
INVITED: Essential Building Blocks for Creating an Open-source
EDA Project

Tsung-Wei Huang
ECE Dept, UIUC, IL

twh760812@gmail.com

Chun-Xun Lin
ECE Dept, UIUC, IL

clin99@illinois.edu

Guannan Guo
ECE Dept, UIUC, IL

gguo4@illinois.edu

Martin D. F. Wong
ECE Dept, UIUC, IL

mdfwong@illinois.edu

ABSTRACT

Open source has started energizing both industrial and academic

research and development in electronic design automation (EDA)

systems. By moving to open source, we can speed up our effort

and work with others who are working toward the same goals,

while reducing costs and improving end products. However, build-

ing an open-source project is much more than placing the code-

base on the web. In this paper, we will talk about essential building

blocks to create an impactful open-source project, including source

repository, project landing page, documentation, and continuous

integration. We will also cover the use of web-based frameworks

to design a showcase project to bring community’s attention. We

will then share our experience in developing an open-source tim-

ing analyzer (OpenTimer) and a parallel task programming library

(Cpp-Taskflow), both of which are being used in many industrial

and academic EDA research projects.

KEYWORDS

Open source, electronic design automation

ACM Reference Format:

Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin D. F. Wong.

2019. INVITED: Essential Building Blocks for Creating an Open-source

EDA Project. In The 56th Annual Design Automation Conference 2019 (DAC

’19), June 2–6, 2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3316781.3323477

1 INTRODUCTION

The high cost and engineering difficulty of circuit design in ad-

vanced nodes have stifled the hardware design innovation and

raised unprecedented barriers to bringing design ideas to the mar-

ketplace. Commercial EDA tools are expensive and complex, as

they are developed by expert users and IC designers. In recent

years, we have seen the thriving software community embraced

a large amount of benefit from open-source operating systems, li-

braries, and compilers to improve productivity, speed up learning

curve, and minimize risk through open and collaborative effort.

While there is a cultural difference between IC designer and soft-

ware developers, the hardware community has begun to accept

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3323477

open source. Open source development has been shown conclu-

sively to bemore efficient and productive than closed source. Some

notable efforts include DARPA’s IDEA and POSH projects to create

an impactful open-source layout generator, WOSET at ICCAD to

bring community’s attention to open-source EDA ecosystems, and

so forth [1, 2].

!""#$%"&'()'*(&")&+,(&-)+#&

'#).(%"

/("&0(1(*)'(#,&")&

"#+,"&2"

34%#($,(&'#).(%"&

%#(5262*2"-

!"#$%&'("#)*+,%),&$%&

-+.,/$"'('0+"

1+"'%02,'0+")$"30%+"/$"'

4'$%('$)'5$)6$$#2(.7)8++9

Figure 1: Life cycle of an active open-source project.

The goal of this paper is to focus on the tutorial side of creating

an open-source EDA project. Specifically, we would like to show

several essential building blocks to create an open-source project

and how to promote it to the community. Figure 1 shows a typical

life cycle of an active open-source project. The cycle includes at-

tracting users to use your project, getting developers’ trust, and ad-

vertising the project to increase popularity.We will also talk about

several key components and secret sauce to support this cycle and

keep it active. While our experience came from developing open-

source EDA projects, the knowledge discussed in this paper are in

general applicable to other problem domains.

2 ESSENTIAL BUILDING BLOCKS

Creating an impactful open-source project is never as easy as just

uploading a tar ball of your source code to the web. There are

many components to consider. We highlight five essential build-

ing blocks as follows:

• Step 1: Understand your users.

• Step 2: Create the repository.

• Step 3: Prepare a proper README and documentation.

• Step 4: Set up a contribution environment.

• Step 5: Iterate the feedback loop.

There are many open-source platforms available on the web

(e.g., GitHub, GitLab, Bitbucket, SourceForge). Due to the space

https://doi.org/10.1145/3316781.3323477
https://doi.org/10.1145/3316781.3323477

limit, we shall focus only on GitHub which is the largest and the

most popular code host in the world.

