
Late Breaking Results: Efficient Timing Propagation with
Simultaneous Structural and Pipeline Parallelisms

Cheng-Hsiang Chiu and Tsung-Wei Huang
Department of ECE, University of Utah, USA

{cheng-hsiang.chiu;tsung-wei.huang}@utah.edu

ABSTRACT
Graph-based timing propagation (GBP) is an essential component
for all static timing analysis (STA) algorithms. To speed up GBP, the
state-of-the-art timer leverages the task graphmodel to explore struc-
tural parallelism in an STA graph. However, many designs exhibit
linear segments that cause the parallelism to serialize, degrading the
performance significantly. To overcome this problem, we introduce
an efficient GBP framework by exploring both structural and pipeline
parallelisms in an STA task graph. Our framework identifies linear
segments and parallelizes their propagation tasks using pipeline in
an STA task graph. We have shown up to 25% performance improve-
ment over the state-of-the-art task graph-based timer.

1 INTRODUCTION
The state-of-the-art parallel static timing analysis (STA) algorithm is
based on task graph parallelism (TGP) [2]. Unlike the traditional loop-
based parallelism (level-by-level propagations using parallel loops),
TGP formulates the graph-based timing propagation problem into an
STA task graph where each node encapsulates a sequence of linearly
dependent propagation tasks (e.g., RC update, slew and delay look-
up) and each edge denotes a dependency between two nodes. This
formulation explores structural parallelism from the circuit graph
and delegates scheduling details, including dynamic load balancing
and concurrency controls, to an established task graph runtime [3].
The result of TGP outperforms loop-based parallel timers up to 5×
in large designs of millions of gates [2].

While TGP is effective on structural parallelism, the gain is also
limited by the structure itself. Specifically, STA graphs can have
several linear segments induced by constrained regions (e.g., through
pins, false paths) and serial chains of gates. These linear segments
prohibit the parallelization of their propagation tasks under the TGP
model. Consider the task graph in Figure 1, exhibiting a maximum
structural parallelism of two tasks, as shown at the top in Figure 2.
Each node (task) encapsulates five linearly dependent timing prop-
agation tasks. From the structural view, the linear chains, B-D-F
and C-E-G, have no parallelism over their encapsulated tasks. De-
pending on the propagation algorithm, some of these tasks can be
time-consuming (e.g., computing CPPR credits), and the serial exe-
cution of them can degrade the performance largely. A clever way

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530616

is to overlap these tasks using pipeline parallelism, as shown at the
bottom in Figure 2.

A

C

B D T1 T2 T3 T4 T5

E

F

G

H

I

Figure 1: An STA task graph of nine nodes. Arrows represent
dependencies between nodes. Each node has a sequential ex-
ecution of five tasks, T1 to T5. Nodes B, D, and F, depicted in
a blue rectangular, form a linear segment. Nodes C, E, and G
form another linear segment.

A.T5

B.T1

C.T1

B.T2

C.T2

B.T3

C.T3

B.T4

C.T4

B.T5

C.T5

D.T1

E.T1

Parallel

Time

Time

B.T3

C.T3

D.T2

E.T2

F.T1

G.T1

Parallel Parallel Parallel Parallel Parallel

B.T4

C.T4

D.T3

E.T3

F.T2

G.T2

B.T5

C.T5

D.T4

E.T4

F.T3

G.T3

A.T5

B.T1

C.T1

B.T2

C.T2

D.T1

E.T1

D.T5

E.T5

T.T4

G.T4

Parallel Parallel Parallel Parallel Parallel Parallel

Figure 2: The execution timeline of Figure 1. The top de-
scribes structural parallelism to a degree of two, while the
bottom describes both structural and pipeline parallelisms of
up to six parallel tasks.

Consequently, we propose an efficient graph-based timing prop-
agation framework by exploring both structural and pipeline par-
allelisms from an STA graph. Our framework enhances the perfor-
mance of the TGP-based model by parallelizing propagation tasks in
each linear segment using pipeline. Compared with a TGP-only base-
line, our pipeline parallelism can further improve the performance
by 16–25%.

https://doi.org/10.1145/3489517.3530616

DAC’22, July 10–14, 2022, San Francisco, CA, USA Cheng-Hsiang Chiu and Tsung-Wei Huang

2 ALGORITHM
To explore both structural and pipeline parallelisms from an STA task
graph, our framework identifies the linear segments and constructs
a pipeline task for each segment. We leverage Taskflow [3] and its
pipeline facility Pipeflow [1] to implement our pipeline. Based on
Pipeflow’s model, we declare one pipe for each propagation task
encapsulated in each node of the STA task graph. The overall idea
is to consider one node as a data token and propagate these tokens
through a linear sequence of propagation tasks.

