
An Efficient Critical Path Generation Algorithm

Considering Extensive Path Constraints

Guannan Guo∗, Tsung-Wei Huang†, Chun-Xun Lin∗, and Martin Wong∗‡

∗Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA
†Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA

‡Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

Abstract—In this paper, we introduce a fast and efficient
critical path generation algorithm considering extensive path
constraints on a Static Timing Analysis (STA) graph. Critical
path generation is a key routine in the inner loop of path-
based analysis and timing-driven synthesis flows. Our algorithm
can report arbitrary numbers of critical paths on a logic
cone constrained by a sequence of from/through/to pins under
different min/max modes and rise/fall transitions. Our algorithm
is general, efficient, and provably good. Experimental results
have showed that our algorithm produces reports that matches
a golden reference generated by an industrial signoff timer. Our
results also correlate to a commercial timer yet achieving more
than an order of magnitude speed-up.

I. INTRODUCTION

Static timing analysis (STA) plays an important role in

many timing-driven optimization flows including logic syn-

thesis, placement, and routing [1]. Optimization algorithms

call a timer in their inner loops to evaluate the impact of

a design change or transform on the timing profile. One of

such key routines is the report_timing command, which

reports a set of critical paths subject to a sequence of path

constraints. It is well known during the process of generating

path reports, the core timing model is produced only once

and the report_timing call happens subsequently and

sequentially to meet users need [2]. This process becomes

important especially on advanced technologies, where timing

signoff has shifted from graph-based analysis (GBA) to path-

based analysis (PBA) to reduce the pessimism [3]. As a result,

the recent TAU contest was seeking novel ideas to tackle the

problem of efficient generation of timing reports from an STA

graph [2].

However, generating timing reports is a computationally

intensive step and is inherently complex since there are ex-

tensive constraints and dependencies of one timing path on

another. For example, users may request a path to go through

certain pins, registers, and logic cones; they may also specify

the checks to occur at a particular timing split (min/max) or

transition (rise/fall). Figure 1 gives an example command that

requests the top-2 critical paths through pins Inst1/Zn and

Inst3/Zn in order. A typical user flow in an optimization loop

has thousands of such commands each with different path

numbers and constraints. It is imperative for the timing tool to

report paths efficiently as this will enable faster design closure

and reasonable turnaround time [3].

���,QVW�

���,QVW�

���,QVW�

,QVW�

,QVW�

,Q�

,Q�

,Q�

,Q�

,Q�

,Q�

2XW�

2XW�

$�

$�

=Q

$�

$�

=Q

$�

$�

=Q

$�

$�

=Q

$�

$�

=Q

UHSRUWBWLPLQJ���PD[BSDWK�����WKURXJK�,QVW��=Q���WKURXJK�,QVW��=Q

SDWK���

SDWK��

Fig. 1: An example of a report_timing query.

As a consequence, we introduce in this paper an efficient

timing critical path generation algorithm on an STA graph with

updated arrival times and required arrival times. Specifically,

we propose efficient data structures, algorithms, and paral-

lelization strategies to tackle the report_timing command

that incorporates extensive path constraints. We summarize our

contributions as follows:

• A general critical path generation algorithm. Our algo-

rithm can handle extensive and important path constraints

such as through pins, min/max splits, rise/fall transitions,

and arbitrary path count limits. These realistic constraints

span a vast majority of spectrum in practical usage. Our

algorithm is general and flexible, adding only linear time

and space complexity to an existing timer infrastructure. The

result can benefit designs of PBA flows and timing-driving

optimizations where critical path generation plays a key role

in the inner loop.

• A graph-theoretic framework. Our algorithm maps the

path generation problem into a graph formulation. We intro-

duced an effective node pruning and edge filtering strategy

to remove unwanted paths. Our solution is exact and does

not compromise any accuracy with speed.

• Parallelization benefits. Our algorithm is highly paral-

lelizable. The proposed path search strategy can be easily

partitioned to a set of independent work across effective

endpoints, allowing us to take advantage of multithreading

to speed up the search process with strong scalability.

