
62 2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Open-Source EDA

Editor’s notes:
This article introduces a high-quality open-source static timing analysis
engine that is capable of parallel incremental timing and that provides an
efficient API to facilitate development of complex EDA tools.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 Static timing analysis (STA) is a pivotal
step in the overall chip design flow. It verifies the
expected timing behaviors and prevents chips from
malfunctioning after tape-out [1]. Of all timing
analysis applications, incremental timing is imper-
ative for the success of timing-driven optimization
flows, such as placement, routing, logic synthesis,
and physical synthesis [2]. Optimization tools often
call a timer millions of times in their inner loop to
evaluate a transform or an algorithm. The timer
must quickly and accurately answer timing queries
to ensure slack integrity and timing closure after
the circuit experiences one or more changes. The
capability of a timer on both speed and accuracy
fronts is crucial for reasonable turnaround time and
performance.

To this end, we developed OpenTimer, a
high-performance timing analysis tool in 2015 [4].
OpenTimer is an award-winning tool in the ACM

OpenTimer v2: A Parallel
Incremental Timing
Analysis Engine
Tsung-Wei Huang
University of Utah

Chun-Xun Lin and Martin D. F. Wong
University of Illinois at Urbana–Champaign

Digital Object Identifier 10.1109/MDAT.2021.3049177
Date of publication: 5 January 2021; date of current version:
8 April 2021.

TAU Timing Analysis Contest (2014
through 2016) and has received many
recognitions in the CAD community
(golden timers in the IEEE/ACM ICCAD
CAD Contests and the ACM TAU Con-
tests [2]). OpenTimer is open-source,
and we are committed to free shar-
ing of our technical innovation to
make EDA a better and open place

to engage more talented people contributing to
the community [3]. So far, OpenTimer has been
used in many industrial and academic projects
such as Qflow, VSDflow, CloudV, DARPA IDEA,
OpenDesign, LGraph, and Ophidian [5]–[9].
After four years of development, we announced
a major release OpenTimer v2 [3]. We rewrote
the codebase in modern C++17 and developed
a new software architecture to facilitate the par-
allelization of incremental timing. The overview
of the OpenTimer v2 software stack is shown
in Figure 1. We summarize our contributions
as follows.

•	 New parallel task programming model: We
developed a new task-based programming
model that enables efficient implementations
of parallel decomposition strategies. The new
model allows us to go beyond the traditional
loop-based parallelization of incremental tim-
ing, thereby leading to more asynchrony and
faster runtime.

•	 New software architecture and API concept: We
developed the core timing routines around three

Authorized licensed use limited to: The University of Utah. Downloaded on July 17,2021 at 01:16:15 UTC from IEEE Xplore. Restrictions apply.

63March/April 2021

concepts, builder, action, and accessor. This sepa-
ration allows OpenTimer v2 to exploit parallelism
from both intra and inter operations, followed by
efficient lazy evaluation.

•	 New parallel incremental timing framework:
We developed a task-based incremental timing
framework that propagates timing naturally with
the structure of the timing graph. Our framework
can simultaneously perform both graph-based
analysis and path-based analysis in parallel while
keeping accurate results without breaking com-
plex dependencies between different timing
propagation tasks.

Compared with the previous generation, Open-
Timer v2 is faster and more scalable in increasing
the graph size and the CPU count. The program-
ming interface is also more succinct due to the
new API concept. We have made many com-
ponents modular to make OpenTimer v2 user-
friendly and easier for developers to contribute to
the codebase. These components include not only
the core parallel incremental timing algorithms
but also supporting readers/writers for SDC, lib-
erty, and SPEF that can be beneficial for other EDA
applications. We believe OpenTimer v2 stands out
as a unique system considering the technical inno-
vations and ensemble of software tradeoff and
architecture decisions we have made. Recently,
OpenTimer was selected as the Best Open-source
EDA Tool Award in the 2018 WOSET at ICCAD
(one out of 30) [10].

Challenges of incremental timing
Developing an efficient parallel incremental tim-

ing engine is a notoriously challenging job, requir-
ing in-depth knowledge of circuit, graph theory,
parallel programming, and software engineering.
We highlight the three aspects of the challenge we
face:

•	 Complex task dependencies: Updating a timing
graph takes on load capacitance, parasitics,
slew, delay, arrival time, required arrival time,
and more. These quantities are interdependent
and are not economical to compute. The result-
ing task dependency in terms of encapsulated
function calls is very large and complex.

