
A General Cache Framework for E�icient Generation of Timing
Critical Paths

Kuan-Ming Lai, Tsung-Wei Huang and Tsung-Yi Ho
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA
r365460@gapp.nthu.edu.tw,twh760812@gmail.com,tyho@cs.nthu.edu.tw

ABSTRACT

The recent TAU 2018 contest was seeking novel idea for e�-

cient generation of timing reports. When the timing graph is up-

dated, users query di�erent forms of timing reports that happen

subsequently and sequentially. This process is computationally ex-

pensive and inherently complex. Therefore, we introduce in this

paper a general cache framework for e�cient generation of tim-

ing critical paths. Our framework e�ciently supports (1) a cache

scheme to minimize duplicate calculation, (2) graph contraction

to reduce the search space, and (3) multi-threading. We evaluated

our framework on the TAU 2018 contest benchmarks and demon-

strated promising performance over the top performer.

KEYWORDS

Static Timing Analysis, Path-based Timing Analysis, Cache

ACM Reference Format:

Kuan-Ming Lai, Tsung-Wei Huang and Tsung-Yi Ho. 2019. A General

Cache Framework for E�cient Generation of Timing Critical Paths. In

The 56th Annual Design Automation Conference 2019 (DAC ’19), June

2–6, 2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3316781.3317744

1 INTRODUCTION

Timing-driven optimization is an important step inmany design

�ows such as logic synthesis, placement, routing, and physical syn-

thesis [1]. To achieve timing closure, the chip designers iteratively

optimize the timing of their designs until all timing constraints are

satis�ed. Optimization tools often call a timer in their inner loop

to report timing critical paths to evaluate a strategy, for example,

changing the size of a gate, adding a bu�er, or removing a gate.

The timer must quickly and accurately update the timing to en-

sure slack integrity and timing closure for reasonable turnaround

time and performance.

One of the core routines in implementing an e�cient timing

analysis tool is the generation of timing critical paths. In many

timers, this often refers to the command or the application pro-

gramming interface (API) method “report_timing". The algorithm

behind this command is critical to the performance of using it in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317744

A B C G

H I J K

D E F

query 1: -through B -through J

query 2: -through A -through J

Figure 1: An example of timing critical path report queries.

a timing-driven optimization loop. A typical user �ow can have

more than 10K commands that request timing reports for a speci�c

subset of paths [2]. Depending on applications, there are many as-

pects and requirements to this command. A common feature is to

generate the top-k timing critical path on a speci�c cone of logic.

This has been addressed in the recent TAU 2018 Timing Analysis

Contest [2].

Figure 1 shows an example of two queries to report timing crit-

ical paths in one incremental timing iteration. Query 1 requests

the critical path to go through pin B and pin J (modeled as a graph

node). Query 2 requests the critical path to go through pin A and

pin J. An intuitive solution is to implement a standalone algorithm

and apply it to each query individually and independently. This

�ow is advantageous in its simplicity and generality. However,

it may run into a performance hit in particular when successive

commands exhibit similar properties where computation and data

structures can be reused rather than starting from scratch. In our

example, both query 1 and query 2 request the path to go through

pin J. In query 2, we can potentially reuse the downstream data

structure of pin J from query 1 to speed up the path generation

process.

Iterative generations of timing critical paths with a speci�c

cone of logic is a common workload in local optimization algo-

rithms such as window-based timing-driven placement and region-

constrained rip-up-and-reroute [2–4]. These algorithms iteratively

transform the local landscape of the design, followed by timing

queries with similar properties to evaluate their strategy or heuris-

tic. To speed up the process, we proposed in this paper a general

cache framework for e�cient generation of timing critical paths.

We summarize our contributions as follows:

• A general cache framework. We introduce a general and

�exible cache framework for path-based timing analysis. Our

cache scheme e�ectively considers the similarity among di�er-

ent queries. It can be easily turned on and o�with little overhead

to suit di�erent optimization algorithms.

