
Taskflow-San: Sanitizing Erroneous Control
Flow in Taskflow Graphs
McKay Mower∗§, Luke Majors∗§, and Tsung-Wei Huang∗

∗ Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT

Abstract—Taskflow is a general-purpose parallel and het-
erogeneous task graph programming system that enables in-
graph control flow to express end-to-end parallelism. By inte-
grating control-flow decisions into condition tasks, developers
can efficiently overlap CPU-GPU dependent tasks both inside
and outside control flow, largely enhancing the capability of
task graph parallelism. Condition tasks are powerful but also
mistake-prone. For large task graphs, users can easily encounter
erroneous control-flow tasks that cannot be correctly scheduled
by the Taskflow runtime. To overcome this challenge, this paper
introduces a new instrumentation module, Taskflow-San, to assist
users to detect erroneous control-flow tasks in Taskflow graphs.

I. INTRODUCTION

Recent years have seen a great deal amount of task-based
computing systems (TCSs), such as oneTBB [1], StarPU [2],

TPL [3], Legion [4], Kokkos [5], PaRSEC [6], HPX [7], Fast-

flow [8], and Taskflow [9] that aim to streamline the building

of parallel and heterogeneous applications [10]. Compared to

existing TCSs that are limited to directed acyclic graph (DAG)

models, Taskflow introduces a new conditional tasking model

to enable end-to-end expression of dependent tasks along with

control flow in a general task graph [9]. Programmers benefit

from the ability to make in-graph control-flow decisions and

describe end-to-end parallelism for complex parallel algo-

rithms that frequently call for dynamic control flow, iterations,

and non-deterministic blocks.

Conditional tasking is powerful but is prone to mistake.

Specifically, given Taskflow’s scheduling algorithm [9], [11],

users are responsible for writing a correct task graph that

does not introduce erroneous control flows, such as deadlock,

infinite loop, and unreachable tasks. This manual inspection

is not scalable and can become very tedious when the task

graph is large. For instance, a large Taskflow-enabled timing

analysis workload can spawn 1.7M CPU-GPU dependent tasks

and over 2K condition tasks [12], [13], [14], [15], [16]. It is

very common for users to mistakenly write a wrong task graph

that is not properly conditioned. Therefore, we introduce in

this paper Taskflow-San as an instrumentation tool to assist

users to sanitize erroneous control-flow tasks and guide them

toward correct use of condition tasks in Taskflow programs.

II. TASKFLOW CONTROL-FLOW PROGRAMMING MODEL

Taskflow is motivated by our DARPA project to reduce the

long design times of modern circuits [17]. The main research

objective is to advance computer-aided design (CAD) tools

§Equal contribution

with heterogeneous parallelism to achieve transformational

performance and productivity milestones. Compared with ex-

isting TCSs, Taskflow introduces a very simple and expressive

programming model to describe task graph parallelism using

C++ lambda function objects. Listing 1 demonstrates a simple

Taskflow program of four static tasks, where A runs before

B and C, and D runs after B and C. The graph is run by

an executor which schedules dependent tasks across worker

threads. Overall, the code explains itself. More details can be

found at [9], [18], [19], [20].

t f : : Taskf low t a s k f l o w ;
t f : : E x e c u t o r e x e c u t o r ;
a u t o [A, B , C , D] = t a s k f l o w . emplace (

[] () { s t d : : c o u t << ” Task A” ; } ,
[] () { s t d : : c o u t << ” Task B” ; } ,
[] () { s t d : : c o u t << ” Task C” ; } ,
[] () { s t d : : c o u t << ” Task D” ; }

) ;
A. p r e c e d e (B , C) ; / / A r u n s b e f o r e B and C
D. s u c c e e d (B , C) ; / / D r u n s a f t e r B and C
e x e c u t o r . run (t f) . w a i t () ;

Listing 1: A task graph of four static tasks.