•	 Irregular compute pattern: Updating a timing
graph involves highly diverse computation
patterns. We need to capture different forms of

timing data whether it is structured in a local
block or is flat in the global scope, to imple-
ment different delay calculators and pruning
heuristics.

•	 Unknown API practices: Our user experience led
us to believe that the API concept dominates the
usability of a timer. When things go incremental,
users and developers are often confused by the
effect of each operation, such as the per-call com-
plexity, parallelism, and consistency. This can sig-
nificantly lift up the turnaround time and result
in performance pitfall due to misunderstanding
of API.

The extensibility and scalability to new tech-
nology is also an important factor to take into
consideration while developing a general incre-
mental timing framework. We are not only inter-
ested in technical innovations but also in the
modularity of the software to provide a better
user experience.

Bottleneck in OpenTimer v1 and existing timers
One of the major differences between v1 and v2 is

the parallelization of incremental timing. OpenTimer
v1 and existing timers [11]–[13] dealt with incremen-
tal timing using loop-based parallelism [4]. In a rough
view, we levelized the circuit into a topological order
and applied the OpenMP “parallel for” directive
to each node set level by level. This level-based decom-
position is advantageous in its simple pipeline concept
and is by far the most implementation in existing timers,
including industrial tools. Figure 2 illustrates this strat-
egy as an example of forward timing propagation. For
each node, we update a number of dependent tasks
including parasitics (RCP), slew (SLP), delay (DLP),
arrival time (ATP), jump points (JMP), and pessimism
reduction (RCP) [4]. However, this paradigm suffers
from many performance drawbacks. For example, the

Figure 1. OpenTimer v2 software architecture [3].

Authorized licensed use limited to: The University of Utah. Downloaded on July 17,2021 at 01:16:15 UTC from IEEE Xplore. Restrictions apply.

64 IEEE Design&Test

Open-Source EDA

number of nodes can vary from level to level, resulting
in highly unbalanced thread utilization. Also, there is
a synchronization barrier between successive levels to
impose task dependencies. The overhead can be large
for graphs with long data paths. Furthermore, we found
it difficult to add to the pipeline other analysis frame-
works that require diverse modeling techniques, for
example, signal integrity and cross-talk analysis.

Big idea 1: A new parallel task
programming model using modern C++

After many years of research, we came to a conclu-
sion that the biggest hurdle to a scalable parallel timer
is a suitable parallel programming model. In addition to
the traditional loop-based approach, the programming
model must be capable of task-based parallelism. In
fact, we have tried multiple options, such as OpenMP

4.5 tasking and Intel Threading Building Blocks (TBB),
that are commonly used in EDA applications. We found
them unsuitable to our workload for various reasons.
For instance, OpenMP 4.5 tasking is static. Unfortunately,
it is difficult to decide the timing graph at the time of
programming. The problem of TBB is the programma-
bility. Users need to understand complex task constructs
and templates that are often at low level and hard to
maintain. Similar reasons exist in other libraries as well.
Therefore, we decided to develop a new parallel task
programming model using modern C++ technology.
Although the original purpose was for incremental tim-
ing, we later generalized it to a standalone open-source
project called Taskflow to benefit generic C++ develop-
ers [14]. Note that the proposed parallel task program-
ming model is different from that mentioned in [15],
which relies on a specialized scheduler to insert tasks
dynamically into shared work queues. We focus on
static modeling that maps the entire timing propagation
graph into a task computation graph. When the graph is
ready, the scheduler can perform whole-graph optimiza-
tion and schedule tasks using work-stealing to achieve
dynamic load balancing.

Big idea 2: A new API concept and
software architecture

With Taskflow in place, we develop a new soft-
ware architecture in OpenTimer v2 to enable effi-
cient parallel incremental timing. We group each
timing operation into one of the three categories,
builder, action, and accessor. A timing operation can
be either a C++ method in the timer class or com-
mand in our shell. Hereafter, the term OpenTimer
refers to v2 unless otherwise specified.