• Graph contraction. We develop a graph contraction algorithm

to reduce the size of the timing graph without a�ecting the path

accuracy. As a result, our algorithm needs only a few essential

points to �nd a timing critical path.

• E�cient multi-threading. Our cache framework enables e�-

cient use of multi-threading. Each thread can have its own cache

data structure independent of others and run the path search al-

gorithm in parallel to improve the performance.

We evaluated our algorithms in the TAU 2018 Timing Analysis

Contest benchmarks with golden reference generated by an indus-

try standard timer [2]. The experimental results showed our algo-

rithm can e�ectively improve the path generation runtime espe-

cially when local similarity exhibit among queries. We also demon-

strated near-zero overhead in disabling the cache tomake the timer

run in normal mode. We achieved the best performance compared

to the top performers in the TAU 2018 contest.

2 PROBLEM FORMULATION

We stick with the problem formulation of the TAU 2018 Timing

Analysis Contest – E�cient generation of timing reports from an

STA graph with updated arrival and required times [2]. Given a tim-

ing graph, the goal is to quickly and accurately answer the timing

query that meets user-speci�ed requirements.

2.1 Input Files

The input circuit design is described in the following industry

standard formats:

• Verilog (.v): This �le describes a gate-level netlist of the design.

• SPEF (.spef): This �le describes the parasitic RC network for

the design.

• Liberty (.lib): This �le describes the cell characteristics of the

design. There are two liberty �les, early and late for minimum

and maximum delay calculation, respectively.

• Timing (.timing): This �le describes the arrival time of PI and

clock pin, the required arrival time of PO and the clock cycle.

• Command and Operations (.ops): This �le contains the set of

report_timing queries and their options.

2.2 The Command: report_timing

The goal is to implement the command “report_timing" that re-

ports a set of top worst-slack paths that satisfy the user-given re-

quirements as follows:

• -through pin: The reported paths should go through this pin at

either rising or falling edge.

• -rise_through/-fall_through pin: The reported paths should

go through this pin at rising/falling edge.

• -disable pin: The reported paths should not go through this pin

at neither rising nor falling edge.

• -rise_disable/-fall_disable pin: The reported paths should not

go through this pin at rising/falling edge.

• -nworst=1: The number of top worst critical paths will be re-

ported.

• -cppr=<true|false>: It speci�es whether to consider common

path pessimism removal (CPPR) analysis or not.

• -mode=<hold|setup|both>: It can be set to “setup", “hold", or

“both" to specify which session of critical paths to report.

Figure 2: Overview of our program �ow.

3 ALGORITHM

In this section, we discuss the details of our algorithm. The

overview of our program �ow is shown in Figure 2. We �rst create

the timing graph and build up internal data structures from the in-

put �les. Then, we deal with each query in two steps. In the �rst

step, we focus on identifying the search space from the speci�ed

through pins and our cache. Next, we demonstrate how to trans-

form the problem into the graph search problem. We apply the

algorithm in [3] to obtain the top-k worst post-CPPR slacks paths.

Without loss of generality, we explain our algorithm only for the

max (setup) mode. The same concept applies to min (hold) mode.

3.1 Preprocessing

3.1.1 Timing graph. We construct a directed acyclic graph (DAG),

G, to represent the timing graph extracted from the input �les. In

G, each pin in the circuit has four nodes representing the combina-

tion of rising/falling transition and early/late mode. After building

the timing graphG, we perform the forward and backward propa-

gation to obtain the timing information, arrival time and required

arrival time, of each node. The weight of each edge (u,v) inG is the

delay from u to v . Additionally, we de�ne level(x) to be the topo-

logical order of node x inG. Obviously the four nodes of the same

pin have identical topological order. We further de�ne level(pin)

which equals to level(x) where x represents the nodes of pin.