A. Control-flow Programming

Unlike existing TCSs that are limited to DAG models,

Taskflow introduces a new conditional tasking model to enable

developers to make in-graph control-flow that are integrated

within task dependencies. Conditional tasks can be used to

express control-flow blocks, such as iterations, if-else, and

non-deterministic loops. A condition task is a callable that

returns an integer index indicating the next successor task to

execute. The index is defined with respect to the order of the

successors preceded by the condition task. Figure 1 shows

an example of if-else control flow, and Listing 2 gives its

implementation. The code is self-explanatory. The condition

task, cond, precedes two tasks, yes and no. With this order,

if cond returns 0, the execution moves on to yes, or no if

cond returns 1.

init cond

yes0

no

1

Fig. 1: An example task graph of if-else control flow using

one condition task (in diamond).

30

2021 IEEE/ACM 6th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)

978-1-6654-1140-0/21/$31.00 ©2021 IEEE
DOI 10.1109/ESPM254806.2021.00009

20
21

 IE
EE

/A
C

M
 6

th
 In

te
rn

at
io

na
l W

or
ks

ho
p

on
 E

xt
re

m
e

Sc
al

e
Pr

og
ra

m
m

in
g

M
od

el
s a

nd
 M

id
dl

ew
ar

e
(E

SP
M

2)
 |

97
8-

1-
66

54
-1

14
0-

0/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
ES

PM
25

48
06

.2
02

1.
00

00
9

Authorized licensed use limited to: The University of Utah. Downloaded on December 30,2021 at 20:05:50 UTC from IEEE Xplore. Restrictions apply.

a u t o [i n i t , cond , yes , no] = t a s k f l o w . emplace (
[] () { s t d : : c o u t << ” i n i t ” ; } ,
[] () { s t d : : c o u t << ” cond ” ; r e t u r n 0 ; } ,
[] () { s t d : : c o u t << ” cond r e t u r n s 0 ” ; } ,
[] () { s t d : : c o u t << ” cond r e t u r n s 1 ” ; }

) ;
cond . s u c c e e d (i n i t)

. p r e c e d e (yes , no) ;

Listing 2: Taskflow program of Figure 1.

Our condition task supports iterative control flow by intro-

ducing a cycle in the graph. Figure 2 shows a task graph of do-
while iterative control flow, implemented in Listing 3. The loop

continuation condition is implemented by a single condition

task, cond, that precedes two tasks, body and done. When

cond returns 0, the execution loops back to body. When

cond returns 1, the execution moves onto done and stops. In

this example, we use only four tasks even though the control

flow spans 100 iterations. Our model is more efficient and

expressive than existing frameworks that count on dynamic

tasking or recursive parallelism to execute condition on the

fly [4], [6].

init body cond
0

done
1

Fig. 2: A Taskflow graph of iterative control flow using one

condition task.

i n t i ;
a u t o [i n i t , body , cond , done] = t a s k f l o w . emplace (

[&] (){ i =0 ; } ,
[&] (){ i ++; } ,
[&] (){ r e t u r n i <100 ? 0 : 1 ; } ,
[&] (){ s t d : : c o u t << ” done ” ; }

) ;
i n i t . p r e c e d e (body) ;
body . p r e c e d e (cond) ;
cond . p r e c e d e (body , done) ;

Listing 3: Taskflow program of Figure 2.

B. Task Scheduling

Taskflow separates the execution logic between condition

tasks and other tasks using two dependency notations, weak
dependency (out of condition tasks) and strong dependency
(other else). For example, the two dashed arrows in Figure

1 are weak dependencies and the solid arrow init→F1 is

a strong dependency. Based on these notations, we design

a simple and efficient algorithm for scheduling tasks, as

depicted in Figure 3. When the scheduler receives an HTDG,

it (1) starts with tasks of zero dependencies (both strong

and weak) and continues executing tasks whenever strong
remaining dependencies are met, or (2) skips this rule for

weak dependency and directly jumps to the task indexed by

the return of that condition task. By removing the scheduling

part of weak dependency, our algorithm falls back to DAG

scheduling (marked in gray).

Fig. 3: Flowchart of our task scheduling.

Given this scheduling algorithm, users can infer whether

their task graph defines correct control flow. However, this

process becomes tedious when a task graph is large. It is

desirable to automate this process by calling an instrumen-

tation module to sanitize erroneous control-flow blocks in the

given task graph. Based on our user experience, we identify

three common control-flow errors, infinite loop, deadlock, and

unreachable tasks, which we explain in the next following

sections, respectively.

