32 /* Traverse along the suffix sub-forest

*/

33 v = forest[v];
34 end
35 return;

the current level (line 1). The thread continues to search for

deviations starting from the place left off by the parent (line

8). For each vertex along the current path (line 9 and 33),

we iterate through all the neighbors (line 14). For neighbors

not in the constrained subgraph or associated fan-out edge

failing filtering rules (line 17), we ignore these neighbors.

For neighbors not belonging to the suffix sub-forest (line 19)

and passed the filtering rule, we fill in the child deviation

information (line 21-28). This expansion kernel can operate

in high throughput, because each thread writes into disjoint

memory locations and workload is balanced between threads.

With the help of filtering rules, all generated critical paths

satisfy the path constraints. However, we may expand more

paths than necessary and we need to order these paths based

on slack. We choose to perform an indirect sort and compress

the newly expanded level.

We continue this iteration of expansion until the desired

number of critical paths are collected or no more paths are

available. We merge the critical path candidates from all

deviation levels and perform path recovery to obtain the final

report. An example of path recovery is shown in Figure 6. For

each critical path represented as a deviation edge, we first use

parent to collect all deviation edges along the path. Then

we combine the deviations edges with complementary edges

in the suffix sub-forest to obtain the full path trace.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate that our GPU-accelerated

critical path generation algorithm can report critical paths with

constraints at a promising speed. We conduct our experiments

on a 64-bit Ubuntu Linux machine with one GeForce RTX

2080 GPU and one 2GHz Intel Xeon Gold 6138 CPU core.

For CUDA compilation, we use CUDA NVCC 11.0 device

compiler and GNU GCC 8.3.0 host compiler. In addition to

CUDA, we implement our algorithm using SYCL with Intel

oneAPI DPC++ compiler (clang++ v13) [14] to study the

advantage of single-source parallelism. SYCL has emerged as

an important tool to program heterogeneous parallelism using

completely standard C++ [15]. Unlike CUDA, SYCL allows

programmers to write single-source C++ that offloads kernels

to any SYCL or OpenCL devices, such as CPUs, GPUs, and

FPGAs. This design enables a unified programming environ-

ment for EDA workloads to incorporate new heterogeneous

parallelism without wrangling with different codebases. For

both implementations, we enable optimization flag -O2 and

C++17 standard -std=c++17. We use 512×1 threads per

block for 1D kernel configuration and 256×2 threads per block

for 2D kernel configuration.

A. Baseline

We choose the state-of-the-art critical path generation al-

gorithm with path constraints [4], [11] as our baseline. To

the best knowledge of the authors, the baseline has the best

time complexity and practical efficiency; also, it has been

implemented in the open-sourced STA tool, OpenTimer, as its

core path generation algorithm [16], [17], [18]. We evaluate

our algorithm on real designs generated by an industrial

standard timer [12]. We collect common pin patterns appearing

in a full timing report and randomly select common patterns

as path constraints. As shown in [11], using one CPU core is

faster enough in most cases due to constrained search space,

and increasing the number of CPU cores does not provide

much performance benefit. We compare our GPU algorithm

with the baseline on one CPU core. We report the entire

runtime instead of specific steps because majority of the time

is spent on suffix and prefix forests construction.



TABLE II: Runtime performance (ms) comparison between OpenTimer and our critical path generation algorithm

Benchmark #Pins #Gates #Nets #Arcs #k
OpenTimer

Runtime

CUDA PBA

(1 GPU)

SYCL PBA

(1 GPU)

Runtime Speed-up Runtime Speed-up

leon2 4328255 1616399 1616984 7984262 10K 2460260ms 45839ms 53.7 44111ms 55.8

leon3mp 3376821 1247725 1247979 6277562 10K 2391060ms 23498ms 102 23220ms 103

netcard 3999714 1496719 1498555 7404006 5K 132654ms 31254ms 4.24 27830ms 4.77

b19 iccad 782914 255278 255300 1576198 5K 180220ms 6993ms 25.8 6538ms 27.6

vga lcd 397809 139529 139635 756631 1K 40019ms 1997ms 20.0 2150ms 18.6

vga lcd iccad 679258 259067 259152 1243041 1K 44792ms 3701ms 12.1 3732ms 12.0

des perf ispd 371587 138878 139112 697145 1K 53110ms 2073ms 25.6 2381ms 22.3

edit dist ispd 416609 147650 150212 799167 1K 63448ms 3271ms 19.4 3114ms 20.4

mgc edit dist 450354 161692 164254 852615 1K 103600ms 3766ms 27.5 3706ms 27.9

mgc matric mult 492568 171282 174484 948154 1K 14071ms 3311ms 4.25 3247ms 4.33
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Fig. 7: Runtime comparison between OpenTimer [11] and our algorithm on different sizes of constrained subgraphs

B. Runtime Performance

Our algorithm can quickly generate critical paths that satisfy

path constraints. Table II shows an overview of our exper-

iments. We use OpenTimer and our algorithm to generate

arbitrary numbers (k = 10K, 5K, 1K) of critical paths on

different designs. We first verify that full path traces in

both timing reports are identical. Given identical reports, we

compare runtime performance of OpenTimer with both CUDA

and SYCL versions of our algorithm on one GPU. We see that

CUDA and SYCL implementations have similar performance.

Both of them have a clear runtime advantage over the base-

line. We can observe a significant speed-up on million-gate

designs. For instance, we achieve 53.7× speed-up on leon2

of 1.6M gates and 102× speed-up on leon3mp of 1.2M gates.