3.1.2 Preprocessing of report_timing. To incorporate each query

into our cache, we discard the transition requirements of

through pins; we modify their parameters, “-rise_through" or “-

fall_through", to “-through" and add its reversed transition type

to the disabled group. For example, the query, “report_timing

-rise_through P1 -fall_through Pout", will be transformed to

2

“report_timing -through P1 -through Pout -fall_disable P1 -

rise_disable Pout". Moreover, we sort the through pins by their

topological order in the timing graph, which lets us identify the

search space easily.

3.2 Identify the Search Space for Each Query

We de�neG ′ as the search space which satis�es two conditions:

(1) all possible valid paths are contained inG ′ (2) all paths inG ′ are

valid, where a valid path means it must traverse all through pins

but disabled pins. Additionally, letG ′
= (V ,E) be a DAG, where V

and E are subset of vertices and edges inG. To facilitate obtaining

the critical paths in the setup mode, the weight of edдe(u,v) in

G ′ is the negative delay between u and v . We de�ne node(pin) as

the nodes representing the pin and throuдh(i) as the i-th through

pin. InG ′, we use startpoints and endpoints to represent the nodes

belonging to PI/FF:clk and PO/FF:d, respectively.

Intuitively, the search spaceG ′ consists of various independent

path sets due to the property of a DAG. To be more speci�c, we

de�nepaths(i, j) as the set of edges that connect paths between the

two sets of nodes, i and j, where these edges exclude all disabled

pins. Therefore, G ′ is equal to

S = paths(startpoints,node(throuдh(0)))

M =

n−2⋃

i=0

paths(node(throuдh(i)),node(throuдh(i + 1)))

D = paths(node(throuдh(n − 1)), endpoints)

G ′
= S ∪M ∪ D

, where n is the number of through pins. An example G ′ of the

query, “report_timing -through T1 -through T2", is shown in Fig-

ure 3. For S and D, We simply perform backward and forward DFS

from throuдh(0) and throuдh(n − 1) to obtain them, respectively.

For each term in M , paths(node(throuдh(i)),node(throuдh(i + 1)),

we can also apply DFS from node(throuдh(i)) to collect the edges

to node(throuдh(i + 1)).

T1:R

T1:F

T2:R

T2:F

s3

s2

s1

d3

d2

d1

si

PI/FF:clk

Ti

through pins

di

PO/FF:d paths

S = startpoints to T1 M = T1 to T2 D = T2 to endpoints

report_timing -through T1 -through T2

Figure 3: Search space G ′ can be divided by through pins.

3.3 Cache the Fan-in Cone of a Pin

To improve the overall performance and avoid duplicate calcula-

tion, we cache the fan-in cone of the most frequently used pins. For

pin x , the upstream search space of x can be reused and applied to

other queries also requesting to pass x . If we know the fan-in cone

of throuдh(i+1) in advance, then we can largely reduce the time of

obtaining paths(node(throuдh(i)),node(throuдh(i+1))) by making

sure that traversed nodes are in the fan-in cone of throuдh(i + 1)

when we perform DFS from throuдh(i). Therefore, �nding the fan-

in cone of all through pins is the necessary step to construct G ′.

We de�ne a class,CacheNode , to store the fan-in cone for each pin.

The essential members of CacheNode are listed below.

• pin: This CacheNode is attached to pin.

• pre_pin: The previous through pin of pin in current query, if pin

is the �rst through pin then pre_pin is None .

• is_in_f anin: A table to record whether a node is in this fan-in

cone.

• starts: It stores the set of nodes corresponding to startpoints in

this fan-in cone.

• searched_level : The level of fan-in cone is searched. If the level is

greater than level(pre_pin) then extending the fan-in cone cov-

ered by the cache is necessary.

• f rontier : The set of nodes to extend the fan-in cone.

• last_used : Last time of cache hit, the initial value is the time

when it was created.

• cache_hit : The number of cache hits, the initial value is one.

A through pin is a cache hit pin if there exists aCacheNode for it

or a cache miss pin otherwise. By the user settings, the maximum

number ofCacheNode would then be decided. Since the number of

CacheNode is �xed, the cache replacement policy (Section 3.5) is

required if there is no space to store the newCacheNode for cache

miss pins.

