
Asynchronous Many-task System with Intelligent Scheduling

by

Cheng-Hsiang Chiu

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2025

Date of final oral examination: 08/21/2025

The dissertation is approved by the following members of the Final Oral Committee:
Tsung-Wei Huang, Professor, Electrical and Computer Engineering, Chair
Umit Yusuf Ogras, Professor, Electrical and Computer Engineering
Joshua San Miguel, Professor, Electrical and Computer Engineering
Yi Zhou, Professor, Computer Science Engineering, Texas A&M University

© Copyright by Cheng-Hsiang Chiu 2025
All Rights Reserved

i

I dedicate this dissertation to all those who have supported me throughout my
Ph.D. journey, especially my family and friends who provided both laughter and

encouragement when I needed it most.

ii

acknowledgments

Completing this Ph.D. has been a journey of growth, challenges, and deep
gratitude. I would like to express my heartfelt appreciation to all those
who supported me throughout this endeavor.

First and foremost, I would like to express my deepest gratitude to
my advisor, Professor Tsung-Wei Huang. His mentorship, encourage-
ment, and insightful guidance have been instrumental to my growth both
academically and personally. I am truly thankful for his patience, high
standards, and belief in my potential.

I am also sincerely thankful to my dissertation committee members,
Professor Umit Yusuf Ogras, Professor Joshua San Miguel, and Professor
Yi Zhou, for their valuable time, constructive feedback, and thoughtful
questions that significantly helped improve the quality of this work.

In particular, I would like to thank Professor Cunxi Yu, Professor Yibo
Lin, and Professor Priyank Kalla for their thoughtful feedback throughout
the journey. Their expertise and support have played a significant role in
the development of my work.

I am grateful to Dr. Zhuo Li and Dr. Michael Voss for providing me
with the valuable opportunities to intern at Cadence and Intel during
the summers. These experiences not only broadened my perspective on
real-world applications but also deepened my understanding of industry
challenges. Their mentorship and support from the whole group during
these internships were truly invaluable.

I would like to thank my colleagues, Dr. Dian-Lun Lin, Che Chang,
Wan-Lun Lee, Boyang Zhang, Chih-Chun Chang, Yi-Hua Chung, Jie Tong,
Aditya Das Sarma, Shui Jiang, Chedi Morchdi, Jiaqi Yin, Yasin Zamani,
Zizheng Guo, Dr. Guannan Guo, and Zhicheng Xiong, for the insightful
discussions, shared frustrations, and the invaluable trust and friendship
we built along the way. Your support made the difficult moments easier

iii

and the good moments even better.
To my friends at the University of Wisconsin–Madison and the Uni-

versity of Utah, thank you for reminding me to laugh. From playing
badminton to relaxing outdoors and sharing great food, your friendship
has been a constant source of strength, joy, and refreshment throughout
this experience.

I am also indebted to the administrative and technical staff at the Univer-
sity of Wisconsin-Madison and University of Utah. Your instant assistance
has been invaluable throughout my doctoral studies.

Most importantly, I thank my family for their unconditional love, sac-
rifices, and encouragement. To my parents, thank you for your steadfast
supports and constant faith in me. To my younger brother, thank you for
being a lifelong source of strength and support. This achievement is as
much yours as it is mine.

Finally, I am grateful to everyone, named or unnamed, who contributed
to this journey in ways big or small. Thank you.

iv

contents

Contents iv

List of Tables vii

List of Figuresviii

Abstract xvi

Previous Work xxi

1 An Efficient Task-Parallel Pipeline Programming Framework 1
1.1 Abstract 1
1.2 Introduction 1
1.3 Background 4
1.4 Pipeflow 7
1.5 Experimental Results 17
1.6 Conclusion 31

2 A Task-parallel Pipeline Programming Model with Token Depen-
dency 32
2.1 Abstract 32
2.2 Introduction 32
2.3 Background 35
2.4 Our Framework 38
2.5 Experimental Results 55
2.6 Conclusion 58

3 Programming Dynamic Task Parallelism for Heterogeneous EDA
Algorithms 59
3.1 Abstract 59

v

3.2 Introduction 59
3.3 Background 62
3.4 AsyncTask 69
3.5 Experimental Results 78
3.6 Conclusion 82

4 A Resource-efficient Task Scheduling System using Reinforce-
ment Learning 83
4.1 Abstract 83
4.2 Introduction 83
4.3 Background 85
4.4 Reinforcement Learning-Based Scheduling 87
4.5 Experimental Results 93
4.6 Conclusion100

5 Reinforcement Learning-generated Topological Order for Dy-
namic Task Graph Scheduling101
5.1 Abstract101
5.2 Introduction101
5.3 Background104
5.4 Our Method107
5.5 Experimental Results114
5.6 Conclusion120

6 Optimizing CUDA Graph Scheduling with Reinforcement Learn-
ing: A Case Study in SSTA Propagation121
6.1 Abstract121
6.2 Introduction122
6.3 Scheduling SSTA Propagation Graph on GPU125
6.4 Our Framework128
6.5 Experimental Results137

vi

6.6 Conclusion145

7 Conclusion147

Bibliography150

vii

list of tables

3.1 Task (∥V∥) and edge (∥E∥) counts of three circuits. 79

4.1 Runtime comparison between the random action (RA) sched-
uler and our reinforcement learning (RL) scheduler. ∥V∥ and
∥E∥ respectively denote the number of nodes and edges of a
graph. Impr. denotes the performance of RL over RA. 96

5.1 Task (∥V∥) and edge (∥E∥) counts of 12 task graphs. 116

6.1 Runtime comparison and circuit statistics of the benchmarks.
The batch size in this table is 64. TB and TO denote the runtime
of the baseline and ours, respectively. ∆t denotes the runtime
difference between the baseline and ours. Impr. denotes the
runtime improvement of our CUDA graph over the baseline.
∥E∥ ′ denotes the number of edges in the new CUDA graph
generated by our framework. 139

viii

list of figures

1.1 An illustration of data abstraction in a pipeline framework.
Gray bars are buffers used for data synchronizations. 2

1.2 Dependency diagram of a 3-stage (serial-serial-parallel) pipeline.
Each node represents a task that applies a stage function to a
data token. Each edge represents a dependency between two
tasks. The dashed rectangle denotes one parallel line. 5

1.3 Parallel timing propagations [75]. Linearly dependent timing
data (e.g., slew) is updated across graph nodes in a task-parallel
pipeline fashion. 6

1.4 The scheduling diagram of the task-parallel pipeline in Listing
1.1. Each parallel line runs one scheduling token. Multiple
parallel lines overlap tokens in a circular fashion. The text
“token (4t+1) on pipe 1, line 1” means the token with ID 4t+1
runs on the pipe 1 and the parallel line 1. 11

1.5 Maximum RSS comparison between Pipeflow and oneTBB with
different threads and two scheduling tokens (210 and 215) for
the micro-benchmark. The number of threads is the same as
the number of pipes in the pipeline. 19

1.6 Runtime comparison between Pipeflow and oneTBB with dif-
ferent scheduling tokens and threads for the micro-benchmark.
The number of threads is the same as the number of pipes in
the pipeline. 20

1.7 Throughput of corunning micro-benchmark programs with 16
and 80 pipes and 215 scheduling tokens. 21

ix

1.8 Impacts of selecting the number of threads on the runtime
performance for the micro-benchmark. The number of pipes is
not identical to the number of threads. The numbers of pipes
are 16 and 80. The pipeline processes 210 and 215 scheduling
tokens. 23

1.9 Maximum RSS comparison between Pipeflow and oneTBB at
different graph sizes (∥V∥ + ∥E∥) and thread counts for the
timing analysis workload. The number of threads is identical
to the number of pipes in the pipeline. 25

1.10 Runtime comparison between Pipeflow and oneTBB at differ-
ent graph sizes (∥V∥+ ∥E∥) and thread counts for the timing
analysis workload. The number of threads is identical to the
number of pipes in the pipeline. 26

1.11 Throughput of corunning STA programs with 16 and 80 pipes
and 1.5 million graph size(∥V∥+ ∥E∥). 27

1.12 Impacts of selecting the number of threads on the runtime
performance for the timing analysis workload. The number of
pipes is not identical to the number of threads. The numbers
of pipes are 16 and 80. The graph sizes (∥V∥ + ∥E∥) are 1.5
million and 5 million. 29

