
A Provably Good and Practically Efficient Algorithm for
Common Path Pessimism Removal in Large Designs

Zizheng Guo
CECA, CS Department

Peking University
Beijing, China
gzz@pku.edu.cn

Tsung-Wei Huang
ECE Department
University of Utah

Salt Lake City, USA
tsung-wei.huang@utah.edu

Yibo Lin*

CECA, CS Department
Peking University
Beijing, China

yibolin@pku.edu.cn

Abstract—Common path pessimism removal (CPPR) is imperative for
eliminating redundant pessimism during static timing analysis (STA).
However, turning on CPPR can significantly increase the analysis runtime
by 10–100× in large designs. Recent years have seen much research on im-
proving the algorithmic efficiencies of CPPR, but most are architecturally
constrained by either the speed-accuracy trade-off or design-specific prun-
ing heuristics. In this paper, we introduce a novel CPPR algorithm that is
provably good and practically efficient. We have evaluated our algorithm
on large industrial designs and demonstrated promising performance over
the current state-of-the-art. As an example, our algorithm outperforms
the baseline by 36–135× faster when generating the top-10K post-CPPR
critical paths on a million-gate design. At the extreme, our algorithm with
one core is even 4–16× faster than the baseline with 8 cores.

I. INTRODUCTION

Static timing analysis (STA) is a pivotal step in the overall design
flow [1]. The predominant approach creates early and late bounds
on each signal delay. However, this early/late timing split causes the
analysis to be artificially pessimistic due to analyzing only the worst-
case scenarios. Unnecessary pessimism will lead tests to be marked
failing whereas in actuality they should be passing. Designers and
optimization tools might be misled into an over-pessimistic timing
report, leading to unnecessary increases in design turnaround time
and cost. To this end, common path pessimism removal (CPPR) is
imperative for eliminating redundant pessimism during STA. Figure 1
gives an example. Prior to CPPR, data path 2 can be more critical
than data path 1, but the result may change after CPPR because the
common path pessimism 2 is larger than pessimism 1. However, this
process of pessimism removal is extremely time-consuming due to the
path-by-path timing anaylsis across all flip-flop (FF) pairs. According
to [2], generating a complete timing report with CPPR incurs 10-100×
more runtime and memory.

The recent years have seen several research work and algorithms to
reduce the long runtimes of CPPR. For instance, the TAU community
has organized contests to seek new ideas for accurate and fast CPPR
algorithms [3], [4]. iTimerC [5] employs a branch-and-bound tech-
nique to prune the search space of path generation. HappyTimer [6]
designs a block-based algorithm with an alternative delay metric to
remove pessimism during the timing update. OpenTimer [2] introduces
a dual data structure to remove path pessimism and parallelize the
process across independent FFs. There is also research on improving
memory consumption of CPPR [7], [8]. Other approaches such as
tag-based updates and modified delay models have been applied
in commercial tools [4]. A fundamental challenge is that existing
algorithms encounter large time and space complexities proportional
to the product of FF count and the graph size, because they may
end up enumerating all possible FF pairs for CPPR. As a result,
even introducing speed-accuracy trade-off or design-specific pruning

*Corresponding author

Pessimism 1

Pessimism 2

B3

CLK

B1

B2

B4

D Q

FF2
IN2

IN1
D

Q

FF1 D Q

FF3

OUT

Setup/Hold

Data path 1 Data path 2

Capturing clock path

CK

CK

CK

Fig. 1: An example of CPPR impact. Before CPPR, data path 2 can
be more critical than data path 1. However, the post-CPPR slack of
data path 2 can become less critical than data path 1, as pessimism 2
is larger than pessimism 1.

heuristics cannot guarantee consistent, decent performance in large
designs.

In this paper, we introduce a novel provably good and practically
efficient CPPR algorithm for analyzing large designs. We summarize
three technical contributions of our work: (1) First, instead of enu-
merating all possible FF pairs, we identify lowest common ancestors
(LCA) that incur common path pessimism on data paths, and process
the FF pairs in different LCA depth groups. Then, we design an
efficient distance tuple structure to deal with depth constraints, largely
reducing the search space of CPPR. (2) Second, we prove that the
time complexity of our algorithm is irrelevant to the number of FFs,
but the depth of the clock tree which is typically smaller by orders
of magnitude. (3) Third, our algorithm is highly parallelizable across
the depths of the clock tree. This organization largely facilitates the
adoption of multithreading to gain further speed-up through manycore
parallelism.

We have evaluated our algorithm on large industrial designs of
millions of gates and compared our performance with three state-
of-the-art CPPR algorithms [2], [6], [5]. Our algorithm significantly
outperforms the baseline algorithms in runtime. For instance, when
generating one post-CPPR critical path, we are 3–23× faster. The
difference becomes even remarkable at a large path count. When
generating the top-10K post-CPPR critical paths, our algorithm is 36–
135× faster than the others. At the extreme, our algorithm of one core
(single-threaded) is even 4–16× faster than the baseline of eight cores
where performance scalability stagnates. The following section titles
are self-explanatory.