Lemma 3.1. For throuдh(i) in each query, its e�ective range of

fan-in cone is between level(throuдh(i − 1)) and level(throuдh(i)).

Proof. For each query, the fan-in cone of throuдh(i) is only

used for collecting paths(node(throuдh(i − 1)),node(throuдh(i)).

During traversing from node(throuдh(i − 1)) to node(throuдh(i)),

we only pass the nodes which level are between level(throuдh(i −

1)) and level(throuдh(i)) by the property of DAG. �

Lemma 3.1 tells that it is not necessary to search all fan-in cone

of a through pin when its CacheNode is created. When we ini-

tially search the fan-in cone of throuдh(i) and �nd that a node

x is out of the e�ective range in the current query (level(x) <=

level(pre_pin)), we stop traversing and put x into f rontier . If

the fan-in cone of a cacheNode is too small for another query

(searched_level > level(pre_pin)), we can simply extend fan-in

cone from f rontier . Figure 4 illustrates the fan-in cone of through

pins in query 1 and query 2. In query 2, although pin J is a cache

hit pin, its pre_pin, A, forces us to update the fan-in cone of J.

3.4 Condense the Timing Graph

Reducing the size of the timing graph can largely speed up the al-

gorithm due to reduced search space.We contract the timing graph

3

fan-in cone of through pin frontier

A B C G

H I J K

D E F

B

J

A C

I

(a) Fan-in cone of the through pins in query 1, "-
through B -through J"

A B C G

H I J K

D E F

A

J

B

H

(b) Fan-in cone of the through pins in query 2, "-
through A -through J".

Figure 4: The fan-in cone identi�ed from query 1 and query

2. In query 2, we update the fan-in cone of J from its f rontier ,

C and I.

after we construct it. Our principle is to recursively eliminate the

node x which has only one in-degree and non-zero out-degree in

the timing graph G. Under these circumstances, we de�ne par (x)

as the fan-in of x , and conclude that x has condensed by the par (x)

by merging x into par (x) and creating the edges from par (x) to all

fan-out of x .

Lemma 3.2. The input pins of the gates can be eliminated by our

contraction method.

Proof. In the circuit, the input pins in the gates only come

from the output pin of another gate; therefore, it has only one in-

degree intrinsically. On the other hand, they also have non-zero

out-degree as a result of connecting to the output ports in their

gates. �

Meanwhile, we record whether a node has been condensed by

using the table condensed_by to indicate which node has con-

densed it. For element x in condensed_by, the initial value is x ,

which represents that x doesn’t be condensed. If the query de-

mands to pass the eliminated node x , then we replace x with

condensed_by[x]; that is, we can know if the path needs to pass

x , then it must pass condensed_by[x] �rst.

There are a few implementation details after condensing the

graph. Although we have replaced condensed through pin x with

condensed_by[x], we cannot keep correctness unless a check is

placed on the edges starting from condensed_by[x] to avoid skip-

ping the original through pin x . This stems from the fact that not

all the edges starting from condensed_by[x] pass x .

A B C G

H I J K

D E F

B C

D E

H

(1)

(2)(3)(4)

(5) (6) (7)

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

I

I

J

J

K

KA A A A A

condensed_by

A

J

Figure 5: An example of graph contraction. Query 1, "-

through B -through J", is transformed to "-through A -

through J" in the contracted graph.