We have integrated our algorithm in an open-source STA

tool, OpenTimer [4], and evaluated our algorithms on the TAU

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on December 01,2020 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

2018 Timing Analysis Contest benchmarks with a golden ref-

erence generated by an industrial standard timer [2]. Our path

report can exactly match the reference report according to the

contest evaluation metrics. We have also compared our results

with a commercial timer, OpenSTA (developed by Parallax

Software Inc [5], [6]), and demonstrated a strong correlation

in path slacks. In terms of performance, our algorithm can

achieve more than an order of magnitude speed-up on large

designs. We believe the proposed algorithm can help accelerate

the design closure in timing-driven optimization flows.

II. TIMING REPORT GENERATION

It is well known to those who understand STA that core

timing graph model is generated only once and timing report

generation happens subsequently and sequentially as there are

many different forms of reports that users need [2]. In this

section, we discuss the typical STA timing graph model and

highlight existing works.

A. STA Timing Graph Model

In STA, the circuit design is modeled as a directed acyclic

graph (DAG) G = {V,E}, where a vertex represents a pin

in the design and an edge denotes a timing arc between

two vertices. Each pin p ∈ V is annotated with two possi-

ble transition values, rise (vrisep) or fall (vfallp). Each edge

eu→v ∈ E is a directed arc from vertex u to v. A path is an

ordered sequence of vertices 〈v1, v2, · · · , vn〉 or a sequence of

edges 〈e1, e2, · · · , em〉. Slack measures the amount of timing

violation. It is defined as the difference between signal arrival

time and required arrival time. Critical paths are paths with

worst negative slacks. Given an STA graph, one of the main

goals of STA is to report the top-k critical paths under user-

specified path constraints, or the so-called report_timing

command [1], [2].

B. Related Works

Generating the top-k critical paths is an essential routine

in many STA tools [4], [7], [8], [9]. Developers often report

a set of critical paths according to their slack values and

measure the timing properties of each path. The algorithm to

rank k critical paths, especially when k is more than one,

under extensive path constraints such as which path goes

through which pins under which transitions and so on, is

an extremely difficult challenge. As a result, the recent TAU

Timing Analysis Contest settled down on this topic looking

for novel ideas and algorithms for path generation [2]. [9]

proposed a k-shortest path algorithm that targeted on common

path pessimism removal (CPPR) with polynomial time and

space complexity. Yet, it did not consider any path constraints.

[8] proposed a branch-and-bound algorithm to explore critical

paths under given timing exceptions. Depending on the initial

points, the algorithm may consume an exponential growth of

search space before reaching an effective pruning threshold.

The dependency on pruning points also makes it difficult to

take advantage of multithreading. Inspired by the 2018 TAU

contest environment, [10] proposed a cache-based framework

to capture the similarity between path constraints of successive

queries. However, the algorithm is not exact and needs to trade

in accuracy for speed. Neither can the cache scheme produce

consistent speed-up at all situations.

C. k-Critical Path Generation Algorithm

The state-of-the-art algorithm is a variant of the top-k
shortest path algorithm using implicit path representation and

fast path recovery strategy to generate timing critical paths

from an STA graph [9]. Given an integer k, a destination

node d, a set of source nodes S = {s1, s2, s3, · · ·} and their

corresponding distance offset, the algorithm outputs the top-k
shortest paths from a source in S to d. It uses a suffix and

a prefix tree data structures to represent a path implicitly. A

suffix tree is defined as the shortest path tree Td = {VT , ET }
rooted at d. A prefix tree is constructed with edges not in the

suffix tree, which are called deviation edges. Each node in

the prefix tree represents a deviation edge epre ∈ E/ET . By

backtracing to the root of prefix tree, a set of deviation edges

can be collected. A full path enumeration can be recovered by

complementing this set with edges in the suffix tree. A single

node in the prefix tree implicitly represents a full path in G.

The prefix tree will maintain a min-heap for all the leaf nodes.

Each time a leaf node le is popped from the heap, new leaf

nodes on le will be spawned. By traversing the path recovered

from le, all the deviation edges along this path will be the

new children of le. Given that |V | = n, |E| = m, the time

complexity of this algorithm is O(nlogn+kn+kmlogk) and

space complexity is O(nlogn+m+k). More algorithm details

can be referred to [9]. While we shall develop our algorithm

on top of this tree structure, the proposed concept is applicable

to other frameworks that operate on an STA graph.