II. PRELIMINARIES

In STA, a circuit is represented as a directed acyclic graph (DAG),
where nodes denote pins and edges denote interconnections between
pins. FFs are driven by a clock source through the clock tree. Each
edge has an early and a late bounds on the signal delay. A data path978-1-6654-3274-0/21/$31.00 c©2021 IEEE

Level 2

Level 1

Level 0

c d a b e

Early

Late

Pessimism
Removed

clock tree

Fig. 2: When fixing the depth of LCA to be 1, we only care about
these launching-capturing FF pairs: (c, d), (d, c), (a, b), (a, e), (b, a),
(b, e), (e, a), (e, b). We can then tell precisely for each launching FF
the pessimism it will introduce when paired with any other capturing
FF, namely the edges above Level 1 colored yellow in the figure.

starts from a launching FF or a primary input and ends at a capturing
FF. The delay of a path is the sum of the edge delays along the path.
We consider the setup and hold timing constraints [3], [4]:

Definition 1. We denote oi, di as the respective clock pin and the
data pin of FF i. For a path p from o1 to d2, the setup slack and the
hold slack of p are defined as follows:

slack setup(p) = rat late(o2)− at late(o2)

= atearly(o2) + Tclk − Tsetup − at late(o1)− delay late(p),

slackhold(p) = atearly(o2)− ratearly(o2)

= atearly(o1) + delayearly(p)− at late(o2)− Thold.

(1)

The definition of slack assumes a worst case of edge delays for each
test. However, it introduces unnecessary pessimism because there can
be a common segment between two clock paths (see Figure 1). To
remove the pessimism, we add a credit to the slack as follows:

Definition 2. We define CPPR credit on clock tree node u as
credit(u) = at late(u)−at early(u). The credit for a path with launching
FF u and capturing FF v is thus credit(LCA(u, v)).

Then, the post-CPPR slack for a path p can be written as [3], [4],

slack setup/hold
CPPR (p) = slack setup/hold(p) + credit(LCA(u, v)), (2)

where u = p.lauFF , v = p.capFF and slack setup/hold(p) is the pre-
CPPR slack. With the above definitions, we formulate the common
path pessimism removal problem as follows.

CPPR problem formulation [4]: Given a circuit graph with
updated delay values, timing constraints, and a number k, report the
top-k post-CPPR critical paths.

The key challenge of CPPR is that the credit is path-specific and it
depends on the launching and capturing FFs. Different paths have
different credits to add to the slack, even if they share the same
launching or capturing FFs. Most previous work enumerate all FF
pairs to find post-CPPR critical paths ended at a target capturing FF
and then reduce the result to a top-k set [5], [6], [2]. However, the
main drawback is that these algorithms may end up enumerating all FF
pairs in the worst case, requiring long analysis runtimes to complete
CPPR.

III. ALGORITHMS

We propose a new CPPR algorithm to overcome the runtime
challenges of CPPR by enumerating the LCA depths of launching
FFs and capturing FFs, instead of a large amount of FF pairs. Figure 2
illustrates our motivation. By fixing a depth and then looking for all
possible FF pairs pertaining to this LCA depth, we are able to precisely
remove the pessimism and directly get the global top-k post-CPPR
critical paths.

TABLE I: Notations of our Algorithms

Notation Description
D The number of clock tree levels.
atearly/late(u) Early/late arrival time for clock tree node u.
delayearly/late(u, v) Early/late delay for edge u→ v.
credit(u) CPPR credit on clock tree node u.
depth(u) The depth of clock tree node u.
p.lauFF/capFF The launching/capturing FF node of path p.
fd(u) The ancestor of node u on clock tree with depth d.
LCA(u, v) The lowest common ancestor of u and v.
slack setup/hold(p) The pre-CPPR slack of path p.
slack setup/hold(p, d) The slack eliminating the pessimism above level d.
slack

setup/hold
CPPR (p) The post-CPPR slack of path p.

P
setup/hold
d (k) Top-k path candidates at level d.

P
setup/hold
∗ (k) Top-k self-loop path candidates.

P
setup/hold
PI (k) Top-k primary input path candidates.

P
setup/hold
CPPR (k) Top-k paths ranked by post-CPPR slack.

A. Definitions and Notations

Definition 3. We break the clock tree into levels at different depths
d and define d-Pessimism Removed slack of path p as the pre-CPPR
slack of path p eliminating the pessimism above level d, precisely
slack setup/hold(p, d) = slack setup/hold(p) + credit(fd(p.lauFF)).

Apparently, we have slack setup/hold(p, 0) = slack setup/hold(p). We
rewrite Equation (2) as:

slack setup/hold
CPPR (p) = slack setup/hold(p, 0) + credit(LCA(u, v))

= slack setup/hold(p, depth(LCA(u, v))),
(3)

where u = p.lauFF , v = p.capFF .

Definition 4. We define the set of setup/hold path candidates at level
d as setup/hold critical paths p that satisfy these two constraints: 1)
p.lauFF 6= p.capFF ; 2) depth(LCA(p.lauFF , p.capFF)) ≤ d.