An example of contraction is given in Figure 5. The gray nodes

represent that they have been condensed. The �nal G is shown

as blue lines. Query 1, “report_timing -through B -through J",

will be modi�ed to “report_timing -through A -through I" by

condensed_by. Subsequently, we constructG ′ for this query. When

traversing from node A, we observe that its fan-out, I and J , are

both in the fan-in cone of the next through pin J . However, there

exists a original through pin, B, between A and J , which entails us

examining the edges startingA. For the edge (u,v), we can tell if it

is valid by checking whether there are some original through pins

which level is between level(u) and level(v). If not, then this edge

is valid inG ′; otherwise, we further check edge (u,v) whether the

original through pin was condensed by it. Notably, after the con-

densing, there are two edges from A to I, edge (4) and (5). However,

only the edge (4) is valid in G ′ since the other edge will make us

leap the original through pin B. As a result, for those edges start-

ing from A, only the edge (3) and (4) are valid in G ′. Furthermore,

this checking process is also executed for those disabled pins for

avoiding picking the edges containing the disabled nodes.

3.5 Cache Replacement Policy and Overhead

We introduce a cache replacement policy to cope with the prob-

lem of �nding the victim CacheNode . The settings in our cache

scheme are listed as follows.

• cache_size : This value indicates the maximum number of

CacheNode we store. In general, this value should be greater

than the maximum number of through pins in all queries.

• interval_time: If a CacheNode has not been hit for

interval_time queries, it has the high priority to be replaced.

Our replacement policy has two stages. The �rst stage is to

select a CacheNode which has not been hit for interval_time

queries. After that, if we still fail to �nd a victim, we select one

from cache_hit . Intuitively, we gain the bene�t from replacing the

CacheNode having theminimum cache_hit . In our experiment, the

cache_size and interval_time are set to 20, 10, respectively.

4

As for the memory cost for cache, it depends on the data struc-

ture to store the fan-in cone of a node. In our implementation, we

use a bitset to identify whether a node is in the fan-in cone of

a through node or not. Therefore, the memory overhead of each

CacheNode is O(n), where n is the total number of nodes in G.

3.6 Search the Critical Paths

Our �nal step is to obtain the k-worst paths from theG ′ contain-

ing all possible valid paths. If the query considers the CPPR, then

we directly make use of the algorithm introduced in [3, 4] onG ′ to

get the top k worst post-CPPR slack paths. Otherwise, we convert

the problem of �nding the top k worst slack paths into the typi-

cal k-shortest path problem. First, we de�ne path(s,d) as a path

starting from a startpoint s to an endpoint d , and de�ne w(e) and

w(u,v) as the weight of edge e and edge (u,v) inG, respectively. In

the late mode, the slack of a path(s,d) referring to the slack of the

endpoint d is equal to the ratd −atd , where ratd and atd represent

the required arrival time and arrival time of d , respectively. More-

over, in the path-based analysis, the arrival time of an endpoint

depends on the paths, the atd of a path(s,d) is

atd = Σe ∈path(s,d)w(e) + ats

We thus add two nodes, PseudoSource and PseudoDest , toG ′. After

that, we connect PseudoSource and PseudoDest to startpoints and

endpoints respectively and the weights of these edges are listed

below:

∀x ∈ startpoints,w(PseudoSource,x) = −atx

∀x ∈ endpoints,w(x , PseudoDest) = rat

, where startpoints and endpoints are de�ned in Section 3.2. Con-

sequently, the weight of a path(PseudoSource,PseudoDest), sum

of the weights of the edges that constitute it, is a slack since the

weight of edges in the original G ′ is the negative delay between

two nodes (Section 3.2). In the late mode, the worst slack path has

the minimum slack; thus, the problem has turned into the s-t k

shortest problem, and there are many state-of-the-art algorithms

to solve k shortest path problem [5, 6].

3.7 Multi-threading

The structure of our algorithm allows us to easily extend it to

multi-threading. For each thread, wemaintain a private local cache.

That is, each thread has its own sets of CacheNode . To search the

path, we equally divide the endpoints to chunks and distribute the

workload across threads. The �nal result is gathered through a par-

allel reduce operation.

4 EXPERIMENTAL RESULTS

In this section, we discuss the performance of our cache system

and graph contraction techniques. We compare our timer with the

winner of the TAU 2018 timing analysis contest. We will demon-

strate our performance in large command set and scalability with

increasing number of threads. We implemented our algorithm in

C++ language on an Intel Xeon 2.4 GHz Linux machine with 32 GB

memory which can run 16 threads concurrently.