III. THE PROPOSED ALGORITHM

An overview of our algorithm is shown in Figure 2. It

consists of multiple steps: (1) We use OpenTimer to construct

the STA graph given standard input files including Verilog

(gate-level netlist of the design), liberty (gate delay and

tests specifications), spef (parasitic RC), and simple SDC or

Timing (design constraints) . We then call update_timing

to perform graph-based analysis. (2) Queries are processed

one at a time. A PathBuilder class is constructed to

hold information from each report_timing query. (3) The

topological sorting algorithm is launched from the last pin in

the query. A node to topological rank mapping is built up.

(4) The pruning step collects nodes in subgraph restricted

by the query. In the meantime, we complete a node to level

mapping. (5) Suffix and prefix trees mentioned in Section II-C

are constructed based on the list of post-pruning nodes. Both

the rank and level mappings are used to filter out arcs that

violate the query constraints.

Details of graph-based analysis completed by OpenTimer

are explained in [4]. Our algorithm executes the requested

path-based analysis. Starting from the second step, for each

query in .ops file, we parse it and store its arguments into a

Authorized licensed use limited to: The University of Utah. Downloaded on December 01,2020 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of our algorithm.

PathBuilder class. It contains the pin sequence informa-

tion denoted as Thru = 〈p1, p2, · · · plast〉. We use pi.tran
to represent the required transition on pin pi. This field can

be empty if user does not require a specific transition.

A. Incremental Topological Ranking

This step preprocesses the STA subgraph and establishes a

node to topological rank mapping while it preserves the circuit

property. Let G∗ be the fan-in subgraph of last pin plast. We

perform topological sort algorithm on plast with the following

rank assigning rule:

rank(vfallp) = rank(vrisep) + 1, ∀p

Two nodes corresponding to different transitions of the same

pin are assigned with adjacent ranks. The topological ranks

obtained under this rule is correct because there should be no

path between vrisep and vfallp in an STA graph generated from

a valid circuit design. Figure 3 illustrates the sorting results

(a) without rank assigning rule and (b) with rank assigning

rule enforced. In this way, ranks of required pins in Thru are

sufficient to partition the vertex space of G∗, which enable

us to filter fan-in and fan-out arcs without enumerating all

possible transitions over required pins. Otherwise, the enumer-

ation is exponential to the number of pins in Thru. Besides,

subsequent sorted ranks from later queries are based on offset

from previous ranks, which makes this step incremental.

B. Partition and Node Pruning

Main objectives of this step are: (1) collect nodes from

subgraph G∗ for suffix tree construction; (2) build vertex to

level mapping for arc filtering. The order of required pins in

Thru list should agree with their ranks from low to high after

the sort. The increasing order of these ranks should be unique

otherwise a cycle exists in DAG or no path exists between

some required pins. For each pair of adjacent pins 〈pi, pi+1〉
in Thru, node set of pi is denoted as floor Fi and node set

of pi+1 denoted as ceiling Ci. By this definition, the current

ceiling is the next floor Ci = Fi+1. Elements of each set is

dependent on specified transition on associated pin.

Gate-Level Netlist

Flatten STA Graph

m����

n����

n����

o���� p����

o���� p����

report_timing -through B -through C

m���� n���� o���� p���� n���� o���� p����

m���� m���� n���� n���� o���� o���� p���� p����

(a)

(b)

Fig. 3: (a) Pin B and pin C have interleaving ranks. (b) Ranks of pin
B are disjoint from ranks of pin C.