III. INFINITE LOOP

One problem with cyclic control flow is infinite loop.

Infinite loop occurs when non-condition tasks form a cycle of

strong dependencies that will execute continuously. Figure 4

shows an example of infinite loop. Execution begins at the

condition task, Start. Assuming Start returns 0, the

scheduler will proceed to task A, then task B, followed by

task C. Once task C is completed, the scheduler will return

to task A and the cycle will continue forever. We designed

Algorithm 1 to detect if a user-defined task graph will result

in an infinite loop.

Fig. 4: An example task graph of infinite loop.

The first step of Algorithm 1 copies the original task graph

into a custom graph data structure (line 1). During this process,

we ignore condition tasks. Condition tasks can break execution

if they return a value that does not correspond to another task.

For instance, in the task graph shown in Figure 4, if Start
returns 1, the loop formed by tasks D, E, and F would begin

executing. However, if task E returned something other than

0, task F would not be scheduled and the loop would end.

31

Authorized licensed use limited to: The University of Utah. Downloaded on December 30,2021 at 20:05:50 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Infinite loop sanitizer(source)

Input: a Taskflow graph source
Output: a list of infinite loops L

1 G← copy graph(source);

2 SCCs← SCC(G);

3 loop← false;

4 foreach scc ∈ SCCs do
5 foreach t ∈ scc.get tasks(l) do
6 if t.num weak dependencies > 0 then
7 g ← scc.remove task(t);
8 new scc list← SCC(g);

9 if new scc list.empty() then
10 loop← true;

11 end
12 end
13 end
14 if loop then
15 L.insert(scc)
16 end
17 end
18 return L;

For this reason, cycles formed with weak dependencies are

not considered for infinite loops.

After we copy the original graph into the new graph struc-

ture, we use Tarjan’s algorithm to find all strongly connected

components (SCC) in the graph (line 2). Since no condition

tasks are included in the graph, each SCC is composed of

only strong dependencies making them candidates for infinite

loops. We then check each SCC to determine if an infinite

loop will occur (lines 4:17). To determine if an SCC forms

an infinite loop, we check each task in the SCC for incoming

weak dependencies (lines 5:13). Any task with an incoming

weak dependency is a possible starting point for an infinite

loop. Since an SCC is only formed with strong dependencies,

any task in the SCC can only be scheduled if it is reached by

a condition task. Otherwise, there will be strong dependencies

for each task that will never be met. We identify each task

with one or more incoming weak dependencies as a candidate

task that could be the start of an infinite loop. Next, we check

each candidate to determine if the SCC will result in an infinite

loop (lines 6:12). To check a candidate task, we first remove

the task from the SCC to form a new graph. Next, we use

Tarjan’s algorithm again to search for SCCs the new graph.

If no additional SCCs are found, then the original SCC will

result in an infinite loop (lines 9:11). We then add the original

SCC to a list representing all infinite loops in the original task

graph and return the list to the user.

A. Example

Figure 5 walks through Algorithm 1 with an example.

We first copy the graph into a new graph structure with no

condition tasks (Step 1). Next, we contract all SCCs in the

graph to obtain the graph shown (Step 2). We then check the

SCC for an infinite loop. After checking each task in the SCC,

we find that task A has an incoming weak dependency so we

mark it as a candidate. We remove task A from the SCC to

obtain the resulting subgraph (Step 3). Finally, we check the

subgraph for SCCs and find that no SCCs exist. Since no

additional SCCs are found, the graph is determined to result

in an infinite loop.

Fig. 5: Illustration of the infinite loop sanitizer algorithm

(Algorithm 1).

IV. DEADLOCK

Another possible problem with cyclic control flow is dead-

lock. Deadlock occurs when a task in a cycle cannot be

scheduled due to unmet strong dependencies. Consider the

task graph example in Figure 6, deadlock occurs at task A
because its strong dependency from task C will never be

fulfilled. The cyclic dependency between tasks A, B, and C
makes it impossible for any of the tasks to be scheduled after

an incoming strong dependency from a task outside of the

cycle is met. The other cycle shown in Figure 6 does not

result in deadlock because task D only has a weak dependency

from the cycle itself. Therefore, task D can be scheduled after

Start is completed. Another example of deadlock is shown

in 7. Deadlock will occur after task A executes because task D
will not be scheduled. Task D has a strong dependency from

task E, but task E can only execute after task D.