We define the top-k path candidates at level d as P setup/hold
d (k), which

are the top-k among the set of setup/hold path candidates at level d,
ranked by slack setup/hold(p, d).

Note that the second constraint requires depth ≤ d instead of
depth = d. This is important as it makes the fast retrieval of
P setup/hold
d (k) possible. This definition covers all top-k post-CPPR paths

satisfying p satisfying p.lauFF 6= p.capFF (see Lemma ??).
As Definition 4 does not cover paths that have p.lauFF =

p.capFF , we define another type of path candidates as follows:

Definition 5. We define self-loop paths as paths that satisfy
p.lauFF = p.capFF . We define top-k self-loop path candidates as
P setup/hold
∗ (k), which are the top-k among all setup/hold critical paths

ranked by slack setup/hold(p, depth(p.lauFF)).

Note that Definition 5 considers both self-loop paths and non-self-
loop paths and ranks them by slack setup/hold(p, depth(p.lauFF)). We
shall show (in Lemma ??) that this definition covers all global top-k
post-CPPR paths that are self-loop paths. The above definitions are for
paths that originate from a FF. We also consider paths that originate
from a primary input pin:

Definition 6. We define top-k primary input path candidates as
P setup/hold

PI (k), which are the top-k among all setup/hold critical paths
that originate from a primary input, ranked by their slacks. Paths that
originate from primary inputs do not have pessimism to remove.

B. The Overall Algorithm

The overall algorithm is presented in Algorithm 1. The algorithm
consists of two stages: path candidates generation and top paths
selection. We generate path candidates based on enumeration of the
depth of LCA between launching FF and capturing FF (line 2), self-
loop path candidates (line 3) and primary input path candidates (line

c

d

a

b

e

Early Late Pessimism
Removed

clock tree clock tree

x

y

z

Group e Group b Group a Group d Group c

2

1

Invalid
Data Path

Valid
Data Path

3

1

0

Fig. 3: Example of node grouping with d = 1 for hold check. In
this case, nodes are grouped using f2(u), forming 5 different groups,
e.g., node x’s group is e, node a’s group is a, etc. We disallow data
paths that connect the same group, i.e., that have fd+1(p.lauFF) =
fd+1(p.capFF). Invalid data paths are marked in red. All data paths
are labeled with their LCA depths. Each valid data path p satisfies
p.lauFF 6= p.capFF and LCA depth ≤ d.

4). A total of up to k(D + 2) path candidates are generated. After
that, we select the top-k of all path candidates with smallest post-
CPPR slack values (line 6), and output them. We elaborate on the
subroutines in more detail and prove the correctness in the following
subsections.

Algorithm 1: getPostCPPRPaths(k, mode=setup/hold)

1 for d = 0, 1, 2, ..., D − 1 do
2 Pmode

d (k)←getPathsAtLCALevel(d, k,mode);
3 Pmode
∗ (k)←getPathsFromSelfLoops(k,mode);

4 Pmode
PI (k)←getPathsFromPIs(k,mode);

5 paths ← [Pmode
0 (k), ..., Pmode

D−1 (k), P
mode
∗ (k), Pmode

PI (k)];
6 return Pmode

CPPR (k) =selectTopPaths(paths , k);

C. Generation of the Top-1 Path

We first propose an efficient algorithm to generate path candidates
for k = 1, including top-1 path candidates at each level (Definition 4),
top-1 self-loop path candidate (Definition 5) and top-1 primary input
path candidate (Definition 6). This algorithm will generalize to our
top-k case. After generating all top-1 path candidates, we can reduce
them to the global top-1 path using selectTopPaths.

We introduce a node grouping technique to find path candidates at
different levels (Definition 4). In Figure 3, we demonstrate how node
grouping helps us filter out paths that are not path candidates. When
generating path candidates at level d, we group each node u satisfying
depth(u) > d by fd+1(u). Intuitively, we cut the tree between level
d and level d + 1, and the tree below level d + 1 breaks into pieces
which are formed as groups. The path constraints in Definition 4
are equivalent to finding paths that connect two different groups, i.e.
fd+1(p.lauFF) 6= fd+1(p.capFF).

Algorithm 2 generates top-1 path candidates at level d (Definition
4) with node grouping. The notations are summarized in Table II. We
traverse the circuit graph to compute the earliest (latest) arrival time
tuples of each pin for hold (setup) constraint. We keep two arrival
time tuples, at(u) and at ′(u), for each pin u. The at ′(u) serves as a
fallback for at(u) when at(u) is unavailable due to the node grouping
requirement that the capturing FF must have a different group index
than the launching FF.

TABLE II: Arrival time tuples on pin u for Algorithm 2.

Name Member Description

at(u)
time Earliest arrival time
from The previous node of the earliest path
groupid The group index of the first node of that path

at ′(u)
time Second earliest arrival time with a different groupid
from The previous node of that path
groupid The group index of the first node of that path

Above is for hold check. Replace earliest with latest for setup check.