2.1 A sample dependency diagram in a video encoding application
of an x.264 standard. Edges denote the dependencies between
two frames. I denotes frames, P denotes predicted, B denotes
bi-directional frames. 33

x

2.2 (a) The diagram of all FTDs and the corresponding execution
order of tokens. (b) The diagram of both FTDs and BTDs and its
corresponding execution order of tokens. Red edges pointing
from token 6 and 7 to 12 are FTDs, and those from 16 to 7 and
12 are BTDs. Black edges are implicit dependencies and red
ones are explicit dependencies. Execution order denotes the
order in which the tokens should be executed. 36

2.3 PARSEC’s implementation of Figure 2.2(b) to reorder tokens
using the condition variable primitive. 37

2.4 Pipeflow’s circular task graph of an application in which every
token is processed by a chain of 3 pipes (in the red dashed
rectangle, referred to a parallel line) and up to 3 tokens can
be processed concurrently. Edges denote dependencies. . . . 39

2.5 Overview of token dependency-aware Pipeflow running an
application with both FTDs and BTDs, as illustrated in Figure
2.2(b). After determining the execution order of tokens, our
framework schedules token 0, 3, 6, 10, 14, and 7 on parallel line
0 and so on. 39

2.6 Visualization of how DT, TD, and RT determine the correct ex-
ecution order of tokens with the token dependency in Figure
2.2(b). EST denotes the execution order of tokens and is used
for illustration. We simplify pf.defer(16) in line 15 in Listing
2.1 to 7.defer(16) for explanation purposes. The encircled
numbers denote the operation sequence in each sub-figure. . . 45

2.7 Runtime comparison between our framework and PARSEC at
different frame and thread sizes. 57

xi

3.1 An illustration of the execution diagram of a task graph. White
blocks denote the task creation and gray rectangles denote the
task execution. Edges refer to the dependencies. (a) A task
graph. (b) The execution diagram of STGP. (c) The execution
diagram of DTGP. 60

3.2 A flowchart of our task scheduling algorithm. 71
3.3 An illustration of shared ownership of task A and B in Figure

3.1(a). (a) A finishes and returns to operating system (OS). An
executor relates task B to an empty task. (b) Main thread owns
A. An executor successfully relates B and A. 72

3.4 An illustration of using the atomic variable to change task A’s
state. A, B, and C refer to the tasks in Figure 3.1(a). A is trying
to change the state to FINISHED. B and C are trying to add them-
selves to A’s successor list. (a) A is at the FINISHED state. (b) A
is at the UNFINISHED state. (c) A is at the LOCKED state. 73

3.5 An illustration of using atomic counters to represent the num-
ber of dependent tasks. A and B refer to the tasks in Figure
3.1(a). (a) B is performing the CAS operation on A’s state. (b)
B is adding itself in A’s successor list. (c) A finishes its execution
and decreases B’s atomic counter by one. 74

3.6 An illustration of resolving dependencies after a task finishes.
A, B, C, and D refer to the tasks in Figure 3.1(a). (a) A finishes
the execution and decreases the atomic counter (AC) of B and
C by one. (b) B and C finish, and both decrease D’s AC by one. 75

3.7 Memory and runtime comparison of the STA workload on
three circuits (wb_dma, tv80, ac97_ctrl) between AsyncTask
and OpenMP. 81

xii

4.1 Illustration of our task scheduling system. Gray rectangles
denote the workloads of workers. (a) A task graph. (b) The
task scheduler. (b) The scheduler asks Agent for task A’s action.
Agent suggests W1. (d) W1 has A in its queue. (e) The sched-
uler asks Agent for task B’s action. Agent suggests W1. (f) W1
has B in its queue. (g) The scheduler asks Agent for task C’s
action. Agent suggests W0. (h) W0 has C in its queue. A’s data
is transferred to W0. 86

4.2 Illustration of the state representations when scheduling task A
and B in the task graph of Figure 4.1(a). The first column refers
to the State for task A and the second for B. Gray rectangles
denote the workloads. Every state includes 1) the workload of
each worker, 2) the parent task’s workload that is finished at
each worker, and 3) the workload of a task. The first m rows
of StateA and StateB correspond to Figure 4.1(c) and 4.1(e),
respectively. As task A is executed by W1, W∗

1 for StateB is the
workload of task A. The workload of other W∗ is empty. 90

4.3 Illustration of the Q-network architecture. The network takes
in the state vector as input (input dimension=81), then propa-
gates it forward through 2 hidden layers and finally outputs
the Q-values corresponding to each of the 40 possible actions
(output dimension=40). The task at hand is then scheduled to
the worker corresponding to the highest Q-value. 95

4.4 Left: Training loss v.s. iterations in the training. Right: Ac-
cumulated reward v.s. epochs in the training. Every epoch
consists of 1K iterations, and the accumulated reward for each
epoch is calculated by R =

∑1000
t=1 γ

trt. 96
4.5 Histogram of assigned tasks per worker for the aes_core graph. 98
4.6 Histogram of assigned tasks per worker for the mixed graph. . 99

xiii

5.1 Scheduling a dynamic task graph with four tasks and four
edges. White rectangles denote the task creations and gray
the task executions. Tasks are created in the topological order
A-B-C-D. Task creations overlap with task executions. 102

5.2 Runtime of DTGS system finishing one EDA application with
three different topological orders. 103

5.3 System overview. An example circuit is described as a task
graph of four tasks and four edges. The trained RL model reads
in the task graph and generates a topological order A,B,C,D.
The DTGS runtime creates the four tasks in the order and exe-
cutes them under the dependency constraint. 104

5.4 Overview of the training process. The input is a task graph of
four tasks and four edges. The output is a topological order
of the four tasks. The training process consists of seven steps,
which iterates four times as there are four tasks in the input
task graph. The whole training would iterate the task graph
for several episodes. 107

5.5 Illustration of the policy network architecture. There is one
input layer of dimension M ∗ 128, two hidden layers of dimen-
sion 128 ∗ 128, and one output layer of dimension 128 ∗N. The
activation function is ReLU [7]. 110

5.6 Performance comparison between the baseline and our RL ap-
proach on running 12 task graphs. (a) Runtime comparison.
(b) Speedup of our approach over the baseline. The red hori-
zontal line denotes the speedup of one. 119

6.1 The original SSTA CUDA graphs leave at least 8% to 20% per-
formance on the table, with the baseline derived from the min-
imum of 10,000 sampled graphs. 123

xiv

6.2 (a) An SSTA propagation graph. Gate timing (blue) and arrival
timing (red) are modeled as random variables in arrays and
propagated through the circuit graph using statistical max and
min operators. (b) The corresponding CUDA graph of (a).
Circles are kernel operations and gray rectangles are memory
copy operations. 127

6.3 Illustration of the node-level adjustment formulation. The red
edge moves node 2 from level 1 to level 3, resulting in a new
graph that potentially alleviates the contention among nodes 3,
4, and 5. 128

6.4 Overview of the framework. The framework consists of two
modules: The first module is GNN and is used to encode the
node attributes and graph topology and generate a latent rep-
resentation node embedding. The second module is an RL model
that uses the node embedding as a state and generates a new
CUDA graph for the CUDA Graph runtime to run. 129

6.5 Example of the node feature for all nodes on the left graph. . . 131
6.6 Illustration of using bucket list to convert an action to an edge.

(a) A graph with 5 edges and 6 nodes within 3 layers. (b) A
bucket list for node 2. (c) A new graph after moving node 2
from level 1 to level 3. The red dash edge is the auxiliary edge. 136

6.7 Training loss and rewards achieved by the RL policy. 139
6.8 Plot of runtime improvement of our framework over the base-

line on seven benchmarks with five different batch sizes. . . . 141
6.9 Partial c17 CUDA graph visualization: (a) application’s origi-

nal, (b) our optimized CUDA graph. Blue/red dashed cycles
indicate changes due to blue/red edge additions. White circles
denote kernels and gray denote memory copies. 141

6.10 QoR between the application-given and our optimized CUDA
graphs. A value closer to 1 indicates better QoR. 143

xv

6.11 Histogram of the random edge insertion approach on c17 and
usb_phy. 2000 different CUDA graphs were generated by ran-
domly appending the same amounts of auxiliary edges as our
solution to the application’s original CUDA graph. Only a small
portion (∼ 5%) of the 2000 CUDA graphs perform better run-
time performance as our optimized CUDA graph (indicated
by the vertical red line). 145

xvi

abstract

This thesis addresses critical challenges in the discipline of parallel com-
puting and task scheduling, focusing on task-parallel programming and
task graph scheduling. There are six chapters in the thesis. The first
three chapters are task-parallel programming models, Pipeflow, token
dependency-aware Pipeflow, and AsyncTask. The last three chapters are
reinforcement learning-based task graph scheduling, resource-efficient
task scheduling, topological ordering for task graphs, and CUDA Graph
scheduling optimization.