4.1 Benchmarks

We use the TAU 2015 and 2018 contest benchmarks to evaluate

our algorithm [2, 7]. The golden reference was generated by indus-

try standard timers. In addition, we modi�ed the contest bench-

marks to incorporate more queries to demonstrate the scalabil-

ity of our algorithm. A group of queries is generated with 4 to 5

common through pins (the startpoints and endpoints are included

in the common through pins) and 2 to 3 di�erent through pins

randomly. Moreover, We de�ne the similarity of a benchmark as

the number of queries within a group. Following the rules of the

contest [2], each query includes a startpoint and an endpoint. We

query the most critical path for the setup check without CPPR.

4.2 Performance of our Algorithm

Table 1 shows the overall performance of our algorithm un-

der di�erent con�gurations. We compared the result with iTimer,

the winner of the TAU 2018 contest. With graph contraction

and cache, we outperformed iTimer across all benchmarks. In

many cases, our graph contraction algorithm is able to reduce

the graph size by more than 2× (e.g., 2.4× in leon2_iccad, 2.5× in

tau2015_tip_master). Enabling the cache allows us to reduce the

runtime by about 2-20% (19% in leon2_iccad, 18% in netcard_iccad).

The largest di�erence between our result and iTimer is observed

in circuit mgc_matrix_mult_iccad, where we accomplished the

queries in 45s but it took more than 10 minutes for iTimer to �nish.

Under this scenario, turning o� the cache still results in faster run-

time than iTimer (80%-85% faster). This purely demonstrated the

e�ectiveness of our path-based analysis algorithm without the aid

of cache.

2 4 6 8 10
100

120

140

160

180

similarity

R
u
n
ti
m
e(
se
c)

leon2_iccad

Fain-in Cache

iTimer

2 4 6 8 10

80

90

100

110

120

similarity

R
u
n
ti
m
e(
se
c)

netcard_iccad

Fain-in Cache

iTimer

Figure 6: Runtime comparison between our algorithm

and iTimer under di�erent similarity values (among 1M

queries).

We next explore the e�ectiveness of our cache framework in

increasing the similarity among subsequent queries. In this exper-

iment, we focus on the two largest benchmarks, leon2_iccad, and

netcard_iccad, and measure the runtime on di�erent similarity val-

ues from one to ten. As shown in Figure 6, our timer is consistently

faster than iTimer across all similarity values (123s versus 168s on

average). We also observed similar trend when increasing the num-

ber of queries, as shown in Figure 7.

5

Table 1: Performance of the Proposed Algorithm on the TAU 2015 and 2018 Benchmarks and its Comparison to the TAU 2018

Contest Winner iTimer [2]

circuit
before contraction after contraction

iTimer
with contraction without contraction

TRD
|V| |E| |V| |E| w/ CA w/o CA CRD w/ CA w/o CA CRD

leon2_iccad 8357749 6361534 3429588 2931946 187 123 151 19% 273 325 16% 62%

netcard_iccad 7802687 7068052 3902650 3165402 144 97 118 18% 237 266 11% 64%

leon3mp_iccad 6535987 5250406 2951790 2298616 99 75 87 14% 143 153 7% 51%

b19_iccad 1552641 1913614 1050296 863318 119 45 53 15% 76 81 6% 44%

vga_lcd_iccad 1324359 1166890 679900 486990 52 41 46 11% 74 79 6% 48%

mgc_matrix_mult_iccad 979341 1182124 696668 485456 >10 min 45 50 10% 67 73 8% 38%