2.1 Understand Your Users

An open-source project can be both valuable to end users and devel-

opers. We often hear that founders create companies based on prob-

lems they personally encountered, leveraging open source code to

solve development problems and generate end products. For exam-

ple, the development of open-source EDA projects is an interest-

ing trend. While it’s unlikely these tools will replace commercial

EDA products, they open up a new alternative for cost-conscious

users who want low-cost and fast prototyping or more hands-on

control over their software. End users often do not care about the

details but the usability. On the other hand, developers focus on

systems and implementation details to improve the performance.

In the past, we have developed OpenTimer, a high-performance

static timing analysis tool [3, 4]. OpenTimer is mostly used as a

product. People use it to acquire timing report of their design, and

therefore we have been dealing with many surrounding tasks to

improve the usability. Cpp-Taskflow is a parallel programming li-

brary we developed to help C++ developers quickly write parallel

task programs [5, 6]. This project targets at developers. They use

Cpp-Taskflow to write parallel applications, and hence we have fo-

cused on core data structure and coding convention to polish the

programmability. It is important to understand the targeted users

so we can align our projects with their needs. This is what makes

an open-source project useful and impactful.

2.2 Create the Repository

Repositories are products you build for both users and developers.

Before you hit the button to create a repository, do a bit research

on the web first to make sure someone has not done it or has done

it poorly. In open-source community, lots of problems have already

been solved thousands of times. The spirit of open source is to fa-

cilitate collaborative and reusable developments efforts rather than

duplicating existing tools that are well made. One of the most im-

portant things in creating a repository is deciding a suitable license.

An open-source license defines terms and conditions for how the

source code is used, modified, and/or shared. This allows end users

and companies to review and change the source code for their own

needs. There aremany types of open-source licenses, including the

popular GPL, Apache, Mozilla, Boost, and MIT licenses. Figure 2

compares permissions, conditions, and limitations between GPLv3,

Apache v2, and MIT licenses [7]. The license of an open-source

project can affect its popularity as it might restrict commercial use

and redistribution of derived work.

2.3 Prepare README and Documentation

If nobody can understand how to use your code, nobody is go-

ing to use it. A well-written README and documentation are the

key to raise people’s interest to use your project. The README is

the cover page that summarizes essential information of the whole

project. Keep in mind the majority of people glance and leave. Hav-

ing a pretty and informative READMEmakes it easier for people to

spend more time on your project before they leave. The more visi-

tors or clones you have, the more likely serious developers will use

Figure 2: Comparison of three popular open-source licenses.

your project. We suggest a good README to have the following

sections:

• The goal of the project and how it can help with users’ daily

jobs.

• Latest status of the project, for instance, maintenance status (ac-

tive or inactive) and the newest release version.

• How to get started with the project, including installation in-

structions, dependency and system requirements, and compila-

tion commands.

• A concise tutorial for how to use the project, whether it is used

as a standalone executable or a library to integrate to other ap-

plications.

• The authors and the contributors.

• License and the restrictions of using the project.

Modern browsers support Markdown to create a README.

Markdown is a lightweight markup language that can quickly

transform a plain text formatting syntax to HTML outputs. For

example, the GitHub README is based on Markdown. Most users

can quickly format their README and work on any devices. To

highlight the status and release tags of the project, we suggest

adding badges on top of the README (see Figure 3). Adding badges

gives a short and quick link to the most important components

you want people to know, for instance, download, documenta-

tion, license, and citation. A famous website to create badges is

Shields [8].

Figure 3: Badges of our OpenTimer project [3].

Unlike the README which provides summary information,

documentation gives complete explanation of functionalities and

the implementation details of your project. More complex projects

need clearer documentation. A documentation should address all

aspects of the project so that users can directly read the documen-

tation to solve most usage problems without reaching the authors.