∀i ≥ 1, Fi = Ci−1 =

{

{vTpi
} if pi.tran = T

{vrisepi
, vfallpi

} otherwise

Denote the intersected subgraph of fan-out cone of Fi and

fan-in cone of Ci as level i, ∀i ≥ 1. The level 0 is formed

by the first ceiling C0 or F1 along with source nodes of the

timing graph. The level index i can be used for constant time

look-up for floor Fi and ceiling Ci. Every node in the level

i has rank value bounded by ranks of Fi and Ci. Nodes not

belonging to any level should be eliminated or pruned from

the search space. To facilitate this, we define the following

arc filtering rule: For each node u in level i,

• For each fan-in arc eu←v, node v either is a node in the floor

v ∈ Fi or satisfies rank(v) > rank(vfallpi
). Fan-in arcs of

u ∈ Fi are asserted as arcs of previous ceiling u ∈ Ci−1.

• For each fan-out arc eu→v, node v either is a node in the

ceiling v ∈ Ci or satisfies rank(v) < rank(vrisepi+1
). Fan-out

arcs of u ∈ Ci are asserted as arcs of next floor u ∈ Fi+1.

Algorithm 1: node pruning

1 /* list of post-pruning nodes */

Output: Nodes
Result: node to level mapping, endpoints in tail

2 Nodes ← empty list;
3 for level ← 0 to Thru.size do
4 if level > 0 then
5 Forward filtered BFS from floor to ceiling:
6 1: mark all visited pins
7 end
8 Backward filtered DFS from ceiling to floor:
9 1. append marked nodes to the list Nodes

10 2. all nodes appended have their index mapped to level
11 end
12 Forwards BFS from last required pin:
13 1. mark visited pins as in the tail area
14 2. collect encountered endpoints
15 return Nodes

We perform forward filtered BFS from each floor and

backward filtered DFS from associated ceiling to further con-

Authorized licensed use limited to: The University of Utah. Downloaded on December 01,2020 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

Sorted Nodes

Hr Hf Fr Ff Gr Gf Dr Df Er Ef Br Bf Cr Cf Ar Af

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Node

Rank

level 0 level 1 level 2 level 3

Post-pruning nodes

Floor and ceiling ranks

report_timing ±through G -fall_through E -rise_through A

List = < >

Level 0 Pruning

Push Back <Hr> List = <Hr>

Level 1 Pruning

Push Back <Gr, Gf> List = <Hr, Gr, Gf>

Level 2 Pruning

Push Back <Ef, Br> List = <Hr, Gr, Gf, Ef, Br>

Marked by BFS

Virtual edge indicating the same pin, r=rise, f=fall

Actual arc in an STA graph

Marked as tail

Fig. 4: Exemplification of node pruning. The leftmost graph represents the STA subgraph G
∗

A that is reachable to pin A. Nodes in the table
are arranged in increasing ranks. For each level, forward BFS (except level 0) and backward recursive DFS are performed to prune nodes
in individual level. The search space of these methods are constrained by arc filtering (rank comparison). A final BFS is performed from
A

rise to mark the unconstrained tail section in case pin A is not a datapath endpoint.

dense the node space and obtain a list of post-pruning nodes.

Algorithm 1 outlines the pruning method. A list of timing

graph nodes is initialized (line 2). Only nodes connected to

both floor and ceiling of each level are appended to the list

(line 3:11). BFS (line 5) and DFS (line 8) are both under the

filtering rule described in this section. The entire output list

obeys topological order because the list is built with increasing

level and DFS preserves orders in each level. In the meanwhile,

the node to level mapping is constructed (line 10) so that

the level index can be looked up in constant time. Figure

4 illustrates an exemplification of this pruning process on a

sorted subgraph.

C. Arc Filtering

The previous step reduces search space of nodes during

suffix tree construction. The big picture of this stage is to

refine search space for edges. For each endpoint marked

in the tail area, we perform top-k critical paths generation

algorithm described in Section II-C. The construction of single

destination suffix tree (shortest path tree) consists of two steps,

topological sort and distances relaxation. Previous step has

already collected a list of post-pruning nodes in sorted order up

to the last pin in Thru sequence. The suffix tree’s constructor

will fetch this list and append it with searched list in the tail

area. In the distance relaxation step, whenever a fan-in arc is

traversed, the filtering rule in Section III-B is applied. Since

the node to level mapping is built, we can acquire ranks of

floor and ceiling in constant time. Similarly, we apply the

filtering rule when the prefix tree searches fan-out arcs for

deviation edges. Therefore, constant overhead will be added

upon traversal for each arc.