mgc_edit_dist_iccad 889387 974964 630992 343972 251 52 61 15% 186 217 14% 76%

edit_dist_ispd 833219 974964 630992 343972 324 51 59 14% 178 220 19% 77%

vga_lcd 761461 673604 360908 312696 23 26 29 10% 36 39 8% 33%

des_per_ispd 743175 789476 476066 313410 30 30 33 9% 40 38 -5% 21%

cordic_ispd 255987 310320 182190 128130 146 47 51 8% 78 84 7% 44%

�t_ispd 232279 272408 153082 119326 25 29 29 0% 34 35 3% 17%

tau2015_tip_master 191049 140574 73598 66976 >10 min 85 90 6% 92 90 -2% 6%

tau2015_softusb_navre 39093 42440 21618 20822 28 29 30 3% 34 37 8% 22%

tau2015_cordic_core 19341 15932 9368 10164 80 45 46 2% 47 48 2% 6%
Note: Execution time is measured in seconds.

|V|: size of nodes; |E|: size of edges; w/ CA: with cache; w/o CA: without cache;

CRD: runtime reduction ratio from cache; TRD: total runtime reduction ratio;

0.2 0.4 0.6 0.8 1

·106

10

20

30

40

50

60

of query

R
u
n
ti
m
e(
se
c)

vga_lcd

similarity 3

similarity 5

similarity 10

0.2 0.4 0.6 0.8 1

·106

50

100

150

200

of query(0.1M)

R
u
n
ti
m
e(
se
c)

leon3mp_iccad

similarity 3

similarity 5

similarity 10

Figure 7: Runtime versus di�erent number of queries.

4.3 Multi-threading Scalability

In this experiment, we demonstrate the performance of our al-

gorithm under di�erent number of threads. We consider three dif-

ferent similarity values on 3, 5, and 10, and measure the runtime

using 1–10 threads. As shown in Figure 8, our algorithm scales

with increasing the number of threads. With �ve threads, we are

able to reduce the runtime by 3× in comparison to one thread.

5 CONCLUSION

In this paper, we have presented an e�cient cache framework

for the generation of timing critical paths. Our framework e�-

ciently supports (1) a general cache scheme to capture the simi-

larity among timing queries, (2) a graph contraction technique to

reduce the search space without loss of accuracy, and (3) multi-

threading. We have evaluated our algorithm on the TAU 2015 and

2018 contest benchmarks. On average, we can gain 10∼15% speed-

up from our cache scheme. Our graph contraction algorithm can

reduce the search space by more than 2×.

2 4 6 8 10

20

30

40

50

of threads

R
u
n
ti
m
e(
se
c)

vga_lcd

similarity 3

similarity 5

similarity 10

2 4 6 8 10
50

100

150

200

250

of threads

R
u
n
ti
m
e(
se
c)

leon3mp_iccad

similarity 3

similarity 5

similarity 10

Figure 8: Runtime scalability with 1M queries under di�er-

ent number of threads.

6 ACKNOWLEDGMENT

This work is partially supported by NSF Grant CCF-1718883 and

DARPA Grant FA-650-18-2-7843.

REFERENCES
[1] J. Bhasker and Rakesh Chadha. Static Timing Analysis for Nanometer Designs:

A Practical Approach. Springer Publishing Company, Incorporated, 1st edition,
2009.

[2] ACM TAU 2018 Contest: E�cient Generation of Timing Reports From an STA
Graph with Updated Arrival and Required Times, 2018.

[3] T. Huang and M. D. F. Wong. OpenTimer: A high-performance timing analysis
tool. In 2015 IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), pages 895–902, Nov 2015.

[4] Y. Yang, Y. Chang, and I. H. Jiang. iTimerC: Common path pessimism removal
using e�ective reduction methods. In 2014 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 600–605, Nov 2014.

[5] Jin Y. Yen. Finding the k shortest loopless paths in a network.Management Science,
17(11):712–716, 1971.

[6] David Eppstein. Finding the k shortest paths. In 35th Annual Symposium on
Foundations of Computer Science, Santa Fe, NewMexico, USA, 20-22 November 1994,
pages 154–165. IEEE Computer Society, 1994.

[7] ACM TAU 2015 Contest: Incremental Timing and Incremental CPPR, 2015.

6