We design Algorithm 2 to detect deadlock in a task graph.

Algorithm 2 is similar to Algorithm 1. First, we copy the

32

Authorized licensed use limited to: The University of Utah. Downloaded on December 30,2021 at 20:05:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: An example task graph of deadlock.

Fig. 7: An example task graph of Deadlock with an incoming

weak dependency.

original graph into a new graph structure and ignore all

condition tasks (line 1). Next, we use Tarjan’s algorithm to

find all SCCs in the graph (line 2). Since each SCC contains

only strong dependencies, it is considered a candidate for

deadlock (lines 4:17). An SCC will result in deadlock if it

is not an infinite loop. This includes SCCs with any incoming

strong dependencies and SCCs with zero incoming strong

and weak dependencies. If the SCC does have incoming

weak dependencies, we must check each task with a weak

dependency in similar way to Algorithm 1 (lines 6:12). We

remove the task from the SCC and run the SCC algorithm

to search for SCCs in the subgraph formed by removing the

candidate nodes from their original SCC. If any additional

SCCs are found, then deadlock will occur.

A. Example

Figure 8 illustrates Algorithm 2 based on the example in

Figure 7. We first copy the task graph to the new data structure

without any condition tasks (Step 1). Next, we contract the

SCCs in the graph (Step 2). In this graph, there is only one

SCC consisting of tasks A, B, C, D, and E. Then, we check

this SCC for deadlock. After checking all tasks in the SCC, we

identify task A as a candidate that needs to be checked since

it has an incoming weak dependency. To check the candidate,

we remove task A from the SCC which results in the subgraph

(Step 3). We finally check the subgraph for additional SCCs

and find that there is an SCC consisting of tasks D and E (Step

4). Since there remains an SCC, deadlock is detected.

V. UNREACHABLE TASKS

Another common problem of conditional tasking is un-

reachable task. Unreachable task is a task that can never be

executed. Figure 9 shows an example of unreachable task. If

Algorithm 2: deadlock sanitizer(source)

Input: a Taskflow graph source
Output: a list of SCCs resulting in deadlock L

1 G← copy graph(source);

2 SCCs← SCC(G);

3 deadlock ← false;

4 foreach scc ∈ SCCs do
5 foreach t ∈ scc.get tasks(l) do
6 if t.num weak dependencies > 0 then
7 g ← scc.remove task(t);
8 new scc list← SCC(g);

9 if !new scc list.empty() then
10 deadlock ← true;

11 end
12 end
13 end
14 if deadlock then
15 L.insert(scc);
16 end
17 end
18 return L;

task B leads to task D, task E cannot execute until both tasks

D and C have run. Likewise, if task B leads into task C, task E
cannot execute for the same reason. In this case, we call task

E a unreachable task since it can never be executed. We define

this type of unreachable task as merged children in which the

children of a condition task end up merging into one. Figure 10

shows another example of unreachable task. The unreachable

task here is B, since it has a strong dependency from one of

its own children, making it unreachable. For task B to execute,

tasks A and C must first run, but task C cannot run since task

B cannot run due to its dependency on task C. We define this

type of unreachable task as child to parent condition, since a

non-condition child task has a strong dependency to its parent

condition task.

We design Algorithms 3–5 to detect unreachable tasks in a

task graph. The algorithm will copy the original task graph into

a local graph. The tasks in the local graph have a few important

member variables that will be discussed throughout the next

couple sections. They are reachable, num_strong_dep,

and parent. reachable is a boolean that tells whether

the task is reachable (defaulted to false), parent is a

variable for this task’s parent task (defaulted to null), and

num_strong_dep tells how many strong dependencies this

current task has. When the algorithm begins, it places source

tasks in a reachable queue. Tasks are put in the reachable

queue through an insert wrapper method (Algorithm 3). This

method differs from a standard insert by first checking if the

task is reachable or not. If the task is reachable, the method

returns. If the task is not reachable, the method marks the task

as reachable, and the task is put in the reachable queue before

the method returns. This guarantees that a task always starts

33

Authorized licensed use limited to: The University of Utah. Downloaded on December 30,2021 at 20:05:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Illustration of the deadlock sanitizer algorithm (Algo-

rithm 2).

