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Editor’s notes:
This article introduces a high-quality open-source static timing analysis 
engine that is capable of parallel incremental timing and that provides an 
efficient API to facilitate development of complex EDA tools.

—Sherief Reda, Brown University
—Leon Stock, IBM

—Pierre-Emmanuel Gaillardon, University of Utah

 Static timing analysis (STA) is a pivotal 
step in the overall chip design flow. It verifies the 
expected timing behaviors and prevents chips from 
malfunctioning after tape-out [1]. Of all timing 
analysis applications, incremental timing is imper-
ative for the success of timing-driven optimization 
flows, such as placement, routing, logic synthesis, 
and physical synthesis [2]. Optimization tools often 
call a timer millions of times in their inner loop to 
evaluate a transform or an algorithm. The timer 
must quickly and accurately answer timing queries 
to ensure slack integrity and timing closure after 
the circuit experiences one or more changes. The 
capability of a timer on both speed and accuracy 
fronts is crucial for reasonable turnaround time and 
performance.

To this end, we developed OpenTimer, a 
high-performance timing analysis tool in 2015 [4]. 
OpenTimer is an award-winning tool in the ACM 
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TAU Timing Analysis Contest (2014 
through 2016) and has received many 
recognitions in the CAD community 
(golden timers in the IEEE/ACM ICCAD 
CAD Contests and the ACM TAU Con-
tests [2]). OpenTimer is open-source, 
and we are committed to free shar-
ing of our technical innovation to 
make EDA a better and open place 

to engage more talented people contributing to 
the community [3]. So far, OpenTimer has been 
used in many industrial and academic projects 
such as Qflow, VSDflow, CloudV, DARPA IDEA, 
OpenDesign, LGraph, and Ophidian [5]–[9]. 
After four years of development, we announced 
a major release OpenTimer v2 [3]. We rewrote 
the codebase in modern C++17 and developed 
a new software architecture to facilitate the par-
allelization of incremental timing. The overview 
of the OpenTimer v2 software stack is shown 
in Figure 1. We summarize our contributions 
as follows.

•	 New parallel task programming model: We 
developed a new task-based programming 
model that enables efficient implementations 
of parallel decomposition strategies. The new 
model allows us to go beyond the traditional 
loop-based parallelization of incremental tim-
ing, thereby leading to more asynchrony and 
faster runtime.

•	 New software architecture and API concept: We 
developed the core timing routines around three 
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concepts, builder, action, and accessor. This sepa-
ration allows OpenTimer v2 to exploit parallelism 
from both intra and inter operations, followed by 
efficient lazy evaluation.

•	 New parallel incremental timing framework: 
We developed a task-based incremental timing 
framework that propagates timing naturally with 
the structure of the timing graph. Our framework 
can simultaneously perform both graph-based 
analysis and path-based analysis in parallel while 
keeping accurate results without breaking com-
plex dependencies between different timing 
propagation tasks.

Compared with the previous generation, Open-
Timer v2 is faster and more scalable in increasing 
the graph size and the CPU count. The program-
ming interface is also more succinct due to the 
new API concept. We have made many com-
ponents modular to make OpenTimer v2 user-
friendly and easier for developers to contribute to 
the codebase. These components include not only 
the core parallel incremental timing algorithms 
but also supporting readers/writers for SDC, lib-
erty, and SPEF that can be beneficial for other EDA 
applications. We believe OpenTimer v2 stands out 
as a unique system considering the technical inno-
vations and ensemble of software tradeoff and 
architecture decisions we have made. Recently, 
OpenTimer was selected as the Best Open-source 
EDA Tool Award in the 2018 WOSET at ICCAD 
(one out of 30) [10].