Algorithm 1 briefly explains the construction of a pipeline
task for each linear segment, using the language in [1]. We de-
clare a vector pipes to store each pipe (line 1). We call function
build_callable and get a callable pipe_callable (line 2). In the
function build_callable, we define the work of every propaga-
tion task in a node and set the length of the linear segment to be
the termination condition of the pipeline task. Next, we specify the
pipe type to be tf::PipeType::SERIAL as each task is executed se-
quentially in a node, and emplace pipe_callable into pipes up to
num_Tasks times as there are num_Tasks propagation tasks per node
(lines 3:5). Since the number of propagation tasks can change, we use
tf::ScalablePipeline class, which allows variable assignment of
pipes, to construct the pipeline task pipeline_task for the linear
segment by specifying the length of the segment and two iterators
(line 6). After constructing all pipeline tasks, we modify the depen-
dencies in the task graph accordingly. For example, in Figure 1, task
A precedes tasks B and C which would precede tasks H and I.

Algorithm 1: build_pipeline_task(linear_segment,
num_Tasks)
1 std :: vector < Pipe > pipes;
2 pipe_callable ← build_callable(linear_seдment , Pipe f low) ;
3 foreach i ∈ num_Tasks do
4 pipes .emplace(PipeType :: SERIAL,pipe_callable);
5 end
6 ScalablePipeline pipeline_task(

linear_seдment .size(),pipes .beдin(),pipes .end());
7 return pipeline_task ;

3 EXPERIMENTAL RESULTS
We evaluate the performance of our framework using real STA bench-
marks from TAU18 Contest [2]. Each benchmark has a different ratio
of linear segments in its STA task graph. We compile our programs
using g++ 10.2 with C++17 standard -std=c++17 and optimization
flag -O2 enabled. We run all the experiments on a Linux machine
with Intel i7-9700K 8 Cores at 3.60GHz and 32 GB RAM. All data is
an average of five runs. We consider the structural parallelism-only
model in [2] as our baseline (denoted as “SP”). Our framework with
pipeline is denoted as “SP+PP.”

Table 1 shows the statistics and performance comparison of eight
benchmarks between SP and SP+PP. The second column denotes
the coverage of linear segments of lengths longer than 4 and 8,
respectively. The coverage is defined as the percentage of the number
of nodes in linear segments over the total number of nodes. The
last column states the performance improvement of SP+PP over SP.

Table 1: Benchmark statistics and performance comparison
between baseline (SP) and ours (SP+PP).

circuit ≥ 4/8 ∥V ∥ ∥E∥ SP SP+PP Impr
s526_1 22.9/10.9% 911 1096 31ms 25ms 19%
s526_2 30.5/12.3% 971 1156 33ms 25ms 25%
s526_3 26.9/16.2% 951 1136 32ms 25ms 24%
s526_4 22.7/19.1% 921 1106 32ms 27ms 16%

vga_lcd_1 26.9/10.2% 412K 513K 13s 11s 20%
vga_lcd_2 27.3/15.1% 418K 519K 13s 10s 20%
wb_dma_1 28.0/14.5% 13K 17K 456ms 355ms 22%
wb_dma_2 31.3/14.1% 14K 17K 472ms 357ms 24%

We can see that SP+PP outperforms SP across all benchmarks. For
example, in vga_lcd_2, SP+PP is 20% faster than SP.

5 10 15 20
20

40

60

80

100

120

Number of Tasks per Node

Ru
nt
im

e
(m

s)

s526_1

SP+PP
SP

5 10 15 20
20

40

60

80

100

120

Number of Tasks per Node

Ru
nt
im

e
(m

s)

s526_4

SP+PP
SP

Figure 3: Runtime comparison between SP and SP+PP at in-
creasing numbers of propagation tasks in each node.

Next, we demonstrate the benefits of pipeline parallelism when
the number of sequential tasks encapsulated in each node increases.
This pattern is prevalent in a graph-based analysis as algorithms can
incorporate many tasks (e.g., CPPR, tags) during the linear propaga-
tion [2]. Here, we duplicate the propagation tasks to emulate this
pattern. As shown in Figure 3, SP+PP outperforms SP in two selected
benchmarks. The performance difference increases as we increase
the number of tasks. When more propagation tasks are encapsulated
in a node, the benefit of pipeline parallelism becomes significant.

4 ACKNOWLEDGEMENT
The project is supported by the NSF grants CCF-2126672 and CCF-
2144523 (CAREER).

REFERENCES
[1] Cheng-Hsiang Chiu, Tsung-Wei Huang, Zizheng Guo, and Yibo Lin. 2022.

Pipeflow: An Efficient Task-Parallel Pipeline Programming Framework
using Modern C++. https://arxiv.org/abs/2202.00717

[2] Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and MartinWong. 2021.
OpenTimer 2.0: A New Parallel Incremental Timing Analysis Engine.
IEEE TCAD 4, 776–789.

[3] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2022. Task-
flow: A Lightweight Parallel and Heterogeneous Task Graph Computing
System. In IEEE TPDS, Vol. 33. 1303–1320.

https://arxiv.org/abs/2202.00717

	Abstract
	1 Introduction
	2 Algorithm
	3 Experimental Results
	4 Acknowledgement
	References