Theorem Our top-k critical path generation algorithm under

general user constraints has time complexity O(nlogn+kn+

kmlogk) and space complexity O(nlogn+m+ k).

Proof: The preprocessing steps in Section III-A and III-B

takes linear time with respect to the graph size O(m + n).
Filtering arc in Section III-C costs O(1) for each arc. Both

mappings occupy linear space O(m + n) as well. Therefore,

the overall time and space complexity remain O(nlogn+kn+
kmlogk) and O(nlogn + m + k) as [9]. In other words,

our algorithm adds only linear complexity to an existing

framework.

IV. MULTITHREADING

Our algorithm is advantageous in effective separation of

path generation from each endpoint. Multiple datapath end-

points may reside in the marked tail section. Top-k critical

paths can be generated independently from different endpoints.

We apply Cpp-taskflow [11], a modern C++ task-based parallel

programming model, to implement this parallelization. Per-

endpoint report generation is encapsulated in a task. All

tasks merge their k worst paths into a single min-max heap

that tracks the globally k worst paths. The critical paths

remain in the heap are reported as the final result. A key

difference between our task-based method from existing loop-

based strategies is dynamic load balancing. By using task

parallelism, we can flow our computations naturally with the

timing graph structure, rather than level-by-level synchroniza-

tion [4].

V. EXPERIMENTAL RESULTS

We conducted all experiments on a 3.20 GHz 4-core 64-bit

Linux machine with 32 GB memory. We built our algorithm

on top of OpenTimer [4] and compiled the entire program

in g++-7.3.0 with optimization flag O2 and C++17 standards

-std=c++17 enabled. We started with the experiments on

Authorized licensed use limited to: The University of Utah. Downloaded on December 01,2020 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

the TAU 2018 benchmarks (leon3mp and vga lcd) with a

golden reference generated by a commercial signoff tool to

verify the correctness of our algorithm. However, the contest

problem is a simplified version of our goal. It assumes each

query to have (1) a fixed startpoint (2) a fixed endpoint

(3) a fixed transition for each through pin, and (4) a single

critical path. To demonstrate the capability of our algorithm,

we conducted another experiment that modified leon3mp and

vga lcd query files (.ops) to include more realistic and com-

plicated constraints such as arbitrary through pins and path

count limit. Besides, we supplied our experiments with two

more large combinational circuits c5315 and c7552 from the

TAU 2015 benchmarks. In both experiments, we consider

the open-source tool OpenSTA by Parallax Software Inc as

baseline [5], [6]. We do not compare with other proprietary

timers of closed source that prevent us from analyzing the

algorithms. OpenSTA is a mature commercial STA tool with

a rich set of features. Over the past years, OpenSTA has con-

ducted numerous correlation experiments with many industrial

standard signoff timers. We are interested in the performance

and slack correlation between our algorithm and OpenSTA.

Through tracing the source of OpenSTA, we found OpenSTA

adopted a branch-and-bound algorithm similar to [8] in dealing

with path constraints during the path generation. The code

also embedded a number of heuristics to prune the search

space. For fair comparison, we measured runtime only on the

report timing command. In order to highlight the effectiveness

of our algorithms, we tested that both tools produced similar

runtime performance without path constraints.

A. Results on TAU 2018 Contest Benchmarks

TABLE I: Comparison between our algorithm and OpenSTA

on TAU 2018 Timing Analysis Contest Benchmarks [2]

Circuit #Gates #Arcs #Q/#M cpuours cpuosta

vga lcd 139K 757K 46352/46352 0.25 148

leon3mp 1.25M 6.28M 49987/49987 2.48 980

#Q: number of report_timing queries
#M: number of paths matching the golden reference
cpu: runtime in minutes

Results of our algorithm on the TAU 2018 benchmarks are

shown in Table I. Keep in mind the contest simplified the

problem and each query requested only one path (k = 1). We

used #M to indicate the number of matched paths from our

report to the golden reference. Two paths are matched if and

only if they have the same sequence of pins and transitions.

As shown in Table I, our algorithm can produce correct path

reports that match the golden reference in 100%. We can

accomplish runtime within 3 minutes for both benchmarks.