(1) An Efficient Task-parallel Pipeline Programming Framework. The
pipeline is a fundamental pattern to parallelize a series of stage tasks
over a sequence of data in loops. Mainstream libraries rely on data
abstractions to schedule pipeline tasks, which complicates the schedul-
ing design and is not efficient for applications with task parallelism
only. To address this challenge, Pipeflow decouples task scheduling
and data abstractions and introduces a lightweight scheduling pol-
icy to efficiently exploit pipeline parallelism in an application. We
have demonstrated that Piepflow outperforms existing libraries up to
110.33% faster. This work significantly reduces the runtime, provid-
ing a crucial solution for pipeline applications that only exploit task
parallelism.
In this work, Cheng-Hsiang Chiu was the primary contributor, re-
sponsible for the majority of the research and development efforts.
Zhicheng Xiong and Zizheng Guo provided design ideas. Yibo Lin
and Tsung-Wei Huang supervised the research, providing guidance
and oversight throughout the work. All authors participated in dis-
cussing the results and contributed to the preparation and review of
this chapter.

xvii

(2) A Task-parallel Pipeline Programming Model with Token Depen-
dency. Task-parallel pipeline framework explores pipeline parallelism
in applications and is critical in many parallel and heterogeneous
areas. However, existing solutions cannot deal with applications in
which data dependencies exhibit in both forward and backward di-
rections To address this need, we have extended Pipeflow to support
application’s bi-directional token dependencies through an expressive
programming model and lightweight atomic counters in resolving
token dependencies. We have demonstrated our token dependency-
aware Pipeflow is 8.6% faster than existing implementation in video
encoding applications. This work showcases Pipeflow’s capability to
explore pipeline parallelism across various pipeline applications.
In this work, Cheng-Hsiang Chiu was the primary contributor, re-
sponsible for the majority of the research and development efforts.
Tsung-Wei Huang supervised the research, providing guidance and
oversight throughout the work. Wan-Luan Lee, Boyang Zhang, Yi-
Hua Chung, and Che Chang provided design ideas. All authors par-
ticipated in discussing the results and contributed to the preparation
and review of this chapter.

(3) Programming Dynamic Task Parallelism for Heterogeneous EDA
Algorithms. Parallelizing EDA applications that are extremely sparse,
irregular, and control-flow intensive can benefit from the ability to
express dynamic task parallelism across arbitrary decision-making
points at runtime. However, existing libraries describe dynamic task
dependencies in an indirect manner and rely on lock-based data struc-
ture to schedule tasks. To address this challenge, we have introduced
AsyncTask to support the dynamic building of a computational task
graph. We have demonstrated AsyncTask is up to 3.19× faster than
existing libraries. This work presents a direct description of tasks,
improves code readability, and develops an efficient scheduling al-

xviii

gorithm, which is extremely crucial for complex and irregular EDA
applications.
In this work, Cheng-Hsiang Chiu was the primary contributor, re-
sponsible for the majority of the research and development efforts.
Dian-Lun Lin provided design ideas. Tsung-Wei Huang supervised
the research, providing guidance and oversight throughout the work.
All authors participated in discussing the results and contributed to
the preparation and review of this chapter.

(4) A Resource-efficient Task Scheduling System using Reinforcement
Learning. Efficiently scheduling millions of functional tasks of EDA
applications in a computing environment that comprises manycore
CPUs and GPUs is critically important. However, existing schedul-
ing methods are typically hardcoded within an application that are
not adaptive to the change of computing environment. To address
the issue, we have introduced a novel reinforcement learning-based
scheduling algorithm that can learn to adapt the performance opti-
mization to a given runtime situation. We have demonstrated that
our scheduling algorithm can achieve the same performance as the
existing methods while using only 20% of CPU resources. This work
highlights the capability of our algorithm to maintain the same run-
time performance across concurrent workloads without experiencing
performance degradation, which is crucial for EDA applications.
In this work, Cheng-Hsiang Chiu and Chedi Morchdi were both the
primary contributors, responsible for the majority of the research and
development efforts. Yi Zhou and Tsung-Wei Huang supervised the
research, providing guidance and oversight throughout the work. All
authors participated in discussing the results and contributed to the
preparation and review of this chapter.

(5) Reinforcement Learning-generated Topological Order for Dynamic

xix

Task Graph Scheduling. Dynamic task graph scheduling (DTGS)
allows applications to define the task graph structure on-the-fly, en-
abling concurrent task creations and task executions. To schedule
tasks, DTGS relies on applications to define a topological order for
the task graph. However, existing algorithms that generates this or-
der primarily rely on heuristics like level-by-level sorting, which lack
adaptability to dynamic computing environments. To address this
need, we have introduced a novel method that leverages reinforcement
learning to generate topological orders for DTGS systems. We have
demonstrated that our method achieves a speedup of up to 1.52× over
the existing solutions. This work is essential for task-parallel runtimes
that employ diverse work stealing policies to support a broader range
of applications.
In this work, Cheng-Hsiang Chiu was the primary contributor, respon-
sible for the majority of the research and development efforts. Chedi
Morchdi, Boyang Zhang and Che Chang provided design ideas. Yi
Zhou and Tsung-Wei Huang supervised the research, providing guid-
ance and oversight throughout the work. All authors participated in
discussing the results and contributed to the preparation and review
of this chapter.

(6) Optimizing CUDA Graph Scheduling with Reinforcement Learning
: A Case Study in SSTA Propagation.

CUDA Graph has shown potential in recent GPU-accelerated statisti-
cal static timing analysis (SSTA) propagation applications. However,
application-given CUDA graphs are often suboptimal, as they focus
on capturing circuit structures while overlooking GPU resource avail-
ability and scheduling constraints. To address this challenge, we have
introduced a reinforcement learning-based framework that optimizes
CUDA graphs by learning to restructure SSTA graphs through inter-

xx

actions with the CUDA Graph runtime. We have demonstrated that
our optimized CUDA graph can achieve up to a 12% runtime improve-
ment over the application-given CUDA graph. This work is crucially
important for CUDA Graph applications as our framework requires
no changes to application-level algorithms, but instead restructures
the given CUDA graph to guide the CUDA runtime toward better
scheduling performance.
In this work, Cheng-Hsiang Chiu was the primary contributor, re-
sponsible for the majority of the research and development efforts.
Chih-Chun Chang designed the problem formulation. Chedi Morchdi
provided design ideas. Cunxi Yu, Yi Zhou and Tsung-Wei Huang
supervised the research, providing guidance and oversight through-
out the work. All authors participated in discussing the results and
contributed to the preparation and review of this chapter.

xxi

previous work

This thesis builds upon a substantial foundation of prior research in par-
allel computing, task-parallel programming, task graph scheduling, and
reinforcement learning. Below, we summarize previous work relevant to
each chapter of the thesis.