Algorithm 2: getPathsAtLCALevel(d, k = 1, mode)

1 for FF clock pin u with depth(u) > d do
2 v ← the Q-pin of u;
3 if mode = setup then
4 Q at ← at late(u) + delay late(u, v)− credit(fd(u));
5 else
6 Q at ← at early(u) + delay early(u, v) + credit(fd(u));
7 Update at(v) and at ′(v) with time = Q at , from = u,

groupid = fd+1(u);
8 for Circuit pin u in topological order do
9 for Edge u→ v do

10 if mode = setup then d ← delay late(u, v) ;
11 else d ← delay early(u, v) ;
12 Update at(v) and at ′(v) with time = at(u).time + d,

from = u, groupid = at(u).groupid ;
13 Update at(v) and at ′(v) with time = at ′(u).time+ d,

from = u, groupid = at ′(u).groupid ;
14 for FF clock pin u with depth(u) > d do
15 v ← the D-pin of u;
16 Tsetup/hold ← the setup/hold constraint value;
17 if at(v).groupid = fd+1(u) then D at ← at ′(v).time ;
18 else D at ← at(v).time ;
19 if mode = setup then
20 Tclk ← clock period;
21 slack ← at early(u) + Tclk − Tsetup −D at ;
22 else slack ← D at − (at late(u) + Thold) ;
23 Obtain one path with slack = slack ;
24 return path with smallest slack;

First, we initialize the arrival time for Q-pins of FFs in the
arrival time arrays (lines 1-7). We offset the arrival time of Q-
pins by credit(fd(u)) (lines 4 and 6), because we are interested in
slack setup/hold(p, d), as Definition 4 required. Then, we propagate the
arrival time tuples through a topological order of the pins in the graph
(lines 8-13). After that, we compute slacks on each D-pin of FF (lines
14-23). For a FF with clock pin u and D-pin v, we are interested in
paths that end at v and start at a Q-pin of another FF, whose clock
pins reside in a different group than u. We find the best of such path
using at(v) and at ′(v) in lines 17-18. Specifically, if at(v) is a path
that originates from a different group, we accept it; if not, we accept
the fallback, i.e., at ′(v). Finally, we select the path with smallest
slack setup/hold(p, d). This slack value is computed in line 21 and 22,
derived from Equation (1), with D at = Q at(p.lauFF)+delay(p).

Algorithm 3 finds self-loop path candidates (Definition 5). As
Definition 5 does not limit the range of paths as Definition 4 does,
the algorithm is a simplified version of Algorithm 2, where we do not
maintain group indices or fallbacks for arrival time tuples. First, we
initialize the arrival time for Q-pins (lines 1-7). For self-loop path can-
didates, we need to rank paths by slack setup/hold(p, depth(p.lauFF)),
so we offset the arrival time of Q-pins by credit(u). Then, we do
arrival time propagation (lines 8-12), slack computation (lines 13-21),
and finally select the path with smallest slack.

Algorithm 3: getPathsFromSelfLoops(k = 1, mode)

1 for FF clock pin u do
2 v ← the Q-pin of u;
3 if mode = setup then
4 Q at ← at late(u) + delay late(u, v)− credit(u);
5 else
6 Q at ← at early(u) + delay early(u, v) + credit(u);
7 Update at(v) with time = Q at , from = u;
8 for Circuit pin u in topological order do
9 for Edge u→ v do

10 if mode = setup then d ← delay late(u, v) ;
11 else d ← delay early(u, v) ;
12 Update at(v) with time = at(u).time + d, from = u;
13 for FF clock pin u do
14 v ← the D-pin of u;
15 Tsetup/hold ← the setup/hold constraint value;
16 if mode = setup then
17 Tclk ← clock period;
18 slack ← at early(u) + Tclk − Tsetup − at(v).time;
19 else
20 slack ← at(v).time − (at late(u) + Thold);
21 Obtain one path with slack = slack ;
22 return path with smallest slack;

Algorithm 4: getPathsFromPIs(k = 1, mode)

1 for Primary input pin u do
2 PI at ← the early/late arrival time of u for

mode=hold/setup;
3 Update at(u) and at ′(u) with time = PI at ,

from =N/A, groupid =N/A;
4 Propagate at(u) for circuit pin u in topological order, same as

Algorithm 3 line 8-12;
5 Obtain paths at FF clock pins, same as Algorithm 3 line 13-21;
6 return path with smallest slack;

Algorithm 4 finds primary input path candidates (Definition 6). This
algorithm is similar to Algorithm 3, except that we initialize the arrival
time of primary inputs in lines 1-3 rather than the arrival time of Q-
pins. There are no common paths in primary input path candidates, so
this time we do not offset the arrival time.

D. Generation of Top-k Paths

We now present our algorithm for generating the top-k path can-
didates where k > 1. We extend our algorithm for k = 1 to support
generating k path candidates. We represent a path implicitly using a
list of deviation edges, and generate paths progressively from previous
paths, inspired by [2]. We demonstrate the idea of deviation edges in
Figure 4. Adding a deviation edge to a path will increase its slack,
and we compute the amount of increase using fallbacks provided by
our arrival time tuples. For brevity, we define:

at auto(u, gid) =

{
at(u), at(u).groupid 6= gid ,

at ′(u), at(u).groupid = gid .