The contest winner also achieved similar values. We omit

the comparison with the contest top performers because they

were tied to the simplified problem and could not handle

generic constraints. We are also interested in the performance

difference between our algorithm and OpenSTA. As shown in

last two columns of Table I, our algorithm is more than an

order of magnitude faster than OpenSTA. We can reach the

goal by up to 592× and 395× faster for vga lcd and leon3mp,

respectively. This is because our algorithm can precisely prune

large search space using the circuit graph property, instead of

branching multiple search paths to find the pruning threshold.

B. Results on Complex Benchmarks

In this experiment, we consider more realistic and complex

query patterns. We modified the query file (.ops) of the TAU

2018 contest benchmarks. Each query in the original vga lcd

benchmark defines a subgraph that contains only a limited

number of paths. We removed the -from pin and -to pin

restrictions to enlarge the number of paths in the subgraph to

make the search space much more complex. Combinational

circuits c5315 and c7752 are benchmarks from the TAU 2015

contest. We randomly generated a set of report_timing

queries for each design. Each query is in the most general

format, since it requests higher path count limit without any

restrictions on pin transitions, path startpoint, and endpoint.

Table II shows the statistics of each benchmark.

We evaluated the correlation between our algorithm and

OpenSTA as follows: (1) We obtained the slack histogram by

accumulating path numbers across different ranges of slack

values (see Figure 5). (2) We extracted the slack vectors from

both path reports and computed the correlation coefficient.

As shown in Figure 5 and Table II, our algorithm has a

strong linear correlation with OpenSTA. It can be observed

in top row of Figure 5 both our algorithm and OpenSTA

produced exactly the same output. The correlation coefficient

of both circuits equals one. The purpose of positive slack

in leon3mp is to examine the generality of algorithms under

arbitrary slack ranges. The bottom half of the figure shows a bit

shifted slack values, which is caused by the different numerical

methods on interconnect delay model between OpenTimer and

OpenSTA. However, both path traces match exactly. In terms

of performance, our algorithm is faster than OpenSTA in all

benchmarks. The speed-up values over OpenSTA are 10.41×,

69.96×, 5.52×, and 7.84× repectively.

C. Scalability with Multithreading

In this section, we evaluated the multithreading performance

of our algorithm on the modified vga lcd benchmark. There

are multiple endpoints involved in each query in this bench-

mark. We ran OpenSTA on the same testcase. Figure 6 demon-

strates that our algorithm efficiently parallelizes independent

workload across all endpoints. In general, both algorithms

scale with increasing number of CPU cores. However, the

performance margin between ours and OpenSTA is consid-

erably large at all CPU numbers. For example, under 1, 2, 3,

and 4 CPU cores, OpenSTA took 37.33, 28.77, 24, and 22.26

minutes to finish; ours are only 3.5, 3, 2.85, and 2.75 minutes.

A primary reason to this is our task-based parallelization

method with dynamic load balancing which avoids excessive

waste of thread resources especially for large timing graphs.

Authorized licensed use limited to: The University of Utah. Downloaded on December 01,2020 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Benchmark statistics and performance comparison between the proposed algorithm and OpenSTA

Circuit #Pins #Gates #Arcs #Queries k cpuours cpuosta CC Mean CC STD

vga lcd 397809 139529 756631 4000 16 217.59 2266.06 1.0000 3.2150 × 10
−7

leon3mp 3376832 1247725 6277562 4000 8 58.30 4078.43 1.0000 1.6921 × 10
−5

c5315 3245 918 6201 6782 32 18.55 102.47 0.9852 2.3886 × 10
−2

c7552 3802 1147 7133 4401 32 9.27 72.71 0.9863 2.6426 × 10
−2

CC: correlation coefficient k: number of paths generated cpu: runtime in seconds

−500 −400 −300 −200 −100

0

0.5

1

1.5

·104

Slack (ps)

P
at

h
N

u
m

b
er

vga lcd

Our algorithm

−500 −400 −300 −200 −100

0

0.5

1

1.5

·104

Slack (ps)