B

D0

C

1A E

Fig. 9: An exmaple task graph of merged children.

B C
0

A

Fig. 10: An example task graph of child-to-parent condition.

in the unreachable state and can only go from an unreachable

state to a reachable state. This also guarantees that any task

is only pushed into the reachable queue at most one time.

After the source tasks are in the reachable queue, the

algorithm enters its main while loop (Algorithm 4). The first

couple steps consist of popping the top task of the reachable

queue and checking if the task is a condition task. If it is, we

explore it through a method called explore_condition
(Algorithm 5). If the task is not a condition task, its children’s

strong dependency count is decremented. Any child that has

its strong dependency count reach 0 is put in the reach-

able queue. The most important part of the entire algorithm

Algorithm 3: Insert wrapper

Input: any Task t, Queue reachable

1 if !t.reachable() then
2 t.reachable← true;

3 reachable.push(t);
4 end

is the explore_condition method since unreachable

tasks would be non-existent without condition tasks. The

explore_condition method is more complex since we

have to track parental tasks for each child task. The goal

of tracking parental tasks is to know whether one task has

two separate paths from the same parent condition task. An

important part of this method is that it will only run on

condition tasks that are already reachable. This part of the

algorithm, as noted before, has been outlined in Algorithm

5. Note that in explore_condition the condition task’s

child tasks are put into the reachable queue immediately. This

is because the condition task can exit on any path at any time,

and any child task of a condition task may run even though all

of its strong dependencies may not be met (see the scheduling

algorithm in Figure 3).

Algorithm 4: Explore unreachable tasks loop

1 while !reachable.empty() do
2 curr ← reachable.pop();

3 if curr.condition = true then
4 explore condition(curr);

5 end
6 else
7 foreach child c ∈ curr.children do
8 decrement(c.num strong dep);

9 if c.num strong dep = 0 then
10 insert task(c, reachable);

11 end
12 end
13 end
14 end

A. Examples

To better understand how Algorithms 3–5 work, we will go

through two examples: one without unreachable tasks (Figure

11) and one with unreachable tasks (Figure 13).

B

D0

C

1A

E

F

Fig. 11: Example without unreachable tasks

34

Authorized licensed use limited to: The University of Utah. Downloaded on December 30,2021 at 20:05:50 UTC from IEEE Xplore. Restrictions apply.

Step 3:
Decrement SD of A's children

since A is not a condition

Reachable Queue

{EMPTY}

Step 2:
Start main while loop

and pop from reachable

Reachable Queue

Task A (source task)

Step 1:
Push Source Tasks

Step 4:
A's child SD count = 0

so we push into reachable

B.SD_Count goes
from 1 to 0

Step 5:
Pop B from reachable and

enter explore_condition on B

Reachable Queue

Task B (condition)

B
explore_condition

Step 8:
Check if current child is conditional

Reachable Queue

Task C (normal)

Step 7:
Push current child into

reachable

Local Queue

{EMPTY}

Step 6:
Local queue is created

Step 9:
Push C into local and

set parent variable

Step 10:
explore C's path

Not
Conditional?

Local Queue

C (c.parent is C)

C

F

C
Conditional?

Skip

Push Into Local
queue and set parent

variable

Step 12:
Decrement SD of C's children

F.SD_Count goes
from 1 to 0

F.parent
Local Queue

{EMPTY}

Step 11:
Pop C from reachable queue

Step 13:
Check F's parent variable

Set and not C

Not set

F.parent = C
Check F.SD_Count

Continue to next
child of C

F.SD_Count

Step 14:
Check F's SD count

0

More than 0

Go to C's
next child

Check if F is a
condition task

Local Queue

Task F (normal task)

Step 15:
Push F into local queue

since it is non-conditional

Fig. 12: Illustration of our unreachable task detection algorithm for the task graph in Figure 11.