Challenges of incremental timing
Developing an efficient parallel incremental tim-

ing engine is a notoriously challenging job, requir-
ing in-depth knowledge of circuit, graph theory, 
parallel programming, and software engineering. 
We highlight the three aspects of the challenge we 
face:

•	 Complex task dependencies: Updating a timing 
graph takes on load capacitance, parasitics, 
slew, delay, arrival time, required arrival time, 
and more. These quantities are interdependent 
and are not economical to compute. The result-
ing task dependency in terms of encapsulated 
function calls is very large and complex.

•	 Irregular compute pattern: Updating a timing 
graph involves highly diverse computation 
patterns. We need to capture different forms of 

timing data whether it is structured in a local 
block or is flat in the global scope, to imple-
ment different delay calculators and pruning 
heuristics.

•	 Unknown API practices: Our user experience led 
us to believe that the API concept dominates the 
usability of a timer. When things go incremental, 
users and developers are often confused by the 
effect of each operation, such as the per-call com-
plexity, parallelism, and consistency. This can sig-
nificantly lift up the turnaround time and result 
in performance pitfall due to misunderstanding 
of API.

The extensibility and scalability to new tech-
nology is also an important factor to take into 
consideration while developing a general incre-
mental timing framework. We are not only inter-
ested in technical innovations but also in the 
modularity of the software to provide a better 
user experience.

Bottleneck in OpenTimer v1 and existing timers
One of the major differences between v1 and v2 is 

the parallelization of incremental timing. OpenTimer 
v1 and existing timers [11]–[13] dealt with incremen-
tal timing using loop-based parallelism [4]. In a rough 
view, we levelized the circuit into a topological order 
and applied the OpenMP “parallel for” directive 
to each node set level by level. This level-based decom-
position is advantageous in its simple pipeline concept 
and is by far the most implementation in existing timers, 
including industrial tools. Figure 2 illustrates this strat-
egy as an example of forward timing propagation. For 
each node, we update a number of dependent tasks 
including parasitics (RCP), slew (SLP), delay (DLP), 
arrival time (ATP), jump points (JMP), and pessimism 
reduction (RCP) [4]. However, this paradigm suffers 
from many performance drawbacks. For example, the 

Figure 1. OpenTimer v2 software architecture [3].
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number of nodes can vary from level to level, resulting 
in highly unbalanced thread utilization. Also, there is 
a synchronization barrier between successive levels to 
impose task dependencies. The overhead can be large 
for graphs with long data paths. Furthermore, we found 
it difficult to add to the pipeline other analysis frame-
works that require diverse modeling techniques, for 
example, signal integrity and cross-talk analysis.

Big idea 1: A new parallel task 
programming model using modern C++

After many years of research, we came to a conclu-
sion that the biggest hurdle to a scalable parallel timer 
is a suitable parallel programming model. In addition to 
the traditional loop-based approach, the programming 
model must be capable of task-based parallelism. In 
fact, we have tried multiple options, such as OpenMP 

4.5 tasking and Intel Threading Building Blocks (TBB), 
that are commonly used in EDA applications. We found 
them unsuitable to our workload for various reasons. 
For instance, OpenMP 4.5 tasking is static. Unfortunately, 
it is difficult to decide the timing graph at the time of 
programming. The problem of TBB is the programma-
bility. Users need to understand complex task constructs 
and templates that are often at low level and hard to 
maintain. Similar reasons exist in other libraries as well. 
Therefore, we decided to develop a new parallel task 
programming model using modern C++ technology. 
Although the original purpose was for incremental tim-
ing, we later generalized it to a standalone open-source 
project called Taskflow to benefit generic C++ develop-
ers [14]. Note that the proposed parallel task program-
ming model is different from that mentioned in [15], 
which relies on a specialized scheduler to insert tasks 
dynamically into shared work queues. We focus on 
static modeling that maps the entire timing propagation 
graph into a task computation graph. When the graph is 
ready, the scheduler can perform whole-graph optimiza-
tion and schedule tasks using work-stealing to achieve 
dynamic load balancing.