The algorithm for generating top-k path candidates at level d is
presented in Algorithm 5. First, the arrival time arrays at(u) and
at ′(u) are computed in the same way as Algorithm 2. Then, paths
with the smallest slack on each capturing FF are pushed into a min-
max-heap (lines 3-7), with computed slacks the same as Algorithm
2. After that, we repeatedly pop a path with minimal slack from the
min-max-heap, output it, and then push all its deviations into heap

Algorithm 5: getPathsAtLCALevel(d, k, mode)

1 Compute and propagate arrival time tuples, same as Algorithm
2 lines 1-13;

2 H ← new Min-Max-Heap of paths ranked by p.slack ;
3 for FF clock pin u with depth(u) > d do
4 v ← the D-pin of u;
5 constraint ← the setup/hold constraint value;
6 Compute smallest slack at v, same as Algorithm 2 lines

17-22;
7 Push one path p into H with p.slack = slack ,

p.groupid = fd(u), p.pos = v, p.devlist = [];
8 for i = 1 to k do
9 p← pop path with smallest slack from H;

10 Output path p as i-th smallest slack path candidate;
11 u← p.pos;
12 while u is not a clock tree node do
13 from ← at auto(u, p.groupid).from;
14 for edge w → u where w 6= from do
15 if mode = setup then
16 cost ← at auto(u, p.groupid).time −

at auto(w, p.groupid).time − delay late(w, u);
17 else
18 cost ← at auto(w, p.groupid).time +

delay early(w, u)− at auto(u, p.groupid).time;
19 Push one path p′ into H with

p′.slack = p.slack + cost ,
p′.groupid = p.groupid , p′.pos = w,
p′.devlist = p.devlist + [w → u];

20 u← from;

c

d

a

b

z z'

Original Path Deviation Edge Bad Path Good Path

m n

p
q r

k

e
x

y

Fig. 4: Illustration of deviation edge and its effect. Assume the shortest
path to z′ is CLK → y, y → m,m → n, n → p, p → z′. Deviation
happens when we choose to go to p from another direction r, and the
deviation edge is r → p that replaces n → p in the original path.
In the example, we can go from a launching FF to r by two paths.
When node grouping is used, we do not consider the one tagged “bad
path” because it originates from d which is in the same group as the
capturing FF z′.

again (lines 8-20). We enumerate deviations by traversing backwards
on the path (the loop at line 12), and enumerate all incoming edges for
nodes on the path (the loop at line 14). For each deviation edge, we
compute its cost by equations at line 16 and 18. This cost is always
non-negative, because we are deviating from a more pessimistic path to
a less pessimistic one by introducing a suboptimal edge. The resulting
deviated path is pushed back to the heap and the loop continues.

The algorithm for generating top-k self-loop path candidates and
top-k primary input path candidates is similar to Algorithm 5, except
that we do not add constraints to the group of nodes. Specifically, we
replace the occurrence of at auto(u, gid) by at(u) and discard gid . All

Algorithm 6: selectTopPaths(paths , k)

1 [Pmode
0 (k), ..., Pmode

D−1 (k), P
mode
∗ (k), Pmode

PI (k)]← paths;
2 H ← new Min-Max-Heap of paths ranked by p.slack ;
3 for d = 0, 1, 2, ..., D − 1 do
4 for path p in Pmode

d (k) do
5 if depth(LCA(p.lauFF , p.capFF)) = d then
6 Push p into H;
7 for path p in Pmode

∗ (k) do
8 if p.lauFF = p.capFF then
9 Push p into H;

10 for path p in Pmode
PI (k) do

11 Push p into H;
12 return top-k paths in H;

other code for maintaining the heap and generating deviated paths is
the same.

After getting all path candidates, we reduce them to the global top-
k paths using Algorithm 6. We get paths with LCA depth d from
Pmode
d (k), self-loop paths from Pmode

∗ (k), and primary-input paths
from Pmode

PI (k). We discard other path candidates that are not used
(lines 5 and 8). We push the paths into a heap and finally extract the
top-k among them.

E. Parallelization

The main Algorithm 1 calls procedures getPathsAtLCALevel,
getPathsFromSelfLoops, and getPathsFromPIs for a total
of D+2 times. Each time we perform an iteration on the graph. The
iterations are independent of each other and hence we can perform
parallel iterations with T threads. The selectTopPaths procedure
can run iteratively, in which each thread locks and updates the global
heap once it finishes one call. The majority of runtime lies in the
calls to getPathsAtLCALevel, getPathsFromSelfLoops,
and getPathsFromPIs, while the runtime of iterative top path
selection is negligible. Thus, our algorithm is highly parellelizable.

F. Correctness and Complexity

Due to page limit, we only show our main theorems. We recommend
readers to check our lemmas and detailed proof at this link1.