Well-documented code allow users to easily modify the project on

their own to fit their needs and potentially submit a pull request

to become contributors. There are several tools to help develop-

ers write documentations. For instance, Github provides a wiki

space [9] associatedwith the project so the owners can quickly link

thewiki to themain project space. Doxygen [10] is another popular

tool for documenting code and application programming interface

(API). A powerful feature of Doxygen is it can extract annotations

from the source code and generate the documentation for a specific

code block. Figure 4 shows a snapshot of Cpp-Taskflow’s documen-

tation page generated by Doxygen.

Figure 4: Cpp-Taskflow’s documentation using Doxygen.

2.4 Set up a Contribution Environment

As the project expands and more people start to contribute, you

will have pull requests either from your own development branch

or others forked by users. It is important to set up a clean guide-

line and environment that automatically checks whether the new

changes break the existing codebase. Breaking means after merg-

ing with the new changes, the project fails to pass all unit tests

and regression tests. Given the large diversity of coding conven-

tions, we suggest creating a contribution guideline and the code of

conduct to let people follow the defined procedure to submit their

pull requests. Whenever a change is made to the project, the most

critical step is to make sure the change does not break the code. To

avoid this problem, you should use the continuous integration (CI)

tools to automate the checking process. A CI tool lets you specify

the build environment (e.g., Linux,Windows, OSX) and the tests to

be conducted on submission. For every submitted change, the tool

automatically initiates the environment, runs the tests, and noti-

fies the developers if any failures happen. Figure 5 is a CI report

snapshot of our OpenTimer project using Travis CI [11].

Figure 5: Continuous integration of our OpenTimer

project [3].

2.5 Iterate the Feedback Loop

Feedback is a valuable source to improve the project and a way

for users to contribute to and ask questions about the project.

Users can have distinctive viewpoints than the project maintain-

ers such as designing the interface, requesting new features, en-

countering build error, and discovering bugs. Most open-source

platforms provide a dedicated page of issue tracker to facilitate the

communication between users and project maintainers. Users can

submit an issue which can be a feature request, bug report, or any-

thing else related to the project. The project maintainer can answer

these questions through the page to help identity, assign, and keep

track of related tasks. Figure 6 shows the issue tracker page of our

project Cpp-Taskflow [5]. Maintaining a healthy feedback loop is

our method of engaging the audience by iterating on their sugges-

tions as fast as we can. We suggest the project maintainers to solve

an issue within one day.

Figure 6: The issue page of our Cpp-Taskflow project [5].

3 PROMOTE YOUR OPEN-SOURCE PROJECT

When you have created an open-source project, you need to ad-

vertise it to let other people know. Getting your project popular

among other developers provides an unlimited resources of pro-

gramming knowledge. It also helps attract developers and startup

founders to use your project.

3.1 Increase Your Project Stars

Unlike social medias Twitter or Facebook where you can get new

followers or thumb likes for a post, you obtain a star on your

GitHub project if it impresses someone. GitHub stars are not just

a number but a reliable insight that engenders trust and bring peo-

ple’s attention to decide whether to use your project or not. Some-

times this is a chicken and egg situation. No one will use your

project until it has stars, but you will not get stars until people

use it. A simple solution to break this cycle is:make a gorgeous and

informative repository to get a few seed stars from people browsing

GitHub first. After you leave the cold state, more people will come

later and see projects with starts which makes them easier to star as

well. At the same time, there are three important things to take

into consideration:

• Channels on are different ways to share your project with peo-

ple. You can post your project (release, updates, news) to many

websites such as Reddit, Hacker News, Product Hunt [12–14],

and your personal social network such as LinkedIn, Twitter, and

Facebook.

• Timing of your post is much more important than the number

of channels. Publishing news at the right time will attract a lot

of people to see them. Also, do not publish everything in one

shot but in portions to prepare community.

• GitHub trending page is one main source to gather visitors

– about 60% comes from there. This is where you need to keep

updating your project to increase activities so you can increase

the rank of your project at the trending page.

Figure 7: Network traffic of our Cpp-Taskflow project [5].