The first step of the algorithm is to place each source task

in the reachable queue. The only source task here is A, thus

that is the only task in the reachable queue when the algorithm

enters the main while loop. The algorithm then pops task A and

checks if it is a condition task. Task A is not a condition task,

so we decrement the strong dependency count of each of its

children. In this case, task B is the only child so we decrement

its strong dependency count and it becomes 0. i Since task B’s

strong dependency count is now 0, the algorithm pushes it into

the reachable queue. We end this iteration of the main while

loop in Algorithm 4, and continue to the next iteration. Task B
is the only task in the reachable queue, so we pop it, trigger the

if statement on line 3 in Algorithm 4. Since B is a condition

task, we call explore_condition on the current task, B.

These steps are illustrated in steps 1–5 of Figure 12.

From here, the algorithm creates a local queue as seen

in Algorithm 5. This queue is used to explore the different

paths of the condition task. The algorithm then starts to iterate

through each child of task B. Assuming we go in alphabetical

order of task names, we start with task C. Task C is first

put in the reachable queue. If task C is a condition task,

we move on to task B’s next child to avoid recursive calls

to explore_condition. Since task C is not a condition

task, we push it into the local queue and set the parent of C
to itself. The local queue now has C in it, and we explore C’s

path by entering the while loop at line 10 of Algorithm 5.

This is the starting point of exploring the path of a child that

is not a condition. These steps are illustrated in steps 6–10 of

Figure 12.

To explore C, the algorithm pops it from the local queue

and uses it as the current task (local to the explore condition

method). The next step is to decrement each of task C’s

children’s strong dependency count. Task C’s only child is task

F, and its strong dependency count will go from 0 to 1. The

algorithm will then check if task F’s parent has been set or if

it is null. Since this is task F’s first check, its parent variable

is null, so the algorithm skips to the else statement at line

17 of Algorithm 5. Since task F has not had its parent member

variable set (we know this since we skipped the if statement

on line 14 of Algorithm 5) we set its parent to the current task,

which was task C (i.e. F.parent = C). From here we check

task F’s strong dependency count. Since it is 0, the algorithm

enters the if statement at line 19 in Algorithm 5. One last

check is done on task F. Since task F is not a condition task,

we push it into the local queue to be explored further. These

steps are illustrated in steps 11–15 of Figure 12. One thing to

note about the if statement at line 14 of Algorithm 5: if it is

triggered, we know task F would belong to a different path.

From here, the algorithm pops F from the local queue, sees

that it has no children, and goes to the next iteration of the

while loop at line 10 of Algorithm 5. Since the local queue

would not have anything left in it, the algorithm would break

out of the while loop at line 10 of Algorithm 5. This brings us

back up to line 2 of Algorithm 5. We would then go to the next

child of task B, which is task D. Task D has the same path as C,

so the text and diagrams will not be repeated as the outcome

would be the same. The end result is that every task in Figure

13 would have been pushed and popped from the reachable

35

Authorized licensed use limited to: The University of Utah. Downloaded on December 30,2021 at 20:05:50 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5: Explore condition

Input: a condition task cond

1 Queue local;

2 foreach child x ∈ cond.children do
3 insert task(x, reachable);

4 if x.condition = true then
5 continue;

6 end
7 else
8 x.parent← x;

9 local.push(x);

10 while !local.empty() do
11 curr ← local.pop();

12 foreach child c ∈ curr.children do
13 decrement(c.num strong dep);

14 if c.parent and c.parent �= curr then
15 continue;

16 end
17 else
18 c.parent← curr;

19 if c.num strong dep = 0 then
20 if c.condition = true then
21 insert task(c, reachable);

22 end
23 else
24 local.push(c);
25 end
26 end
27 end
28 end
29 end
30 end
31 end

queue at some point, meaning they were all reachable.

A

B0

C

1 D

Fig. 13: Example with an unreachable task, D.