(1) An Efficient Task-parallel Pipeline Programming Framework. Pipeline
programming models have received intensive research interest. Most
of them are data-centric, using static template instantiation or dynamic
runtime polymorphism to model data processing in a pipeline. To
name a few popular examples: oneTBB [3] and TPL [108] require ex-
plicit definitions of input and output types for each stage; GrPPI [139]
provides a composable abstraction for data- and stream-parallel pat-
terns with a pluggable back-end to support task scheduling; Fast-
Flow [10] models parallel dataflow using pre-defined sequential and
parallel building blocks; TTG [18] focuses on dataflow programming
using various template optimization techniques; SPar [40, 41, 56, 124]
analyzes annotated attributes extracted from the data and stream
parallelism domain, and automatically generates parallel patterns de-
fined in FastFlow; Proteas [126] introduces a programming model for
directive-based parallelization of linear pipeline; [148, 149] propose
a self-adaptive mechanism to decide the degree of parallelism and
generate the pattern compositions in FastFlow; OpenMP [5] uses task
construct and depend clause to explore pipeline parallelism. Although
these programming models are used in many applications, such as
oneTBB in PARSEC [12], they constrain users to design pipeline algo-
rithms using their data models, making it difficult to use, especially
for applications that only need pipeline scheduling atop custom data
structures. Pipeflow simply requires users to specify the pipeline
structures (e.g., the number of parallel lines) and pipe callables, and

xxii

provides a scalable pipeline API for users to flexibly define the pipeline
scheduling frameworks with dynamic structures based on their spe-
cific needs.
Existing pipeline scheduling algorithms typically co-design task schedul-
ing and buffer structures to strive for the best performance. For in-
stance, oneTBB [3] defines a per-stage buffer counter to synchronize
data tokens among stages and parallel lines, coupled with a small ob-
ject allocator to minimize the data allocation overhead; GRAMPS [140]
designs a buffer manager with per-thread fix-sized memory pools to
dynamically allocate new data and release used ones; FastFlow [10]
designs a lock-free queue with a mechanism to transfer data owner-
ship between senders and receivers, but this method can incur im-
balanced load and requires non-trivial back-pressure management;
HPX [93] counts on a channel data structure and standard future
objects to pass data around tasks, but the creation of share states be-
comes expensive when the pipeline is large; Cilk-P [104] employs
per-stage queues coupled with two counter types to track static and
dynamic dependencies of each node, but it targets on-the-fly pipeline
parallelism, which is orthogonal to our focus; FDP [142] proposes a
learning-based mechanism to adapt scheduling to an environment,
but it requires expensive runtime profiling that may not work well
for highly irregular applications like CAD. Pipeflow leverages C++
simple atomic operations and assigns every pipe an atomic variable
denoting the dependency. Since there is no data synchronization
involved, the scheduling algorithm of Pipeflow is lightweight and
efficient. In terms of load balancing, most pipeline schedulers lever-
age work stealing, which has been reported with better performance
than static policies [16, 57, 104, 109, 134, 140, 141]. However, for some
special cases, such as fine-grained load-imbalanced pipelines, static
policies perform comparably. For example, Pipelight [129, 130] imple-

xxiii

ments a load-balancing technique based on two static scheduling algo-
rithms, DSWP [135, 136, 137] and LBPP [94]; Pipelite [128, 130] and
URTS [127, 130] introduce dynamic schedulers using ticket-based syn-
chronization and directive-based model language for linear pipelines,
respectively. Although, in some special cases, work stealing [111]
may not give the best runtime performance, Pipeflow and the most
frameworks still adopt this algorithm as it has the best performance
in most applications. While co-designing task scheduling and buffer
structures has certain advantages for data-centric pipeline (e.g., data
locality), the cost of managing data can be significant yet unneces-
sary, especially for applications that only exploit task parallelism in
pipeline.

(2) A Task-parallel Pipeline Programming Model with Token Depen-
dency. The state-of-the-art pipeline programming library, Pipeflow [31],
introduces a programming model and an efficient task scheduling
algorithm for users to explore pipeline parallelisms in applications.
However, Pipeflow only deals with data dependency in forward di-
rection, which limits Pipeflow’s generalizability to pipeline applica-
tions, such as video encoding [12]. To handle the data dependency
in both forward and backward directions, the most common way for
existing libraries [12, 13, 31] is to reorder the execution order of data
using low-level synchronization primitive, condition variable [1], and
then feed the reordered data to the pipeline framework as PRASEC
does [12, 13]. However, we notice three limitations of this approach:
(1) Manipulating condition variable requires a deep understanding of
this low-level synchronization primitive from users and is error-prone
when dependency is intricate. (2) The approach is not an end-to-
end implementation as users need to additionally reorder the data
outside the original pipeline application. (3) The implementation
could encounter deadlock when the data dependency is complex and

xxiv

insufficient threads are spawned.

(3) Programming Dynamic Task Parallelism for Heterogeneous EDA Al-
gorithms. Mainstream dynamic task graph programming libraries in-
clude OpenMP [5], PaRSEC [17], and OpenCilk [16, 141]. OpenMP [5]
is a popular library that simplifies the development of parallel ap-
plications by adding parallelism to existing serial code through the
use of compiler directives, pragmas, and runtime library routines. To
implement a simple dynamic task graph application, OpenMP uses
#pragma omp task construct to define a task and depend clause to
specify that task’s dependencies. Since OpenMP relies on a task’s
input and output data to describe a task’s dependencies, applications
need a data storage to store the data of every task, which is done by
defining a dynamic array. Then applications use the entries in the
dynamic array as the inputs and outputs for a task to define the depen-
dencies. To schedule tasks, OpenMP implements a lock-based hash
table, in which the key of each entry is the address of a task’s input or
output data, and the value of that entry is a list of tasks accessing that
address. As scheduling tasks require frequent accessing and updating
the hash table, the overhead of using mutexes is heavy and can impact
the overall runtime performance when running large and complex
task graphs with multiple threads.
PaRSEC [17, 58] is a task-based runtime for distributed system. It
leverages Domain Specific Languages (DSL) in its dataflow model
to implement applications. To program a PaRSEC implementation,
applications need the following steps: (1) Initialize a Message Passing
Interface (MPI) engine as PaRSEC is a runtime for distributed system.
(2) Define an application data structure using PaRSEC memory alloca-
tor to correctly build up the dependencies between tasks. (3) Initialize
a PaRSEC taskpool to execute the tasks. (4) Define PaRSEC tasks and
their function definitions. The task scheduling algorithm of PaRSEC

xxv

is similar to OpenMP’s design. Both of them rely on a lock-based hash
table to manage the dependencies between tasks. The main difference
is that PaRSEC additionally considers where to execute tasks that are
created at a remote machine.
OpenCilk [16, 141] is a software infrastructure for task-parallel pro-
gramming. A typical OpenCilk code is to spawn threads for tasks’
operations and explicitly join threads for synchronization. To imple-
ment a dynamic task graph application, users spawn a thread to run
a task using the cilk_spawn directive, and explicitly join the thread to
finish a task’s execution using cilk_sync. As OpenCilk uses explicit
synchronization directives to manage dependencies between tasks,
the task scheduling algorithm is to wake up a thread from its thread
pool to do a task’s operation, and release that thread to the thread
pool. When reaching the synchronization directives, the program
execution halts until all threads finish and return to the thread pool.
Although OpenMP, PaRSEC, and OpenCilk have been used in many
applications, we find several limitations of using them for DTGP:
(1) Describing a task’s dependencies through that task’s input and
output data is not expressive. Applications need to figure out the
dataflow between two tasks to represent the task dependency, which
is an indirect description and could reduce the code readability. (2)
Programming a large task graph is very verbose. Applications have to
explicitly indicate a task’s input and output data, such as using in and
out in OpenMP or INPUT and OUTPUT in PaRSEC. For PaRSEC users,
they have to additionally write PARSEC_DTD_ARG_END to denote the
end of input arguments and PARSEC_HOOK_RETURN_DONE to indicate
the end of function definition. (3) Relying on a lock-based hash table to
schedule tasks is not efficient. Their runtimes have to acquire a mutex
when accessing the hash table, which introduces non-negligible lock
overheads especially when running with multiple threads to schedule

xxvi

a complex task graph.

(4) A Resource-efficient Task Scheduling System using Reinforcement
Learning. To schedule tasks, existing solutions either resort to general-
purpose heuristics (e.g., work stealing [73, 75, 111, 113]) or a custom
scheduling method (e.g., hardcoded [152]). These solutions are typi-
cally not adaptive to the change in the computing environment and
often consume large scheduling resources due to the randomness
involved in dynamic load balancing.
Recent advances in machine learning have focused on designing a
new scheduling framework that learns to interact with a comput-
ing environment [36]. Despite exciting progress in learning-based
scheduling solutions, most of them target independent job batches in a
high-performance computing (HPC) cluster. These solutions are not
suitable for most computer-aided design (CAD) problems where the
goal is to find a resource-efficient scheduling plan for running depen-
dent tasks using minimal CPU resources. Because many CAD task
graphs are much larger and more complex than conventional HPC
workloads.