Builder: OpenTimer lineage
A builder operation builds up a timing analysis

environment, for example, reading cell libraries and
a verilog netlist. OpenTimer maintains a lineage
graph of builder operations to create a task execu-
tion plan (TEP). A TEP starts with no dependency
and keeps adding tasks to the lineage graph each
time users call a builder operation. It records what
transformations need to be executed when an action
operation is called.

Figure 3 shows an example of OpenTimer line-
age. The lineage is made of five builder operations,
read_celllib, read_verilog, read_sdc,
enable_cppr, and insert_net. Each time
users call a builder operation, the timer adds one or

Figure 2. Loop-based parallel timing propagations.
Each level applies a parallel_for to update timing
from the fanin of each node [4].

Figure 3. OpenTimer lineage example of five builder
operations (cyan). Three parsing tasks run in parallel.

Authorized licensed use limited to: The University of Utah. Downloaded on July 17,2021 at 01:16:15 UTC from IEEE Xplore. Restrictions apply.

65March/April 2021

multiple tasks to the lineage graph. These operations
are not evaluated until an action operation is issued.
The advantage of this is fine-grained task parallelism.
An operation is divided into several smaller tasks
that can run in parallel with other counterparts. For
example, reading an input file can be broken into
two subtasks, parsing the file and digesting the data
into OpenTimer’s in-memory model. It is obvious
the parsing part can run in parallel with others as
long as it precedes its corresponding digesting task.
Maintaining a lineage of builder operations enables
us to exploit both intra and interoperation parallel-
ism, followed by efficient lazy evaluation. Another
side benefit of the lineage is the engineering change
order (ECO) capability. We can easily keep track of
the modifiers for state recovery or debugging.

Action: Update timing
A TEP is materialized and evaluated when users

request the timer to perform an action operation,
for example, reporting the arrival time and the
slack value of a pin. Calling an action operation
triggers a timing update from the earliest task to
the one that produces the result of the action call.
Internally, we create a task dependency graph
and update timing in parallel, including forward
propagation (slew and arrival time) and back-
ward propagation (required arrival time). Figure 4
shows an example of task dependency graph to
update a timer. The bottom-most call of every
action operation is the method update_timing.
The method explores a minimum set of nodes in
the timing graph as propagation candidates and
constructs a task dependency graph to carry out
the timing update. Our tasking model can incor-
porate different types of timing propagation into a
task. Unlike the level-based approach in v1, a task
can start immediately after all its preceding tasks
finish. This largely enhances asynchrony, giving
rise to higher CPU utilization, and faster runtime.

Accessor: Inspect OpenTimer
An accessor operation lets users inspect the timer

status and dump static timing information, for exam-
ple, dumping the timing graph for visualization pur-
poses or dumping the design statistics. All accessor
operations are declared as constant methods in the
timer class. Calling an accessor method does not
alter any internal data structures of a timer.

Big idea 3: Parallel incremental timing
analysis algorithms

We discuss, in this section, how OpenTimer per-
forms graph-based analysis and path-based analysis.

Graph-based analysis
At the bottom of every action operation, Open-

Timer calls update_timing to perform graph-based
timing updates. The timer first evaluates the lineage
(e.g., Figure 3) and discovers a list of frontier pins
from which incremental timing should begin after
a modification is applied [4]. We then identify the

Figure 4. Example task dependency graph to carry
out an action operation. The graph consists of forward
propagation tasks (white) and backward propagation
tasks (black).

Authorized licensed use limited to: The University of Utah. Downloaded on July 17,2021 at 01:16:15 UTC from IEEE Xplore. Restrictions apply.

66 IEEE Design&Test

Open-Source EDA

propagation candidates (downstream and upstream
of frontier pins) and derive a task dependency graph
for graph-based timing update (e.g., Figure 4). Execut-
ing the task dependency graph autonomously triggers
a parallel incremental timing update.

Path-based analysis
We developed our path-based analysis using

the path generation algorithm by Huang and Wong
[16]. To our best knowledge, this is by far the fastest

algorithm in the literature. The algorithm consists
of two complementary data structures, suffix tree
and prefix tree. Each path is transformed into an
implicit representation that takes constant space
and time. The suffix tree represents the shortest
path tree rooted at a given endpoint of the design.
The prefix tree is a tree order of timing arcs each
representing a unique path deviated from a timing
arc. Generating the top-k critical paths across all
endpoints is extremely efficient under this data
structure. It also largely facilitates the paralleliza-
tion as each pair of suffix tree and prefix tree is
independent of each other at different endpoints.
An example of the implicit path representation is
shown in Figure 5.