The performance benefit of our algorithm for medium-size

designs is also pronounced. We obtain 12–28× speed-ups on

designs vga_lcd, vga_lcd_iccad, des_perf_ispd,

edit_dist_ispd, and mgc_edit_dist. For some de-

signs, the performance benefit of our algorithm is limited to

the search space that constrains data parallelism. For instance,

we achieve 4.24× speed-up on netcard and 4.25× speed-

up on mgc_matric_mult over the baseline, which are less

than an order of magnitude. In these designs, critical paths are

generated within a very constrained subgraph with size less

than 10K . A more detailed analysis is given in the next sec-

tion. As for memory usage, our algorithm overcomes the GPU

capacity challenge by using highly compact data structures

such as CSR graph format and implicit path representation. In

each design in Table II, our algorithm can run PBA for over

1 million crtical paths without any constraints on GPU with

10GB memory.

C. Runtime vs Search Space

In this section, we will demonstrate how the con-

strained subgraph size, or the search space, impacts

the runtime of our algorithm on GPU. We run Open-

Timer and our algorithm on designs leon2, leon3mp,

netcard, b19_iccad, vga_lcd, vga_lcd_iccad,

des_perf_ispd, and edit_dist_ispd under different



path constraints. These path constraints define different con-

strained subgraphs. We use the number of pins in a constrained

subgraph to denote the size. Figure 7 shows the logarithmic

runtime of OpenTimer and our algorithm under various sizes

of constrained subgraphs. We see that our algorithm is gen-

erally faster than OpenTimer at different sizes ranging from

4.3K to 2.3M . We can observe that our algorithm has a clear

advantage over OpenTimer on a larger constrained subgraph.

For example, in leon2, the runtime performance between

OpenTimer and our algorithm is quite close at constrained

subgraph sizes 5.3K , 6.7K , and 7.2K . However, at size 2.3M ,

there is a 4.61 logarithmic runtime difference between our

algorithm and OpenTimer, which suggests a 100.5× speed-

up. Similar patterns show up in other designs as well. In

leon3mp, there is only a 2.87 logarithmic runtime difference

at size 22K . At larger sizes 586K , 588K , and 594K , the

differences increase to 4.60–4.91, which suggests almost 100×
speed-up. In netcard, because all constrained subgraphs

have sizes below 10K , the speed-up of our algorithm is

minimal. This is expected because, in a highly constrained

subgraph, our algorithm does not benefit from much data

parallelism for performance improvement.

D. Performance Portability of SYCL Implementation
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Fig. 8: Logarithmic runtime comparison between OpenTimer and our
algorithm on CPU

In this section, we study the performance portability of the

SYCL-based implementation. Unlike CUDA, SYCL allows the

same C++ code to switch between different SYCL devices in

no need of separate codebases. For instance, by changing the

SYCL device from GPU to CPU, we can execute our algorithm

on CPU with the same SYCL source code. This gives us an

insight into how a data-driven implementation performs on a

CPU architecture that can benefit from modern SIMD/vector

parallelism. Figure 8 compares the performance between our

SYCL implementation and OpenTimer using one CPU under

different constrained subgraphs in leon3mp. For constrained

subgraph sizes from 586K to 601K , the average logarithmic

runtime difference is 0.95; in other words, the same GPU

algorithm that runs on CPU has 2.59× overall speed-up over

OpenTimer. This result is quite impressive, because it shows

that our data-driven algorithm can outperform the state-of-the-

art graph-driven algorithm on CPU, when the search space

becomes large.
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Fig. 9: Logarithmic runtime comparison between OpenTimer and our
algorithm on CPU

However, for small search space where data parallelism

is limited, this advantage on CPU is not clear. Figure 9

demonstrates this runtime behaviour on benchmark leon2.

Our leon2 benchmark contains a mixture of constrained

subgraphs, ranging from very small 6.7K to very large 2.37M .

We can observe that the size of constrained subgraph af-

fects very little on our SYCL-based implementation on CPU.

This is expected because our path filtering strategy is data-

oriented. We use array-based filters for constraints satisfaction.

The number of iterations for kernel update does not change

much for different filters, because we always need data to

propagate from endpoint to startpoint. The advantage of this

property is that our algorithm’s performance is resilient to

larger subgraphs, not to mention that we have very high

parallelization benefit on GPU. Also, we believe our algorithm

can meet practical needs, because optimization flows often

request timing report on large constrained subgraph, specially

in modern circuit designs. The takeaway here is that our

result encourages a new thinking of data-parallel approaches

to design critical timing workloads. We believe the modern

SYCL programming model can largely facilitate this process

given its unique approach to heterogeneous computing using

unified single-source C++ programming.
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VII. CONCLUSION

To conclude, in this paper, we have introduced a novel GPU-

accelerated critical path generation algorithm considering path

constraints. We have developed efficient path filters and fast

path generation strategy to utilize the throughput advantage

of GPU. We have also implemented our algorithm in single-

source C++ by using SYCL. It allows us to quickly migrate

between different environments. Experiments show that our

algorithm achieves 102× speed-up with one GPU on a 1.6M-

gate design over the baseline timer. Our algorithm also has

high performance portability on large constrained subgraph.

Our algorithm can achieve 2.59× speed-up by running entirely

on CPU. In future work, we will handle incremental path

constraints with a caching framework. Our algorithm will also

consider MCMM scenarios by taking advantage of multiple

GPUs based on the framework of [19].
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