(5) Reinforcement Learning-generated Topological Order for Dynamic
Task Graph Scheduling. To schedule tasks with the task dependency
constraints, dynamic task graph scheduling runtime requires appli-
cations to create tasks in a topological order of the task graph. To
obtain the order, topological sorting algorithms, such as Kahn’s algo-
rithm [4], are widely used. These heuristic-based algorithms generate
orders primarily based on the graph structures, such as level-by-level
sorting. However, such heuristic-based approaches have limitations.
First, solely relying on graph structure lacks adaptability to dynamic
changes in the computing environment. This can lead to suboptimal
scheduling and can consume large scheduling resources due to the

xxvii

randomness involved in dynamic task graph runtime’s dynamic load
balancing [113]. Second, heuristic algorithms generate determinis-
tic orders. But, topological orders of a task graph are not unique
and different topological orders for the same task graph can lead to
substantial performance differences.

(6) Optimizing CUDA Graph Scheduling with Reinforcement Learn-
ing: A Case Study in SSTA Propagation.

Statistical static timing analysis (SSTA) is a critical step in Electronic
Design Automation (EDA) as it enables more accurate delay estima-
tion than traditional static timing analysis (STA) by modeling on-chip
process variation (OCV) as random variables [14, 37]. [85] uses
numerical integration to estimate circuit yield by exploring device
parameter combinations, while [147] models gate delays as random
variables and propagates rise and fall arrival time statistically through
the timing graph. As design complexity continues to grow, manufac-
turing variations have introduced a broad range of OCVs that SSTA
algorithms must evaluate during propagation. [23, 42, 45, 49, 121]
emerge as a promising solution to meet the growing performance
demands of SSTA. To schedule SSTA workloads on GPUs more effi-
ciently, the recent state-of-the-art [23] leverages CUDA Graph to model
SSTA propagation as a GPU task graph. However, application-given
CUDA graphs by [23] are often suboptimal because the application’s
CUDA graphs prioritize capturing circuit structure but overlook GPU
resource availability and scheduling constraints. This oversight often
results in resource contention (e.g., multiple tasks competing for lim-
ited GPU resources) and reduced task parallelism, as tasks are forced
to wait instead of executing concurrently.

1

1 an efficient task-parallel pipeline
programming framework

1.1 Abstract
The pipeline is a fundamental pattern to parallelize a series of stage tasks
over a sequence of data in loops. Mainstream pipeline programming
frameworks count on data abstractions to perform pipeline scheduling. Al-
though this design is convenient for data-centric parallel applications, it is
not efficient for algorithms that only exploit task parallelism in the pipeline.
To address the limitation, we introduce a new task-parallel pipeline pro-
gramming framework called Pipeflow. Pipeflow separates data abstractions
and task scheduling, enabling a more efficient implementation of task-
parallel pipeline algorithms than existing frameworks. We have evaluated
Pipeflow on both micro-benchmarks and real-world applications. For
example, in a timing analysis workload that explores pipeline parallelism
to speed up the runtime performance, the Pipeflow’s implementation
outperforms the oneTBB’s implementation up to 110.33% faster.

1.2 Introduction
The pipeline is a fundamental parallel pattern to model parallel executions
through a linear chain of stages. Each stage processes a data token after the
previous stage, applies an abstract function to that token, and then resolves
the dependency for the next stage. Multiple data tokens can be processed
simultaneously across different stages whenever dependencies are met.
For example, in circuit simulation [63, 76, 79, 80], some operations on a
gate (e.g., NAND, OR, AND) do not depend on other gates and thus can be
done at multiple logic levels simultaneously, while operations at the same
levels require processing prior levels first. As pipeline parallelism widely

2

exists in modern computing applications [12], there is always a need for
new pipeline programming frameworks to streamline the implementation
complexity of pipeline algorithms.

Recently, several pipeline programming frameworks have emerged to
assist developers in implementing pipeline algorithms without worrying
about scheduling details, such as oneTBB [3], FastFlow [10], GrPPI [139],
Cilk-P [104], SPar [40], and HPX-pipeline [93]. While each of these frame-
works has its pros and cons, a common design philosophy is to perform
data synchronizations using buffers between stages (i.e., data abstraction)
in their pipeline scheduling designs, as illustrated in Figure 1.1. This de-
sign is convenient for data-centric pipeline applications but also has two
limitations. Firstly, users have to design their pipeline algorithms in the
data-parallel manner. However, data management is often application-
dependent. Many applications exhibit pipeline parallelism among tasks
rather than data. For example, the VLSI timing analysis application [25, 26]
formulates a sequence of linearly dependent propagation tasks in a graph
node and runs independent nodes in parallel to efficiently update the
timing data from a custom global shared graph data structure. The real
need is a pipeline scheduling framework to schedule and run tasks while
leaving data management completely to applications.

Stage 1 Stage 2 Stage N
Application

 data

Data-centric pipeline framework

Output

 data

Figure 1.1: An illustration of data abstraction in a pipeline framework.
Gray bars are buffers used for data synchronizations.

Secondly, scheduling algorithms involve complex synchronizations
between data and buffer structures. These frameworks typically leverage
object allocators and buffer structures to manage temporary data between

3

stages (e.g., oneTBB [3]). However, the synchronizations can be redundant
in some applications. For instance, ferret [12], a pipeline benchmark of
PARSEC, defines six stages (loading, segmentation, extraction, indexing,
ranking, and output) in its oneTBB implementation to perform image
similarity search. Every stage is defined as a derived class of oneTBB’s
tbb::filter and has an overridden operator that takes an input void*
pointer returned from the previous stage. The pointer points to a global
data structure all_data, bypassing all the data abstractions in the oneTBB
pipeline.

To overcome these limitations, we introduce in this paper Pipeflow, a
new task-parallel pipeline programming framework. We summarize our
contributions as follows:

• Task-Parallel Pipeline. We have introduced a new task-parallel pipeline
programming concept that separates task scheduling and data ab-
straction. This separation allows us to concentrate on the pipeline
tasking itself, enabling a more efficient implementation of task-parallel
pipeline algorithms than existing frameworks.

• Programming Model. We have introduced a new C++ program-
ming model to support our concept. Unlike existing models, we do
not provide yet another data abstraction but a flexible framework
for users to fully control their application data atop a task-parallel
pipeline scheduling framework.

• Scheduling Algorithm. We have introduced a new scheduling algo-
rithm to schedule stage tasks across parallel lines. Since we do not
touch data abstraction, we can avoid complex data buffer designs
and synchronization mechanisms to enable more lightweight and
efficient scheduling.

We have evaluated Pipeflow on both micro-benchmarks and real-world
applications. For example, in a real-world VLSI static timing analysis

4

workload, the Pipeflow implementation outperforms the oneTBB imple-
mentation up to 110.3% faster. Right now, Pipeflow is merged into the
open-source Taskflow project [72].

1.3 Background
We first review the pipeline basics and then detail the motivation of
Pipeflow. We then argue a new task-parallel pipeline programming model
is needed for many important industrial and research areas, e.g., circuit
design [63].

Pipeline Basics

Pipeline parallelism is commonly used to parallelize various applications,
such as stream processing, video processing, and dataflow systems. These
applications exhibit parallelism in the form of a linear pipeline, where a
linear sequence of abstraction functions, namely stages, F = ⟨f1, f2, · · · , fj⟩,
is applied to an input sequence of data tokens, D = ⟨d1,d2, · · · ,di⟩. A
linear pipeline can be thought of as a loop over the data tokens of D. Each
iteration i processes an input token di by applying the stage functions F to
di in order. Depending on the number of parallel lines, L = ⟨l1, l2, · · · , lk⟩, to
process data tokens, parallelism arises when iterations overlap in time. For
instance, the execution of token di at stage fj of parallel line lk, denoted as
fkj (di), can overlap with fk+1

j−1 (di+1). A stage can be a parallel type or a serial
type to specify whether fkj (di) can overlap with fk+1

j (di+1) or not. Figure
1.2 shows the dependency diagram of a 3-stage (serial-serial-parallel)
pipeline.

5

di−1 di di+1 di+2 O serial

O

O

serial

parallel

Parallel Lines for Data Tokens()l
S

ta
g
es

(
) f

Figure 1.2: Dependency diagram of a 3-stage (serial-serial-parallel)
pipeline. Each node represents a task that applies a stage function to
a data token. Each edge represents a dependency between two tasks. The
dashed rectangle denotes one parallel line.