Experimental results
OpenTimer v2 is implemented in C++17 on

a 40-core 3.2-GHz 64-bit Linux machine with
64–GB memory. We used G++ 8.0 with -std=c++17
to compile the source. Experiments are undertaken
on the TAU15 contest benchmarks with a golden
reference generated by IBM Einstimer under static
mode [2]. Table 1 compares the accuracy between
OpenTimer v1 and v2 on a set of TAU15 contest
benchmarks [2]. These benchmarks are where
OpenTimer v1 failed to achieve full accuracy due
to an implementation compromise between path
generation and parallelization. The new software
architecture in v2 lets us manage to resolve these
issues and we are able to match the golden results
completely. We did not observe too much runtime
and memory difference between v1 and v2 on these
benchmarks.

The TAU15 contest benchmarks have fewer than
ten incremental timing iterations, making it hard to
profile the performance. Therefore, we modified
two circuits tv80 and vga_lcd, on which both v1
and v2 acquire full accuracy, to incorporate 300
incremental timing iterations. In each iteration, we
randomly modify the designs (e.g., repower_
gate) and call report_timing to trigger incre-
mental timing updates. As shown in Figure 6, v2 is
consistently faster than v1 (2.14× on tv80 and 2.19×
on vga_lcd). About 64% of the speed-up came from
replacing the pipeline-based parallelism with the
new tasking framework. Figure 7 plots the runtime
scalability of v1 and v2 over an increasing number
of cores. Regardless of the core count, v2 is always
faster than v1. Both saturates at about 8–12 cores.

 
Table 1. Accuracy comparison between OpenTimer v1 and v2 on
TAU15 contest benchmarks [2].

Figure 5. OpenTimer applies implicit path
representation based on a suffix tree and a prefix
tree data structures per query to perform path-based
analysis [16].

Figure 6. Runtime comparison of incremental timing.

Authorized licensed use limited to: The University of Utah. Downloaded on July 17,2021 at 01:16:15 UTC from IEEE Xplore. Restrictions apply.

67March/April 2021

The scalability is affected by many factors such as
the graph structure and the size of incremental tim-
ing. A primary reason that prevents v2 from scaling
beyond 12 cores is the data size. Most data for incre-
mental timing are sparse. They do not span across
large cones, as full timing, which produces a large
amount of data for higher parallelism.

Figure 8 shows the runtime profiling for task-
based approach in OpenTimer v2 and loop-based
levelization in v1. We measure the time each sig-
nificant portion of update_timing takes in a
piechart. Creating a task graph occupies about 10%
of the entire runtime and executing the graph takes
the majority of 88%. On the other hand, the loop-
based approach spent up to 26% on updating the
level list and the parallel execution of tasks across
all levels takes 71%.

In this article, we presented OpenTimer v2—a
new parallel incremental timing analysis tool. We
have developed a new parallel task programming
model and applied it to design an efficient paral-
lel incremental timing framework. Also, we have
introduced a new API concept that defines a clear

operation effect on top of our paral-
lelization framework. The source of
OpenTimer v2 is available at [3].� 

Acknowledgments
We would like to thank all Open-

Timer users in providing their feed-
back, suggestions, and requests.

 References
[1]	 J. Bhasker and R. Chadha, Static Timing

Analysis for Nanometer Designs: A Practical

Approach, 2009th ed. New York, NY, USA:

Springer, 2009, ISBN-13: 978-0387938196.

[2]	 J. Hu, G. Schaeffer, and V. Garg,

“TAU 2015 contest on incremental timing

analysis,” in Proc. IEEE/ACM Int. Conf.

Comput.-Aided Design (ICCAD), Nov.

2015, pp. 895–902.

[3]	 OpenTimer. Accessed: 2020. [Online].

Available: https://github.com/OpenTimer/

OpenTimer

[4]	 T.-W. Huang and M. D. F. Wong,

“OpenTimer: A high-performance timing

analysis tool,” in Proc. IEEE/ACM Int. Conf.

Comput.-Aided Design (ICCAD), Nov.