Big idea 2: A new API concept and 
software architecture

With Taskflow in place, we develop a new soft-
ware architecture in OpenTimer v2 to enable effi-
cient parallel incremental timing. We group each 
timing operation into one of the three categories, 
builder, action, and accessor. A timing operation can 
be either a C++ method in the timer class or com-
mand in our shell. Hereafter, the term OpenTimer 
refers to v2 unless otherwise specified.

Builder: OpenTimer lineage
A builder operation builds up a timing analysis 

environment, for example, reading cell libraries and 
a verilog netlist. OpenTimer maintains a lineage 
graph of builder operations to create a task execu-
tion plan (TEP). A TEP starts with no dependency 
and keeps adding tasks to the lineage graph each 
time users call a builder operation. It records what 
transformations need to be executed when an action 
operation is called.

Figure 3 shows an example of OpenTimer line-
age. The lineage is made of five builder operations, 
read_celllib, read_verilog, read_sdc, 
enable_cppr, and insert_net. Each time 
users call a builder operation, the timer adds one or 

Figure 2. Loop-based parallel timing propagations. 
Each level applies a parallel_for to update timing 
from the fanin of each node [4].

Figure 3. OpenTimer lineage example of five builder 
operations (cyan). Three parsing tasks run in parallel.
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multiple tasks to the lineage graph. These operations 
are not evaluated until an action operation is issued. 
The advantage of this is fine-grained task parallelism. 
An operation is divided into several smaller tasks 
that can run in parallel with other counterparts. For 
example, reading an input file can be broken into 
two subtasks, parsing the file and digesting the data 
into OpenTimer’s in-memory model. It is obvious 
the parsing part can run in parallel with others as 
long as it precedes its corresponding digesting task. 
Maintaining a lineage of builder operations enables 
us to exploit both intra and interoperation parallel-
ism, followed by efficient lazy evaluation. Another 
side benefit of the lineage is the engineering change 
order (ECO) capability. We can easily keep track of 
the modifiers for state recovery or debugging.

Action: Update timing
A TEP is materialized and evaluated when users 

request the timer to perform an action operation, 
for example, reporting the arrival time and the 
slack value of a pin. Calling an action operation 
triggers a timing update from the earliest task to 
the one that produces the result of the action call. 
Internally, we create a task dependency graph 
and update timing in parallel, including forward 
propagation (slew and arrival time) and back-
ward propagation (required arrival time). Figure 4 
shows an example of task dependency graph to 
update a timer. The bottom-most call of every 
action operation is the method update_timing. 
The method explores a minimum set of nodes in 
the timing graph as propagation candidates and 
constructs a task dependency graph to carry out 
the timing update. Our tasking model can incor-
porate different types of timing propagation into a 
task. Unlike the level-based approach in v1, a task 
can start immediately after all its preceding tasks 
finish. This largely enhances asynchrony, giving 
rise to higher CPU utilization, and faster runtime.

Accessor: Inspect OpenTimer
An accessor operation lets users inspect the timer 

status and dump static timing information, for exam-
ple, dumping the timing graph for visualization pur-
poses or dumping the design statistics. All accessor 
operations are declared as constant methods in the 
timer class. Calling an accessor method does not 
alter any internal data structures of a timer.

Big idea 3: Parallel incremental timing 
analysis algorithms

We discuss, in this section, how OpenTimer per-
forms graph-based analysis and path-based analysis.

Graph-based analysis
At the bottom of every action operation, Open-

Timer calls update_timing to perform graph-based 
timing updates. The timer first evaluates the lineage 
(e.g., Figure 3) and discovers a list of frontier pins 
from which incremental timing should begin after 
a modification is applied [4]. We then identify the 

Figure 4. Example task dependency graph to carry 
out an action operation. The graph consists of forward 
propagation tasks (white) and backward propagation 
tasks (black).
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propagation candidates (downstream and upstream 
of frontier pins) and derive a task dependency graph 
for graph-based timing update (e.g., Figure 4). Execut-
ing the task dependency graph autonomously triggers 
a parallel incremental timing update.