Task-parallel Pipeline Parallelism

Pipeflow is motivated by our research projects on developing parallel tim-
ing analysis algorithms for very large scale integration (VLSI) computer-
aided design (CAD) [43, 45, 48, 50, 61, 63, 152]. Timing analysis is a critical
step in the overall CAD flow because it validates the timing performance
of a digital circuit. As design complexity continues to grow exponentially,
the need to efficiently analyze the timing has become the major bottle-
neck to the design closure flow. For instance, generating a comprehensive
timing report (e.g., pessimism removal, hundreds of corners, etc.) for a
multi-million-gate design can take several hours [92]. To reduce the analy-
sis runtime, there is an increasing trend of adopting manycore parallelism
by new timing analysis algorithms recently [22, 49, 51, 64, 77, 78, 81, 82,
88, 114, 120].

The most widely used strategy, including commercial timers, to paral-
lelize timing analysis is pipeline. Figure 1.3 illustrates this strategy using
forward timing propagation as an example [75]. The circuit graph is first
levelized into a level list using topological sort. Nodes at the same level

6

!"#!$%&'()*

$%&'()+

$%&'(),

$%&'()-

$%&'().

$%&'()/

!"#!"#

$0#!"$

10#!"$

23#!"%

45#!"!

"!#!

!"#!"!

$0#!

10#!

!"#!"%

$0#!"!

10#!"!

23#!

!"#!"$

$0#!"%

10#!"%

23#!"!

45#!

!"#!"&

$0#!"#

10#!"#

23#!"$

45#!"%

"!#!"!

#&6&77(7 #&6&77(7 #&6&77(7 #&6&77(7 #&6&77(7 #&6&77(7

0(8(7

9

2:1

2:1

2:1 9

#;<(7;=()>?@(AB7;='

0(8(7;C(

Figure 1.3: Parallel timing propagations [75]. Linearly dependent timing
data (e.g., slew) is updated across graph nodes in a task-parallel pipeline
fashion.

are independent of each other and can run in parallel. Each node runs a se-
quence of linearly dependent propagation tasks, including parasitics (RCP),
slew (SLP), delay (DLP), arrival time (ATP), jump points (JMP), and
common path pessimism reduction (CRP) to update its timing data from
a custom global and application-dependent circuit graph data structure. Dif-
ferent propagation tasks can overlap across different levels using pipeline
parallelism.

This type of task-parallel pipeline strategy is ubiquitous in many par-
allel CAD algorithms, such as logic simulation [102, 119] and physical
design [65, 67, 68, 100], because computations frequently flow through
circuit networks. We have observed three important properties that make

7

mainstream pipeline programming frameworks fall short of our needs:
(1) Unlike the typical data-parallel pipeline, the pipeline parallelism in
many CAD algorithms is driven by tasks rather than data. (2) Data is not
directly involved in the pipeline but in the graph data structure defined by a
custom algorithm. (3) From a user’s standpoint, the real need is a pipeline
scheduling framework to help schedule and run tasks on input tokens across
parallel lines while leaving data management completely to applications;
in our experience, users disfavor another library data abstraction to per-
form pipeline scheduling, as it often incurs development inconvenience
and unnecessary data conversion overheads.

1.4 Pipeflow
Inspired by the need for parallel CAD algorithms, Pipeflow introduces
a new task-parallel pipeline programming model for users to create a
pipeline scheduling framework without data abstraction. In this section,
we will dive into the technical details of Pipeflow.

Programming Model

Pipeflow leverages modern C++ and template techniques to strike a bal-
ance between expressiveness and generality. Listing 1.1 shows the Pipeflow
code that implements the pipeline in Figure 1.2. Pipeflow has one API
Pipeline that allows users to define the pipeline structure and explore
the pipeline parallelism in their applications. There are two steps to create
a Pipeflow application: (1) define the pipeline structure using template
instantiation using the Pipeline API and (2) define the application data
storage, if needed. In Pipeflow, the terms “pipe” and “stage” are inter-
changeable. For the first step, users define the number of parallel lines and
the abstract function of each pipe in a Pipeline object. For each pipe, users
define the pipe type and a pipe callable using Pipe. A pipe can be either a

8

serial type (PipeType::SERIAL) or a parallel type (PipeType::PARALLEL).
The pipe callable takes an argument of Pipeflow type, which is created
by the scheduler at runtime. A Pipeflow object pf represents a scheduling
token and contains several methods for users to query the runtime statistics
of that token, including the parallel line, pipe, and token numbers.
const s i z e _ t num_lines = 4 ;
std : : var iant <f l o a t , s td : : s t r i n g > data_type ;
s td : : array<data_type , num_lines> b u f f e r ;
P i p e l i n e pl (num_lines ,

// F i r s t pipe
Pipe { PipeType : : SERIAL ,

[&](Pipeflow& pf) {
i f (! data . ready ()) {

pf . stop () ;
} e l s e {

// Generate a f l o a t and save i t in b u f f e r
b u f f e r [pf . l i n e ()] = data . get () ;

}
}

} ,
// Second pipe
Pipe { PipeType : : SERIAL ,

[&](Pipeflow& pf) {
// Generate a s t r i n g and save i t in b u f f e r
b u f f e r [pf . l i n e ()] =

make_string (std : : get <0>(b u f f e r [pf . l i n e ()])) ;
}

} ,
// Third pipe
Pipe { PipeType : : PARALLEL,

[&](Pipeflow& pf) {
std : : cout << std : : get <1>(b u f f e r [pf . l i n e ()]) ;

}
}

) ;

9

// Run the p i p e l i n e o b j e c t pl
pl . run () ;

Listing 1.1: Pipeflow code of Figure 1.2, assuming the first pipe generates
float and the second pipe generates string outputs.

Pipeflow does not have any data abstraction but gives applications full
control over data management. In our example, since the first and the sec-
ond pipes generate float and std::string outputs, respectively, we create
a one-dimensional (1D) array, buffer, as the application data storage to
store data in uniform storage using std::variant<float, std::string>.
The dimension of the array is equal to the number of parallel lines, as
Pipeflow schedules only one token per parallel line. Each entry buffer[i]
stores the data that is being processed at parallel line i, which can be
retrieved by Pipeflow::line. This organization is space-efficient because
we use only a 1D array to represent data processing in a two-dimensional
(2D) scheduling map. Additionally, by delegating data management to
applications, we can avoid dynamic data conversion between the library
and the application, which typically counts on virtual function calls to
convert a generic type (e.g., void*, std::any) to an arbitrary user type [3, 10].

Based on the pipeline structure and data layout defined above, we
instantiate a Pipeline object, pl. This template-based design enables the
compiler to optimize each pipe type, such as using a fixed-layout functor
to store the callable and its captured data. Finally, we call run to submit
the object pl to a runtime and execute it.
using P = Pipe<std : : funct ion <void (Pipeflow&)>>;
// 6 pipes
std : : vector <P> p(6 , c r ea t e _p i p e ()) ;
// P i p e l i n e of 4 p a r a l l e l l i n e s and 6 pipes
S c a l a b l e P i p e l i n e pl (4 , p . begin () , p . end ()) ;
// F i r s t run
pl . run () ;
// Resize p to 3 pipes

10

p . r e s i z e (3) ;
// P i p e l i n e of 4 p a r a l l e l l i n e s and 3 pipes
pl . r e s e t (p . begin () , p . end ()) ;
// Second run
pl . run () ;

Listing 1.2: Scalable pipeline model in Pipeflow to accept variable assign-
ments of pipes.

Pipeline requires instantiation of all pipes at the construction time.
While this design gives compilers more freedom to optimize the layout of
each pipe type, it prevents applications from varying the pipeline struc-
ture at runtime; for instance, the number of pipes might depend on the
problem size, which can be runtime variables. To overcome this limita-
tion, Pipeflow provides a scalable alternative, ScalablePipeline, to allow
variable assignments of pipes using range iterators. In Listing 1.2, we
create a scalable pipeline, pl, from a vector of six pipes p. After the first
run, we reset pl to another range of three pipes for the second run. A
scalable pipeline is thus more flexible for applications to create a pipeline
scheduling framework with dynamic structures.