Figure 7 shows the traffic insight of our Cpp-Taskflow

project [5]. Most referring sites are from Google, GitHub trend-

ing page, and Reddit. Of course, these are not universal rules to

promote your project. The rule of thumb is to always review your

project and make sure you did everything properly especially for

the cover page README.

3.2 Add a Showcase Presentation Site

It is oftenmore effective to attract people to your project by putting

together all materials to a showcase presentation. There are many

amazing resources available from the front-end community. By

front-end, we mean those tools and languages to design a web. Sev-

eral examples such as reveal.js, hugo, and Jekyll can enable users to

quickly create informative and interactive slide decks using HTML,

Javscript, and Markdown [15–17]. These frameworks allow users

with little knowledge about web languages to transform plain text

into static websites and blogs that work perfectly on desktops and

mobile devices. Having aweb-based presentationmakes it easier to

showcase your project and convey ideas quickly through the inter-

net. Once you have created your website, you can choose to deploy

it to many available hosts such as GitHub pages, Google sites, and

Amazon Cloud, or your personal domains. Figure 8 demonstrates

the effect of a web-based showcase presentation on the view his-

tory of our OpenTimer and Cpp-Taskflow projects.

4 ACKNOWLEDGMENT

This work is supported by NSF Grant CCF-1718883 and DARPA

Grant FA-650-18-2-7843. The authors would like to thank all users

of OpenTimer, Cpp-Taskflow, and DtCraft in helping us improve

our projects.

Figure 8: Effect of web-based showcase presentation [3, 5].

5 CONCLUSION

The open-source software movement is bearing its fruits in the

EDA world, where several individuals, organization, government

agencies, and companies are pushing tools under free open-source

licenses. In this paper, we have presented several essential building

blocks to create an open-source project, including source repos-

itory, project landing page, documentation, and continuous inte-

gration. The knowledge we have presented is not only for EDA

projects but is also generally useful for other software technology.

We believe open source are catching spark in the EDA world. Be-

ing open will also engage more talented people to contribute to

this community.

REFERENCES
[1] DARPA: Intelligent Design of Electronic Assets (IDEA).

https://www.darpa.mil/program/intelligent-design-of-electronic-assets.
[2] Workshop on open-source eda technology. http://scale.engin.brown.edu/woset/.
[3] OpenTimer. https://github.com/OpenTimer/OpenTimer.
[4] Tsung-Wei Huang and Martin D. F. Wong. OpenTimer: A high-performance

timing analysis tool. In IEEE/ACM ICCAD, pages 895–902, 2015.
[5] Cpp-Taskflow. https://github.com/cpp-taskflow/cpp-taskflow.
[6] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin D. F. Wong. Cpp-

Taskflow: Fast Task-basedParallel Programming usingModern C++. IEEE IPDPS,
2019.

[7] Open-source license. https://choosealicense.com/licenses/.
[8] Shields. https://shields.io/.
[9] Github wiki.

https://help.github.com/en/articles/about-wikis.
[10] Doxygen. http://www.doxygen.nl/.
[11] Travis CI. https://travis-ci.com/.
[12] Reddit. https://www.reddit.com/.
[13] Hacker news. https://news.ycombinator.com/news.
[14] Product hunt. https://www.producthunt.com/.
[15] Reveal.js. https://revealjs.com/.
[16] Hugo: static website generator. https://github.com/gohugoio/hugo.
[17] Jekyll: static websites and blogs generator. https://jekyllrb.com/.

https://www.darpa.mil/program/intelligent-design-of-electronic-assets
http://scale.engin.brown.edu/woset/
https://github.com/OpenTimer/OpenTimer
https://github.com/cpp-taskflow/cpp-taskflow
https://choosealicense.com/licenses/
https://shields.io/
https://help.github.com/en/articles/about-wikis
http://www.doxygen.nl/
https://travis-ci.com/
https://www.reddit.com/
https://news.ycombinator.com/news
https://www.producthunt.com/
https://revealjs.com/
https://github.com/gohugoio/hugo
https://jekyllrb.com/