2015, pp. 895–902.

	 [5]	 Qflow. Accessed: 2020. [Online]. Available: http://

opencircuitdesign.com/qflow/

	 [6]	 CloudV. Accessed: 2020. [Online]. Available: https://

cloudv.io/

	 [7]	 J. Jung et al., “DATC RDF: An academic flow from

logic synthesis to detailed routing,” in Proc. Int. Conf.

Comput.-Aided Design, Nov. 2018, pp. 37:1–37:4.

	 [8]	 LGraph. Accessed: 2020. [Online]. Available: https://

github.com/masc-ucsc/lgraph

	 [9]	 Ophidian. Accessed: 2020. [Online]. Available: https://

gitlab.com/eclufsc/ophidian

	[10]	 WOSET. Accessed: 2020. [Online]. Available: https://

github.com/woset-workshop/woset-workshop.github.io

	[11]	 OpenSTA. Accessed: 2020. [Online]. Available: https://

github.com/abk-openroad/OpenSTA

	[12]	 P.-Y. Lee, I. H.-R. Jiang, and T.-C. Chen, “FastPass: Fast

timing path search for generalized timing exception

handling,” in Proc. 23rd Asia South Pacific Design

Autom. Conf. (ASP-DAC), Jan. 2018, pp. 172–177.

	[13]	 K. E. Murray and V. Betz, “Tatum: Parallel timing

analysis for faster design cycles and improved

optimization,” in Proc. Int. Conf. Field-Programmable

Technol. (FPT), Dec. 2018, pp. 110–117.

Figure 7. Runtime scalability with increasing number
of CPU cores on two large circuits, netcard, and
leon3mp.

Figure 8. Runtime profiling for task parallelism in
OpenTimer v2 and loop parallelism in v1.

Authorized licensed use limited to: The University of Utah. Downloaded on July 17,2021 at 01:16:15 UTC from IEEE Xplore. Restrictions apply.

68 IEEE Design&Test

Open-Source EDA

	[14]	 T.-W. Huang et al., “Cpp-taskflow: Fast task-based

parallel programming using modern C++,” in Proc.

IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),

May 2019, pp. 974–983.

	[15]	 A. Mark Lavin et al., “Decentralized dynamically

scheduled parallel static timing analysis,” U.S. Patent

2 012 0311 514 A1, Jul. 8, 2014.

	[16]	 T.-W. Huang and M. D. F. Wong, “UI-timer 1.0:

An ultrafast path-based timing analysis algorithm for

CPPR,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 35, no. 11, pp. 1862–1875, Nov. 2016.

Tsung-Wei Huang is currently an Assistant
Professor with the Electrical and Computer
Engineering (ECE) Department, University of Utah,
Salt Lake City, UT. His current research interests focus
on timing analysis and parallel processing. Huang has
a BS and an MS from the Department of Computer
Science, National Cheng Kung University (NCKU),
Tainan, Taiwan (2010 and 2011, respectively), and a
PhD in ECE from the University of Illinois at Urbana–
Champaign (UIUC), Champaign, IL.

Chun-Xun Lin is currently pursuing a PhD
with the Department of Electrical and Computer

Engineering (ECE), University of Illinois at Urbana–
Champaign (UIUC), Champaign, IL. His research
interests include VLSI CAD and parallel processing.
Lin has a BS in electrical engineering from National
Cheng Kung University, Tainan, Taiwan (2009) and
an MS in electronics engineering from the Graduate
Institute of Electronics Engineering, National Taiwan
University, Taipei, Taiwan (2011).

Martin D. F. Wong is currently the Dean of
the Faculty of Engineering, Chinese University of
Hong Kong (CUHK), Hong Kong. Wong has a BS in
mathematics from the University of Toronto, Toronto,
ON, Canada, and an MS in mathematics and a PhD in
computer science (1987) from the University of Illinois
at Urbana–Champaign (UIUC), Champaign, IL.

 Direct questions and comments about this article
to Tsung-Wei Huang, Department of Electrical and
Computer Engineering, University of Utah, Salt Lake
City, UT 84112 USA; tsung-wei.huang@utah.edu.

Authorized licensed use limited to: The University of Utah. Downloaded on July 17,2021 at 01:16:15 UTC from IEEE Xplore. Restrictions apply.