For correctness, we have the following theorem:

Theorem. With all the path candidates, selectTopPaths (Algo-
rithm 6) correctly selects and returns global top-k paths ranked by
their post-CPPR slacks.

For time and space complexity, we have the following theorem:

Theorem. Algorithm 1 runs in O(nD) time complexity for k = 1, and
O(nDk log k) for k > 1. The space complexity is O(T (n+ k)+ kp)
for T threads, and p < n denotes the average length of critical paths.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ and evaluated the perfor-
mance of our algorithm on a 64-bit Linux machine with 40 cores
Intel Xeon CPU at 2.20 GHz and 960 GB memory. We conducted
experiments on large industrial designs from TAU contests [3], [4],
and their statistics are shown in Table III. The levels of the clock
trees are about 100 in all benchmarks, 300–1700× smaller than the
number of FFs.

We compare our approach with three state-of-the-art timers: an
open-source tool (OpenTimer [2]), and the TAU 2014 contest winners
(HappyTimer [6] and iTimerC [5]). Since HappyTimer and iTimerC

1https://guozz.cn/publication/cpprdac-21/proof.pdf

TABLE III: Benchmark statistics.

Benchmark #Edges #FFs D #FFs/D FF connectivity
vga lcdv2 449651 25091 56 448.05 28.55
Combo4v2 778638 26760 82 326.34 37.93
Combo5v2 2051804 39525 91 434.34 22.34
Combo6v2 3577926 64133 101 634.98 37.11
Combo7v2 2817561 54784 96 570.67 32.81
netcard iccad 3999174 97831 75 1304.41 196.42
leon2 iccad 4328255 149381 85 1757.42 1245.44
leon3mp iccad 3376832 108839 75 1451.19 489.06

are not open-source, we acquired their executables directly from
the authors. We do not compare with commercial tools because of
different application scopes. Our scope targets a standalone research
environment, but commercial tools need to deal with many other
components in the closure flow even though many of them may not
be directly related to CPPR. It is very difficult to come up with a fair
comparison for the CPPR problem itself. Indeed, OpenTimer [2] has
reported significant speedup over commercial tools. Table IV lists the
overall performance comparison. We measure the runtime and memory
consumption on computing the global top-k post-CPPR slacks on the
designs listed in Table III where k=1, 100, 10K, for both setup and
hold tests. We tested our timer for both 1 and 8 threads, as it starts
saturating at 8 threads. OpenTimer and iTimerC are tested using 8
threads. HappyTimer is tested using 1 thread because it does not
support multi-threading. We did not include accuracy metrics because
our proposed algorithm generates full accuracy results.

Our timer is faster than all baseline timers by at least 2.41×. The
largest speedup of our timer with 8 threads is 96.28× compared to
OpenTimer, 217.51× compared to HappyTimer, and 87.46× compared
to iTimerC. Our timer with a single thread can achieve up to 89.01×
speedup (Combo4v2, k=10K) compared to HappyTimer. The average
speedup ratios (baseline over ours), for k=1 are 22.69, 20.83, and
3.28 compared to OpenTimer, HappyTimer, and iTimerC respectively.
The ratios for k=10K are 51.80, 135.21, and 36.47, respectively. The
large runtime gains come from the fundamental difference of the time
complexity. All baselines can end up with enumerating all pairs of FFs
(#FFs in Table III), while our algorithm depends only on the depth of
the clock tree (D in Table III), which is 300-1700× smaller. These
results demonstrate the effectiveness and efficiencies of our algorithm
to reduce the long runtimes of CPPR.

For memory consumption, OpenTimer uses up to 22.57× more
memory than our timer. Although we use more memory than Open-
Timer when k ≤ 100, our timer with 1 thread already outperforms
OpenTimer up to 33.37× (leon2, k=10K) with very little memory
overhead.

HappyTimer and iTimerC adopt design-specific pruning heuris-
tics and achieve good performance on designs (e.g., vga_lcdv2,
leon3mp) with small k, but they do not scale well to large k. For
example, HappyTimer leverages the sparsity of the connection between
launching and capturing FFs for pruning, but such an assumption fails
at designs with high “FF connectivity” (defined as the average number
of capturing FFs that can be reached from each launching FF). As
a result, it becomes extremely slow and memory-intensive on large
designs such as leon2 in Table III.

Figure 5 draws the runtime and memory consumption versus k, the
number of post-CPPR critical paths requested. Our algorithm runs very
fast for all number of paths, while the runtime of iTimerC rises rapidly
when k increases from 1K to 10K. Meanwhile, our algorithm has a
steady memory consumption regardless of k, while the memory usage
of OpenTimer and iTimerC explode when k is large. We attribute the
decent scalability over k to the elimination of FF enumeration and the
progressive path generation.

TABLE IV: Performance comparison between OpenTimer (8 threads), HappyTimer (1 thread), iTimerC (8 threads) and ours (both 1 thread
and 8 threads are tested) to find the top-k post-CPPR critical paths on large circuit designs.