Path-based analysis
We developed our path-based analysis using 

the path generation algorithm by Huang and Wong 
[16]. To our best knowledge, this is by far the fastest 

algorithm in the literature. The algorithm consists 
of two complementary data structures, suffix tree 
and prefix tree. Each path is transformed into an 
implicit representation that takes constant space 
and time. The suffix tree represents the shortest 
path tree rooted at a given endpoint of the design. 
The prefix tree is a tree order of timing arcs each 
representing a unique path deviated from a timing 
arc. Generating the top-k critical paths across all 
endpoints is extremely efficient under this data 
structure. It also largely facilitates the paralleliza-
tion as each pair of suffix tree and prefix tree is 
independent of each other at different endpoints. 
An example of the implicit path representation is 
shown in Figure 5.

Experimental results
OpenTimer v2 is implemented in C++17 on 

a 40-core 3.2-GHz 64-bit Linux machine with 
64–GB memory. We used G++ 8.0 with -std=c++17 
to compile the source. Experiments are undertaken 
on the TAU15 contest benchmarks with a golden 
reference generated by IBM Einstimer under static 
mode [2]. Table 1 compares the accuracy between 
OpenTimer v1 and v2 on a set of TAU15 contest 
benchmarks [2]. These benchmarks are where 
OpenTimer v1 failed to achieve full accuracy due 
to an implementation compromise between path 
generation and parallelization. The new software 
architecture in v2 lets us manage to resolve these 
issues and we are able to match the golden results 
completely. We did not observe too much runtime 
and memory difference between v1 and v2 on these 
benchmarks.

The TAU15 contest benchmarks have fewer than 
ten incremental timing iterations, making it hard to 
profile the performance. Therefore, we modified 
two circuits tv80 and vga_lcd, on which both v1 
and v2 acquire full accuracy, to incorporate 300 
incremental timing iterations. In each iteration, we 
randomly modify the designs (e.g., repower_
gate) and call report_timing to trigger incre-
mental timing updates. As shown in Figure 6, v2 is 
consistently faster than v1 (2.14× on tv80 and 2.19× 
on vga_lcd). About 64% of the speed-up came from 
replacing the pipeline-based parallelism with the 
new tasking framework. Figure 7 plots the runtime 
scalability of v1 and v2 over an increasing number 
of cores. Regardless of the core count, v2 is always 
faster than v1. Both saturates at about 8–12 cores. 

 
Table 1. Accuracy comparison between OpenTimer v1 and v2 on 
TAU15 contest benchmarks [2].

Figure 5. OpenTimer applies implicit path 
representation based on a suffix tree and a prefix 
tree data structures per query to perform path-based 
analysis [16].

Figure 6. Runtime comparison of incremental timing.
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The scalability is affected by many factors such as 
the graph structure and the size of incremental tim-
ing. A primary reason that prevents v2 from scaling 
beyond 12 cores is the data size. Most data for incre-
mental timing are sparse. They do not span across 
large cones, as full timing, which produces a large 
amount of data for higher parallelism.

Figure 8 shows the runtime profiling for task-
based approach in OpenTimer v2 and loop-based 
levelization in v1. We measure the time each sig-
nificant portion of update_timing takes in a 
piechart. Creating a task graph occupies about 10% 
of the entire runtime and executing the graph takes 
the majority of 88%. On the other hand, the loop-
based approach spent up to 26% on updating the 
level list and the parallel execution of tasks across 
all levels takes 71%.

In this article, we presented OpenTimer v2—a 
new parallel incremental timing analysis tool. We 
have developed a new parallel task programming 
model and applied it to design an efficient paral-
lel incremental timing framework. Also, we have 
introduced a new API concept that defines a clear 

operation effect on top of our paral-
lelization framework. The source of 
OpenTimer v2 is available at [3].� 
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