Compared to the programming model of existing frameworks, such as
oneTBB [3], Pipeflow’s programming model has the following advantages:
(1) Pipeflow is expressive and easy to write. Users only need pipe type,
pipe callable, and the number of parallel lines to create a pipeline schedul-
ing framework and explore the pipeline parallelism in their applications.
Moreover, as Pipeflow does not provide data abstraction, users do not
need to explicitly specify the input data and output data type at every pipe
definition as oneTBB’s users do. (2) Pipeflow is flexible. Users are able to
modify the pipeline structure at runtime based on their specific needs.

11

token (4t+0) on

pipe 0, line 0

token (4t+0) on

pipe 2, line 0

token (4t+0) on

pipe 1, line 0

token (4t+1) on

pipe 0, line 1

token (4t1) on

pipe 1, line 1

token (4t+1) on

pipe 2, line 1

token (4t+2) on

pipe 0, line 2

token (4t+2) on

pipe 1, line 2

token (4t+2) on

pipe 2, line 2

token (4t+3) on

pipe 0, line 3

token (4t+3) on

pipe 1, line 3

token (4t+3) on

pipe 2, line 3

Figure 1.4: The scheduling diagram of the task-parallel pipeline in Listing
1.1. Each parallel line runs one scheduling token. Multiple parallel lines
overlap tokens in a circular fashion. The text “token (4t+1) on pipe 1, line
1” means the token with ID 4t+1 runs on the pipe 1 and the parallel line 1.

Scheduling Algorithm

As Pipeflow does not touch data abstraction, we can simplify the pipeline
scheduling problem to decide which scheduling token to run at which pipe
and parallel line. Our scheduling algorithm places only one scheduling
token per parallel line. We then process all tokens in a circular fashion
across the given number of parallel lines. Figure 1.4 illustrates our pipeline
scheduling idea using the pipeline in Listing 1.1. Since the pipeline sched-

12

ules tokens in a circular fashion, there are four edges (dependencies) from
the last pipes (pipe 2) to the first pipes (pipe 0), and one edge from
the first pipe of the last parallel line to the first pipe of the first parallel
line. The last pipe (pipe 2) is a parallel type. There is no vertical edge
between the last pipes of two consecutive parallel lines. Each parallel line
runs only one scheduling token. Multiple parallel lines can overlap tokens
whenever their dependencies are met. Even though the pipeline execution
can involve many scheduling tokens, only four parallel lines are used in
total.

Pseudocode

Based on the idea discussed in Section 1.4, we formulate each parallel line
as a task, which defines a function object to run by a thread in the thread
pool. Each task (1) deals with one scheduling token per parallel line and
(2) decides which adjacent task to run on its next parallel line and pipe.
Algorithm 1 implements such a task using efficient atomic operations.
When a task is scheduled, we need to know which pipe at which parallel
line for the scheduling token to work. We keep the parallel line and pipe
information in a Pipeflow object. Each task owns a Pipeflow object pf of a
specific parallel line (line 1). Once a scheduling token is done, there are
two cases for its corresponding task to proceed: (1) for a parallel type,
the task moves to the next pipe at the same parallel line; (2) for a serial
type, the task additionally checks if it can move to the next parallel line.
To carry out such a dependency constraint, each pipe keeps a join counter
of an atomic integer to represent its dependency value. The values of a
serial pipe and a parallel pipe can be up to 2 and 1, respectively. We create
a 2D array join_counters to store the join counter of each pipe at each
parallel line. Line 2 initializes these join counters to either 2 or 1 based on
the corresponding pipe types that are enumerated on integer constants,
2 (serial) and 1 (parallel). At the first pipe (line 3), the Pipeflow object

13

updates its token number (line 4) and checks if the pipe callable requests
to stop the pipeline (line 5:8). If continued, we increment the number
of scheduled tokens by one (line 9). For other pipes, we simply invoke
the pipe callables (line 11:13). After the pipe callable returns, we call
schedule_next_task (line 14, define in Algorithm 2) to schedule the next
task.

Algorithm 1: define_task(l)
global: pipeflows: a vector of Pipeflow objects
global: join_counters: a 2D array of join counters
global: num_tokens: the number of tokens
Input: l: a parallel line id

1 pf← pipeflows[l];
2 AtomicStore(join_counters[pf.line][pf.pipe],pf.join_counter);
3 if pf.pipe == 0 then
4 pf.token← num_tokens;
5 invoke_pipe_callable(pf);
6 if pf.stop == True then
7 return;
8 end
9 num_tokens = num_tokens+ 1;

10 end
11 if pf.pipe != 0 then
12 invoke_pipe_callable(pf);
13 end
14 schedule_next_task(pf);

14

Algorithm 2 implements how we schedule the next task after the pipe
callable returns in line 12 in Algorithm 1. We update the join counters
based on the pipe type and determine the next possible tasks to run (line
1:11). When the join counter of a pipe becomes 0, we bookmark this pipe
as a task to run next (line 7 and line 10). If two tasks exist (line 12), the
current task informs the scheduler to call a worker thread to run the task
at the next parallel line (line 13) and reiterates itself on the next pipe (line
14). The idea here is to facilitate data locality as applications tend to deal
with the next pipe at the same parallel line as soon as possible. If there is
only one task available, the current task directly runs the next task with
the updated pf object (line 16:21).

15

Algorithm 2: schedule_next_task(pf)
global: pipeflows: a vector of Pipeflow objects
global: join_counters: a 2D array of join counters
global: num_lines: the number of parallel lines
global: num_pipes: the number of pipes
Input: pf: a pipeflow object

1 curr_pipe← pf.pipe;
2 next_pipe← (pf.pipe+ 1)%num_pipes;
3 next_line← (pf.line+ 1)%num_lines;
4 pf.pipe← next_pipe;
5 next_tasks = {};
6 if curr_pipe is SERIAL and

AtomicDecrement(join_counters[next_line][curr_pipe]) == 0
then

7 next_tasks.insert(1);
8 end
9 if AtomicDecrement(join_counters[pf.line][next_pipe]) == 0

then
10 next_tasks.insert(0);
11 end
12 if next_tasks.size == 2 then
13 call_scheduler(task_of_next_line);
14 goto Line 2 in Algorithm 1;
15 end
16 if next_tasks.size == 1 then
17 if next_tasks[0] == 1 then
18 pf← pipeflows[next_line];
19 end
20 goto Line 2 in Algorithm 1;
21 end

16

Compared to existing algorithms, such as oneTBB [3], that count on
non-trivial synchronization between tasks and internal data buffers, our
algorithm focuses on the task parallelism of a pipeline itself. This design
largely reduces the scheduling complexity of pipeline by using lightweight
atomic operations without complex data buffer management.

Proof

We draw the following lemmas and sketch their proofs to highlight the
correctness of our scheduling algorithm:

Lemma 1.1. Only one task runs a pipe callable (line 5 and line 12 in Algorithm
1) on a scheduling token.

Proof. Assume two tasks are running the same pipe callable, which means
one task reiterates its execution from the previous pipe, and the other task
comes from the previous parallel line. This is not possible in a parallel
pipe as there is no dependency from the previous parallel line; only one
runtime task decrements the join counter to 0 (line 9 in Algorithm 2). Take
Figure 1.4 for example. There is no vertical edge pointing to token 4t+1
from token 4t+0 for pipe 2. Only the task that runs token 4t+1 on pipe 1
gets to decrement the join counter for task 4t+1 on pipe 2. In a serial pipe,
this is also not possible because the dependency is resolved using atomic
operations; only one task will acquire the zero value of the join counter
(line 6 in Algorithm 2). For example, in Figure 1.4, either the task running
token 4t+0 on pipe 1 or the task running token 4t+1 on pipe 0 decrements
token 4t+1 on pipe 1 to zero and then runs the pipe.

Lemma 1.2. The scheduler does not miss any pipe.

Proof. We consider the situation where one task moves to the next parallel
line (line 18 in Algorithm 2) instead of the next pipe at the same parallel
line. Under this circumstance, we need to make sure one task will run

17

that next pipe. Take Figure 1.4 for example. Suppose a task finishes token
4t+1 at pipe 0 and precedes to token 4t+2 at pipe 0, meaning that the join
counter of token 4t+1 at pipe 1 is not 0 yet. Another task that works on
token 4t+0 at pipe 1 will eventually decrement the join counter to run it
(line 14 in Algorithm 2) or invoke another worker thread to run it (line 13
in Algorithm 2).