Benchmark k
OpenTimer HappyTimer iTimerC Ours OpenTimer HappyTimer iTimerC Ours
8 Threads 1 Thread 8 Threads 8 Threads 1 Thread 8 Threads 1 Thread 8 Threads 8 Threads 1 Thread

RT Mem RT Mem RT Mem RT Mem RT Mem RTR MemR RTR MemR RTR MemR RTR MemR RTR MemR

vga lcdv2
1 18.05 0.25 13.12 1.74 9.85 0.84 3.90 0.37 7.98 0.17 4.63 0.67 3.36 4.66 2.53 2.24 1.00 1.00 2.05 0.46

100 18.19 0.26 29.10 6.20 10.30 0.88 3.51 0.37 7.89 0.17 5.18 0.69 8.29 16.62 2.93 2.35 1.00 1.00 2.25 0.46
10K 64.42 2.32 186.93 7.35 70.12 2.84 4.03 0.39 10.53 0.18 15.99 5.94 46.38 18.79 17.40 7.27 1.00 1.00 2.61 0.46

Combo4v2
1 37.72 0.46 31.89 2.20 25.61 2.12 6.89 0.66 14.62 0.31 5.47 0.70 4.63 3.35 3.72 3.23 1.00 1.00 2.12 0.47

100 36.76 0.49 50.73 8.75 64.69 2.19 6.30 0.66 14.76 0.31 5.83 0.74 8.05 13.34 10.27 3.33 1.00 1.00 2.34 0.47
10K 380.93 15.40 1583.48 52.84 636.72 10.08 7.28 0.68 17.79 0.32 52.33 22.57 217.51 77.47 87.46 14.78 1.00 1.00 2.44 0.47

Combo5v2
1 190.98 1.21 61.99 3.02 77.05 7.97 19.48 1.72 41.46 0.81 9.80 0.70 3.18 1.75 3.96 4.64 1.00 1.00 2.13 0.47

100 191.61 1.25 94.32 10.68 85.42 8.03 18.85 1.72 41.00 0.81 10.16 0.73 5.00 6.21 4.53 4.67 1.00 1.00 2.18 0.47
10K 831.84 27.34 2639.89 55.96 1009.92 15.60 20.25 1.75 50.38 0.82 41.08 15.66 130.36 32.06 49.87 8.93 1.00 1.00 2.49 0.47

Combo6v2
1 568.08 2.18 185.91 5.94 140.57 14.92 33.70 2.97 67.08 1.38 16.86 0.73 5.52 2.00 4.17 5.03 1.00 1.00 1.99 0.47

100 567.58 2.22 251.80 22.35 142.00 14.97 32.85 2.97 70.87 1.38 17.28 0.75 7.67 7.53 4.32 5.04 1.00 1.00 2.16 0.47
10K 1333.36 31.27 3037.02 59.56 961.51 26.04 33.85 2.98 77.89 1.39 39.39 10.48 89.72 19.96 28.41 8.73 1.00 1.00 2.30 0.47

Combo7v2
1 376.45 1.73 136.06 5.05 91.34 12.17 25.15 2.34 53.70 1.09 14.97 0.74 5.41 2.16 3.63 5.19 1.00 1.00 2.14 0.47

100 382.07 1.78 186.31 18.35 122.26 12.25 24.03 2.34 51.55 1.09 15.90 0.76 7.75 7.83 5.09 5.23 1.00 1.00 2.15 0.47
10K 1556.68 45.97 4992.00 108.33 1493.34 25.15 25.99 2.36 56.41 1.10 59.90 19.46 192.07 45.85 57.46 10.64 1.00 1.00 2.17 0.47

netcard
1 976.41 1.79 445.09 50.81 110.60 7.40 39.70 3.23 114.21 1.45 24.59 0.55 11.21 15.74 2.79 2.29 1.00 1.00 2.88 0.45

100 977.27 1.80 985.09 313.78 94.55 7.43 39.80 3.23 115.25 1.45 24.55 0.56 24.75 97.20 2.38 2.30 1.00 1.00 2.90 0.45
10K 2749.46 74.06 MLE MLE 582.47 17.42 41.59 3.25 116.67 1.46 66.11 22.82 MLE MLE 14.01 5.37 1.00 1.00 2.81 0.45

leon2
1 3131.08 2.12 4377.00 446.80 104.61 8.81 43.41 3.55 129.78 1.75 72.13 0.60 100.83 126.03 2.41 2.49 1.00 1.00 2.99 0.49

100 3131.73 2.13 MLE MLE 124.62 8.84 45.19 3.55 129.78 1.75 69.30 0.60 MLE MLE 2.76 2.49 1.00 1.00 2.87 0.49
10K 4320.00 41.81 MLE MLE 1177.35 45.30 44.87 3.56 129.47 1.75 96.28 11.74 MLE MLE 26.24 12.72 1.00 1.00 2.89 0.49

leon3mp
1 1017.85 1.63 1001.66 117.08 94.45 6.55 30.81 2.74 79.17 1.24 33.04 0.60 32.51 42.76 3.07 2.39 1.00 1.00 2.57 0.45