The second example, illustrated in Figure 13, has an un-

reachable task D. Starting out, the algorithm will push the

only source node, task A into the reachable queue. We then

enter our main while loop in Algorithm 4 and pop task A
from the reachable queue. Since task A is a condition task, we

explore it through explore_condition. Like Figure 12,

a local queue is created and we start to iterate through each

child of the condition task. The algorithm will start with task

B and push it into the reachable queue. The algorithm will

then check if task B is a condition task. It is not, so its parent

member variable gets set to B (i.e. B.parent = B), and it

gets pushed into the local queue. These steps are illustrated in

steps 1–5 of Figure 14.

We then enter the while loop at line 10 of Algorithm 5. This

while loop will explore the path starting at task B. We pop task

B from the local queue, which will then be our current task

local to the explore_condition call. The algorithm will

then iterate through each of task B’s children. B’s only child is

D, so we decrement task D’s strong dependency count. In this

case, D’s strong dependency count would go from 2 to 1. We

check task D’s parent variable. It has not been set so it is null,

so we set it to task B (i.e. D.parent = B). We now check

task D’s strong dependency count. It is not 0, so we end this

iteration of the while loop at line 10 of Algorithm 5. Since

the algorithm did not push anything into the local queue, it

exits this while loop and goes back up to the next child of our

condition task that we were exploring. In this case, the next

child of task A is task C. We insert that into the reachable

queue and check whether it is a condition or not. It is not,

so we set its parent variable to C (i.e. C.parent = C) and

push it into the local queue. These steps are illustrated in steps

6–10 of Figure 13.

To explore task C’s path, we enter the while loop at line 10

of Algorithm 5. Task C is the only thing the local queue, so

we pop it and check its children. Task C’s only child is task D,

so we decrement its strong dependency count. Task D’s strong

dependency count now becomes 0 since we decremented it

when we explored the path from task B. We then check D’s

parent, which was set to task B in a prior iteration. So, task

D’s parent variable is not null, and it is not task C, so we

continue to C’s next child, essentially skipping the step where

we add it to the reachable queue. There is no another child

for task C, so we break out of the while loop in Algorithm 5.

This causes the algorithm to break out of the foreach loop in

Algorithm 5 since task A has no more children to be checked.

These steps are illustrated in steps 11–14 in Figure 14. This

concludes the second example. The only task that was never

pushed into the reachable queue was task D. This would mean

that the only thing returned by the algorithm would be task D,

since the last bit of the algorithm only returns the unreachable

tasks.

VI. ACKNOWLEDGEMENTS

The project is supported by the NSF grant CCF-2126672

and NumFOCUS Small Development Grant. We appreciate all

contributors and users of Taskflow for their valuable feedback

to improve our system.

VII. CONCLUSION

In this paper, we have introduced Taskflow-San as an instru-

mentation tool on top of the popular task graph programming

system, Taskflow, to assist programmers with the detection

of erroneous control-flow tasks. We have introduced three

algorithms to sanitize infinite loop, deadlock, and unreachable

tasks, that appear commonly in Taskflow programs. Future

36

Authorized licensed use limited to: The University of Utah. Downloaded on December 30,2021 at 20:05:50 UTC from IEEE Xplore. Restrictions apply.

Step 3:
explore_condition on A

Reachable Queue

{EMPTY}

Step 2:
Pop A from reachable queue

Reachable Queue

Task A (source task)

Step 1:
Push Source Tasks

A

explore_condition

Step 5:
Check if current child is conditional

Not
Conditional?

B
Skip

Conditional?

Push Into Local
queue and set
parent variable

Reachable Queue

Task B (normal task)

Step 4:
Push A's first child into

reachable queue

Local Queue

{EMPTY}

Step 6:
Pop B from local queue

Step 7:
Decrement SD of B's children

D.SD_Count goes
from 2 to 1

D.parent

Step 8:
Check F's parent variable

Set and not B

Not set

D.parent = B
Check D.SD_Count

Continue to next
child of B

Reachable Queue

Task C (normal)

Step 9:
Go to next child of condition

Step 10:
Check if current child is conditional

Not
Conditional?

