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ABSTRACT

As the design complexities continue to grow, the need to efficiently

analyze circuit timing with billions of transistors is quickly becom-

ing the major bottleneck to the overall chip design flow. In this

work we introduce a distributed timer that (1) has scalable perfor-

mance, (2) can be seamless integrable to existing EDA applications,

(3) enables transparent resource management, (4) has robust fault-

tolerant control. We evaluate the distributed timer using a set of

large industry benchmarks on a cluster with 24 nodes. The results

show that the proposed timer achieves full accuracy over all de-

signs with high performance and good scalability.
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1 PROPOSED DISTRIBUTED TIMER

Our distributed timer supports fundamental timing rou-

tines which are typically categorized to design transforms

and timing queries [8, 9]. Design transforms refer to opera-

tions that are applied to modify the design, including pin-

level modifiers (disconnect_pin, connect_pin), net-level

modifiers (remove_net, insert_net), and gate-level modi-

fiers (insert_gate, repower_gate, remove_gate). Timing

queries let users probe the design to report timing information

(report_slack, report_at, report_rat, report_worst_paths).

In order to efficiently collaborate with optimization programs, the

timer needs to deal with these operations in an interactive and

incremental (online) manner.

The distributed timer is built on top of the state-of-the-art

open-source software, OpenTimer [1, 9]. OpenTimer is a high-

performance timing analysis tool that aims for a single machine

node with multi-threading enabled through task parallelism [2]. It

provides practical supports such as industry data formats (.v, .spef,

.lib, etc.), both block-based and path-based timing, unwanted path

pessimism removal, and parallel incremental processing. The cen-

tral engine of OpenTimer is a pipeline scheduler, from which mul-

tiple and different timing operations can be efficiently executed.

On this basis, The distributed timer is designed to be at framework
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level, rather than forcing a rewrite of numbers of codes that have al-

ready been written for OpenTimer. Figure 1 presents the software

architecture of the distributed timer.

Figure 1: Software architecture of the proposed distributed

timer.

Our design philosophy is to provide users a centralized view-

point of the entire distributed system. The distributed timer con-

sists of a master daemon that manages agent daemons running on

each cluster node, and timer instances that are coordinated by these

agents [11] [3] [4]. A timer instance is a local timer that runs on

a single design partition and persists in memory through an event-

driven loop.Master is themajor gateway to external users, through

which operations are submitted and results are collected. For each

operation, master decides and delivers the tasks to agents, which

in turn request local timers to derive the results and return them

back to the master. Agents are responsible for all boundary tim-

ing data transmission among multiple timer instances. To avoid

single point of failure, we apply the state machine replication for

master [10].

2 EXPERIMENTAL RESULTS

Our distributed timer is written in C++14 language and compiled

with GCC 6.0 on a Linux machine. We have approximately written

thousands of lines of code (70% on the networking library and 30%

on distributed timing). The evaluation is taken on a small cluster

of 24 nodes with each node configured with a single Intel i5 3.2

GHz CPU and 1 GB memory. We select four different sets of tens

of design partitions from industry benchmarks that have been re-

leased to the public domain by ACM TAU 2014–2016 Timing Anal-

ysis Contests [5–7]. Each design partition has tens of thousands of

gates and is connected to each other through primary inputs and

primary outputs. The benchmark consists of a set of design modi-

fiers and timing queries as well as a golden reference generated on

flattened designs (no partitions).
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Table 1: Overall experimental results

Benchmark |V | |E | |B | |P | Accu CPU

Design_1 122.4K 124.8K 4.9K 12 100% 2.0s

Design_2 680.7K 688.0K 10.5K 14 100% 3.9s

ac97_ctrl 848.7K 1.1M 2.6K 20 100% 3.7m

des_perf 7.4M 9.2M 7.4K 20 100% 1.2h

Table 1 demonstrates the benchmark statistics and our overall

experimental results. The notation |V | (|E |) denotes the total num-

ber of nodes (edges) in a flattened view. The notation |B | denotes

the total number of boundary pins (primary inputs and primary

outputs) that are connected between agents and master. The no-

tation “Accu" denotes the accuracy of our distributed timing re-

port. Design_1 and Design_2 are small benchmarks while ac97_ctrl

and des_perf contain millions of pins in the circuit graphs (up to

7,431,740 pins for des_perf). Notice that we do not compare our

distributed timing with the single-machine timing since timing the

flattened design on a single machine fails to fit into the main mem-

ory [12]. Roughly speaking, Our distributed timer achieves full ac-

curacy on the timing report compared to the golden reference. This

has shown that the message passing between agents and master is

handled correctly.
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(a) Runtime of ac97_ctrl on tim-

ing queries in terms of different

circuit sizes.
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(b) Runtime of des_perf on tim-

ing queries in terms of different

circuit sizes.

Figure 2: Total runtime on timing queries
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(a) Total program runtime of

ac97_ctrl in terms of different

circuit sizes.
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(b) Total program runtime of

des_perf in terms of different cir-

cuit sizes.

Figure 3: Total program runtime

The overall performance of the distributed timer is plotted in

Figures 3a - 3b. Since ac97_ctrl and des_perf are relatively larger

than the others, we conduct the experiments on these two bench-

marks to demonstrate the performance. ac97_ctrl and des_per are

each with twenty partitions. We totally run about 14,000 opera-

tions for ac97_ctrl and 140,000 operations for des_per. These oper-

ations consist of various design modifiers and timing queries. Be-

cause of the laziness, the runtime on design modifier operations is

negligible compared to timing queries. We only draw the runtime

on timing queries and the total program runtime (timing queries,

design modifiers, communication).

Figure 2a and Figure 2b show the runtime on timing query oper-

ations of ac97_ctrl and des_perf in terms of different circuit sizes.

In general, the runtime increases as the circuit size grows. Some

sharp growth is observed at, for example, circuit sizes 383,984 and

1,151,952 in ac97_ctrl. The reason is that we place more partitions

than the available number of cores on a machine node due to the

hardware limitation. Otherwise, the runtime curve grows slowly as

the circuit sizes increase. We next discuss the total program run-

time of ac97_ctrl and des_perf. As shown in Figures 3a and 3b, the

total runtime curve follows a similar trend as that of timing queries.

This is expected since timing queries are more expensive than de-

sign modifiers in terms of computation and communication. On

average, the rate of runtime growth per unit increase of the circuit

size is about 0.03 milliseconds for ac97_ctrl and 0.15 milliseconds

for des_perf, respectively. Even though such evidence might be

hardware-dependent, it quantifies the scalability of our approach.

In summary, these experimental results have demonstrated the

correctness of our distributed timing analysis implementation. Our

distributed timer can scale very well (almost linearly) as the circuit

size grows and can analyze the timing on very large designs (up to

7 millions vertices and 9 millions edges).
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