100 1013.06 1.63 MLE MLE 93.76 6.57 30.27 2.74 81.37 1.24 33.47 0.60 MLE MLE 3.10 2.40 1.00 1.00 2.69 0.45
10K 1348.55 12.48 MLE MLE 340.72 12.82 31.11 2.75 86.76 1.25 43.35 4.53 MLE MLE 10.95 4.65 1.00 1.00 2.79 0.45

Avg. Ratio
1 - 22.69 0.66 20.83 24.81 3.28 3.44 1.00 1.00 2.36 0.47

100 - 22.71 0.68 10.25† 24.79† 4.42 3.48 1.00 1.00 2.44 0.47
10K - 51.80 14.15 135.21† 38.83† 36.47 9.14 1.00 1.00 2.56 0.47

RT: Runtime in seconds. RTR: Runtime ratio. Mem: Memory in GB. MemR: Memory ratio. MLE: Memory limit exceeded (> 960 GB)
† Average ratios for HappyTimer are inaccurate as failure cases of HappyTimer on large designs are not included.

1 10 100 1,000 10,000 100,000

100

1,000

10,000

Number of Paths

R
un

tim
e

(s
)

Runtime vs Path Count

Ours (8 Threads)
OpenTimer (8 Threads)

iTimerC (8 Threads)

1 10 100 1,000 10,000 100,000

10

100

Number of Paths

M
em

or
y

(G
B

)

Memory vs Path Count

Ours (8 Threads)
OpenTimer (8 Threads)

iTimerC (8 Threads)

Fig. 5: Runtime and memory values at different numbers of post-CPPR
paths (i.e., k) on leon2.

12 4 8 16 24 32 40

100

1,000

Number of CPUs

R
un

tim
e

(s
)

Runtime vs Number of CPUs

Ours
OpenTimer

12 4 8 16 24 32 40

2

4

6

8

10

12

Number of CPUs

M
em

or
y

(G
B

)

Memory vs Number of CPUs

Ours
OpenTimer

Fig. 6: Runtime and memory values at different numbers of threads for
k=1000 on leon2. OpenTimer with 1 and 2 threads failed to finish
within 3 hours, so we skip those two points.

Figure 6 draws the runtime and memory consumption at different
numbers of threads. We do not show iTimerC because its binary is
hardcoded for 8 threads. We observe that our algorithm is scalable
to different numbers of threads, even though it uses more memory
than OpenTimer at a larger thread count. The reason is that we have
a slightly larger constant behind our space complexity, in which we
use extra arrival time tuples to keep track of paths. However, we
believe this is acceptable, given the significant speedup (4–96×) over
OpenTimer across all thread numbers we have tested.

V. CONCLUSION

In this paper, we have proposed a novel provably good and prac-
tically efficient CPPR algorithm. Instead of enumerating all the FF

pairs, we process the FF pairs in groups of LCA depths to address their
common path pessimism in the clock tree, and introduce efficient data
structures to reduce the search space for finding post-CPPR paths. We
prove the algorithm has a time complexity proportional to the depth of
the clock tree, rather than the number of FFs which is typically larger
by orders of magnitude. Our algorithm is highly parallelizable. By
performing parallel iterations over different, independent LCA depths,
our algorithm has achieved 3-23× speedup on generating one post-
CPPR critical path, and 36-135× speedup on generating 10K post-
CPPR critical paths over the state-of-the-art CPPR algorithms. We
plan to extend our algorithm to a GPU target in the future.

ACKNOWLEDGE

This work was supported in part by the National Science Foundation
of China (Grant No. 62034007 and No. 62004006) and Zhejiang
Provincial Key R&D program (Grant No. 2020C01052).

REFERENCES

[1] J. Bhasker and R. Chadha, Static timing analysis for nanometer designs:
A practical approach. Springer Science & Business Media, 2009.

[2] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New
Parallel Incremental Timing Analysis Engine,” IEEE TCAD, pp. 1–1, 2020.

[3] J. Hu, D. Sinha, and I. Keller, “TAU 2014 contest on removing common
path pessimism during timing analysis,” in Proc. ISPD, 2014, pp. 153–160.

[4] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental timing
analysis,” in Proc. ICCAD. IEEE, 2015, pp. 882–889.

[5] P.-Y. Lee, I. H.-R. Jiang, C.-R. Li, W.-L. Chiu, and Y.-M. Yang, “iTimerC
2.0: Fast incremental timing and cppr analysis,” in Proc. ICCAD. IEEE,
2015, pp. 890–894.

[6] B. Jin, G. Luo, and W. Zhang, “A fast and accurate approach for common
path pessimism removal in static timing analysis,” in Proc. ISCAS. IEEE,
2016, pp. 2623–2626.

[7] C. Peddawad, A. Goel, B. Dheeraj, and N. Chandrachoodan, “iitrace: A
memory efficient engine for fast incremental timing analysis and clock
pessimism removal,” in Proc. ICCAD, 2015, pp. 903–909.

[8] T. Chung-Hao and M. Wai-Kei, “A fast parallel approach for common path
pessimism removal,” in Proc. ASPDAC, 2015, pp. 372–377.