Conditional?
C Skip

Push Into Local
queue and set
parent variable

Step 12:
Decrement SD of C's children

D.SD_Count goes
from 1 to 0

D.parent

Local Queue

{EMPTY}

Step 11:
Pop C from local queue

Step 13:
Check D's parent variable

Set and not C

Not set

F.parent = C
Check F.SD_Count

Continue to next
child of C

Step 14:
No more children to check,

so we are done

Fig. 14: Illustration of our unreachable task detection algorithm for the task graph in Figure 13.

work will extend Taskflow-San to detect task race caused by

condition tasks.

REFERENCES

[1] “Intel oneTBB,” https://github.com/oneapi-src/oneTBB.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” Concurr. Comput. : Pract. Exper., vol. 23, no. 2, pp.
187–198, 2011.

[3] D. Leijen, W. Schulte, and S. Burckhardt, “The Design of a Task Parallel
Library,” in ACM OOPSLA, 2009, pp. 227–241.

[4] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in IEEE/ACM SC, 2012,
pp. 1–11.

[5] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 – 3216, 2014.

[6] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J.
Dongarra, “PaRSEC: Exploiting Heterogeneity to Enhance Scalability,”
Computing in Science Engineering, vol. 15, no. 6, pp. 36–45, 2013.

[7] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “HPX:
A Task Based Programming Model in a Global Address Space,” in
PGAS, 2014, pp. 6:1–6:11.

[8] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, Fastflow:
High-Level and Efficient Streaming on Multicore. John Wiley and Sons,
Ltd, 2017, ch. 13, pp. 261–280.

[9] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing Sys-
tem,” in IEEE TPDS, 2021.

[10] J. S. Vetter, R. Brightwell, M. Gokhale, P. McCormick, R. Ross, J. Shalf,
K. Antypas, D. Donofrio, T. Humble, C. Schuman, B. Van Essen, S. Yoo,
A. Aiken, D. Bernholdt, S. Byna, K. Cameron, F. Cappello, B. Chapman,
A. Chien, M. Hall, R. Hartman-Baker, Z. Lan, M. Lang, J. Leidel,
S. Li, R. Lucas, J. Mellor-Crummey, P. Peltz Jr., T. Peterka, M. Strout,
and J. Wilke, “Extreme Heterogeneity 2018 - Productive Computational
Science in the Era of Extreme Heterogeneity: Report for DOE ASCR
Workshop on Extreme Heterogeneity,” 2018.

[11] C.-X. Lin, T.-W. Huang, and M. D. F. Wong, “An efficient work-stealing
scheduler for task dependency graph,” in IEEE ICPADS, 2020, pp. 64–
71.

[12] T.-W. Huang and M. Wong, “OpenTimer: A high-performance timing
analysis tool,” in IEEE/ACM ICCAD, 2015, pp. 895–902.

[13] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-accelerated Static Timing
Analysis,” in IEEE/ACM ICCAD, 2020, pp. 1–8.

[14] T.-W. Huang, C.-X. Lin, and M. D. F. Wong, “Opentimer v2: A parallel
incremental timing analysis engine,” IEEE Design and Test, vol. 38,
no. 2, pp. 62–68, 2021.

[15] T.-W. Huang, G. Guo, C.-X. Lin, and M. Wong, “OpenTimer 2.0: A New
Parallel Incremental Timing Analysis Engine,” IEEE TCAD, vol. 40,
no. 4, pp. 776–789, 2021.

[16] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated Pash-
based Timing Analysis,” in ACM/IEEE DAC, 2021.

[17] “DARPA Intelligent Design of Electronic Assets (IDEA) Program,”
https://www.darpa.mil/program/intelligent-design-of-electronic-assets.

[18] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “Cpp-Taskflow: Fast
Task-based Parallel Programming using Modern C++,” in IEEE IPDPS,
2019, pp. 974–983.

[19] C.-X. Lin, T.-W. Huang, G. Guo, and M. D. F. Wong, “A modern c++
parallel task programming library,” in ACM Multimedia Conference,
2019, p. 2284–2287.

[20] T.-W. Huang, “A General-purpose Parallel and Heterogeneous Task
Programming System for VLSI CAD,” in IEEE/ACM ICCAD, 2020.

37

Authorized licensed use limited to: The University of Utah. Downloaded on December 30,2021 at 20:05:50 UTC from IEEE Xplore. Restrictions apply.