P
at

h
N

u
m

b
er

vga lcd

OpenSTA

3.4 3.41 3.42 3.43 3.44

·104

0

2,000

4,000

Slack (ps)

P
at

h
N

u
m

b
er

leon3mp

Our algorithm

3.4 3.41 3.42 3.43 3.44

·104

0

2,000

4,000

Slack (ps)

P
at

h
N

u
m

b
er

leon3mp

OpenSTA

−900 −880 −860 −840

0

0.2

0.4

0.6

0.8

1

·104

Slack (ps)

P
at

h
N

u
m

b
er

c5315

Our algorithm

−920 −900 −880 −860

0

0.2

0.4

0.6

0.8

1

·104

Slack (ps)

P
at

h
N

u
m

b
er

c5315

OpenSTA

−680 −675 −670 −665 −660

0

0.5

1

1.5

·104

Slack (ps)

P
at

h
N

u
m

b
er

c7552

Our algorithm

−700 −695 −690 −685 −680 −675

0

0.5

1

1.5

·104

Slack (ps)

P
at

h
N

u
m

b
er

c7552

OpenSTA

Fig. 5: Comparison of slack distribution between our algorithm and OpenSTA on vga lcd, leon3mp, c5315, and c7552.

1 2 3 4
0

10

20

30

40

Number of CPU cores

R
u

ti
m

e
(m

in
u

te
s)

Ours vs OpenSTA

Ours

OpenSTA

1 2 3 4

2.8

3

3.2

3.4

Number of CPU cores

R
u

n
ti

m
e

(m
in

u
te

s)

Ours (zoomed in)

Ours

Fig. 6: Multithreading performance on vga lcd.

VI. CONCLUSION

In this paper, we have introduced an efficient timing critical

path generation algorithm on an STA graph. Our algorithm

can quickly search the critical paths under extensive path con-

straints to meet users need. We have integrated our algorithm

into an open-source static timing analysis tool OpenTimer and

evaluated it on the 2018 TAU contest benchmarks. Our results

match the golden reference provided by the contest. Compared

with the open-source commercial tool OpenSTA, our results

showed a strong correlation in path slacks, yet achieving more

than an order of magnitude speed-up.

VII. ACKNOWLEDGEMENT

This work is partially supported by NSF Grant CCF-

1718883.

REFERENCES

[1] J. Bhasker et al., Static Timing Analysis for Nanometer Designs: A

Practical Approach. Springer, 2009.
[2] “TAU 2018 Contest,” https://sites.google.com/view/taucontest2018/

home.
[3] J. Hu et al., “TAU 2015 contest on incremental timing analysis,” in

IEEE/ACM ICCAD, 2015, pp. 895–902.
[4] T.-W. Huang and M. D. F. Wong, “OpenTimer: A high-performance

timing analysis tool,” in IEEE/ACM ICCAD, 2015, pp. 895–902.
[5] “Parallax Software,” http://www.parallaxsw.com/.
[6] “OpenSTA,” https://github.com/abk-openroad/OpenSTA.
[7] Y.-M. Yang, Y.-W. Chang, and I. H.-R. Jiang, “iTimerC: Common path

pessimism removal using effective reduction methods,” in IEEE/ACM

ICCAD, Nov 2014, pp. 600–605.
[8] P.-Y. Lee, I. H.-R. Jiang, and T.-C. Chen, “Fastpass: Fast timing path

search for generalized timing exception handling,” in IEEE/ACM ASP-

DAC, 2018, pp. 172–177.
[9] T.-W. Huang and M. D. F. Wong, “UI-Timer 1.0: An ultrafast path-based

timing analysis algorithm for cppr,” IEEE TCAD, vol. 35, no. 11, pp.
1862–1875, Nov 2016.

[10] K.-M. Lai, T.-W. Huang, and T.-Y. Ho, “A general cache framework for
efficient generation of timing critical paths,” in IEEE/ACM DAC, 2019.

[11] T.-W. Huang, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-Taskflow:
Fast task-based parallel programming using modern C++,” in IEEE

IPDPS, 2019.

Authorized licensed use limited to: The University of Utah. Downloaded on December 01,2020 at 17:23:22 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