1.5 Experimental Results
We implemented Pipeflow using C++17 and evaluated the performance
of Pipeflow on a micro-benchmark and a real-world industrial CAD ap-
plication. We studied the performance across memory (RSS), runtime,
and throughput. We did not use conventional pipeline benchmarks (e.g.,
PARSEC’s ferret [12] has only six pipes, loading, segmentation, extraction,
indexing, ranking, and output) as their problem sizes are relatively small
compared to CAD, and the runtime difference between Pipeflow and the
baseline is not obvious on small pipelines. We compiled all programs us-
ing g++12 with -std=c++17 and -O3 enabled. We ran all the experiments
on a Ubuntu Linux 19.10 (Eoan Ermine) machine with 40 Intel Xeon Gold
6138 CPU cores at 2.00 GHz and 256 GB RAM. All data is an average of
ten runs.

Baseline

Given a large number of pipeline programming frameworks, it is infea-
sible to compare Pipeflow with all of them. We considered oneTBB [3]
as our baseline for two reasons. First, oneTBB is the only library that
provides a single pipeline API for users to explore pipeline parallelism.
Others require combining several library-specific constructs to achieve
this goal. For example, in Cilk-P users need pipe_while, pipe_stage,
and pipe_stage_wait to add pipeline parallelism in applications. Second,

18

Pipeflow is inspired by our CAD applications, and oneTBB is widely used
in the CAD community due to its absolute speed and robustness. For a fair
comparison, we implemented the same work-stealing strategy as oneTBB
in our thread pool, in particular, call_scheduler in line 13 in Algorithm
2.

Micro-benchmark

The purpose of micro-benchmarks is to measure the pure scheduling
performance without much computation bias from applications. We
compared the memory, runtime, and throughput between Pipeflow and
oneTBB for completing pipelines of different numbers of serial pipes,
scheduling tokens, and threads. We did not use parallel pipes as their
callable can be absorbed into the previous serial pipe. Each pipe performs
a nominal work of constant space and time complexity (e.g., small matrix
multiplications) and forwards a scheduling token to the next pipe.

Figure 1.5 illustrates the maximum RSS between Pipeflow and oneTBB
with different scheduling tokens and threads. The number of parallel lines
and pipes of a pipeline is equal to the number of threads. We can see that
oneTBB starts to consume more memory than Pipeflow as we increase
the pipeline size. For example, with 210 scheduling tokens Pipeflow needs
1.97% and 11.68% less memory than oneTBB when running with 16 and
64 threads, respectively. The same trend is also observed in the plot of
processing 215 scheduling tokens. In terms of memory usage, oneTBB is
consistently higher than Pipeflow (e.g., 97.72% higher with 64 threads
and 215 scheduling tokens) because we do not manage any data buffers
but focus on the task scheduling itself. That is, oneTBB needs to allocate
space for its internal data buffer structures to perform pipeline scheduling.
We can see the overhead of using data abstractions in pipeline scheduling
next.

19

8 16 32 64
6
7
8
9

10

Number of threads

M
ax

im
um

RS
S(

KB
)

210 scheduling tokens

Pipeflow
oneTBB

8 16 32 645

10

15

20

Number of threads

M
ax

im
um

RS
S(

KB
)

215 scheduling tokens

Pipeflow
oneTBB

Figure 1.5: Maximum RSS comparison between Pipeflow and oneTBB
with different threads and two scheduling tokens (210 and 215) for the
micro-benchmark. The number of threads is the same as the number of
pipes in the pipeline.

Figure 1.6 draws the runtime comparisons between Pipeflow and
oneTBB under different scheduling tokens and thread counts. The number
of parallel lines and pipes of a pipeline is equal to the number of threads.
We can see that the runtime gap between Pipeflow and oneTBB starts to
increase as we increase the pipeline size. For example, at 215 scheduling
tokens Pipeflow runs 10.13%, 10.98%, 124.18%, and 201.38% faster than
oneTBB with 8, 16, 64, and 80 threads, respectively. Furthermore, Pipeflow
has better runtime performance than oneTBB in all situations. We attribute
the performance improvements of Pipeflow over oneTBB to the reason that
oneTBB relies on its internal data buffer to perform pipeline scheduling
while Pipeflow only uses lightweight atomic operations. Moreover, as the
number of threads is equal to the number of parallel lines and pipes in the
experiment, the pipeline running with 80 threads has a bigger structure
than the pipeline running with 8 threads. As a result, the former pipeline
exhibits higher task scheduling overhead than the latter and thus spends
more time to finish. Although the micro-benchmark only demonstrates

20

the pure scheduling performance and forwards the scheduling token be-
tween pipes, the overhead of data abstraction design of oneTBB results in
a significant runtime difference, especially in a large pipeline.

210 211 212 213 214 215
0

0.5
1

1.5
2

Number of scheduling tokens

Ru
nt

im
e(

s)

8 Threads
Pipeflow
oneTBB

210 211 212 213 214 215
0

0.5
1

1.5
2

Number of scheduling tokens
Ru

nt
im

e(
s)

16 Threads
Pipeflow
oneTBB

210 211 212 213 214 215
0
2
4
6
8

Number of scheduling tokens

Ru
nt

im
e(

s)

64 Threads
Pipeflow
oneTBB

210 211 212 213 214 215
0

5

10

Number of scheduling tokens

Ru
nt

im
e(

s)

80 Threads
Pipeflow
oneTBB

Figure 1.6: Runtime comparison between Pipeflow and oneTBB with differ-
ent scheduling tokens and threads for the micro-benchmark. The number
of threads is the same as the number of pipes in the pipeline.

Figure 1.7 compares the throughput by corunning the same program
up to 8 times. Corunning a program at different configurations is very
common in some applications, such as [92]. The experiment emulates a
server-like environment where different pipeline applications compete for
the same resources. We use the weighted speedup to measure the system

21

throughput, which is the sum of the individual speedup of each process
over a baseline execution time [33]. A throughput of one implies that the
corun throughput is the same as if those processes run consecutively. On
the left plot, the pipeline has 16 pipes and 16 parallel lines and runs with
16 threads. On the right plot, the pipeline has 80 pipes and 80 parallel
lines and runs with 80 threads. Both of them run 215 scheduling tokens.
We can see that Pipeflow outperforms oneTBB in all coruns. For example,
at 8 coruns Pipeflow is 1.2x and 3.31x better than oneTBB with 16 and 80
pipes, respectively. Besides, Pipeflow remains around one up to 5 coruns
while oneTBB decreases after 2 coruns. We attribute the finding to the
reason that we use lightweight atomic operations rather than complex
data buffer synchronizations to do the task scheduling. As Pipeflow is
more lightweight than oneTBB in pipeline scheduling, corunning Pipeflow
thus has better throughput than corunning oneTBB.

2 4 6 80.7

0.8

0.9

1

Number of coruns

Th
ro

ug
hp

ut

16 pipes

Pipeflow
oneTBB

2 4 6 8
0.2
0.4
0.6
0.8

1

Number of coruns

Th
ro

ug
hp

ut

80 pipes

Pipeflow
oneTBB

Figure 1.7: Throughput of corunning micro-benchmark programs with 16
and 80 pipes and 215 scheduling tokens.

The above experiments were running with the configuration in which
the number of pipes is the same as the number of threads. However, this
configuration does not always guarantee the best runtime performance
because of different applications and hardware environments. Next, we

22

see how the number of threads could impact the performance. Figure 1.8
shows the impact of Pipeflow and oneTBB running with different numbers
of threads in a small (16 pipes) and a big (80 pipes) pipeline in which 210

and 215 tokens were scheduled. For 16 pipes, we can see that the runtime
trends of running 210 and 215 are similar. oneTBB has the best runtime
performance with 32 threads; Pipeflow has the best performance at 16
threads. For 80 pipes, the runtime trends are the same. We find out that
Pipeflow has the best performance with 80 threads while oneTBB with 32
threads. In this micro-benchmark, we know the selection of identical pipes
and threads is the best option for Pipeflow but not for oneTBB. Selecting
the best thread number is an important factor and the best thread number
for one application may not be the best choice for another application.

23

8 16 32 64
6 · 10−2
8 · 10−2

0.1
0.12
0.14
0.16

Number of threads

Ru
nt

im
e(

s)
16 pipes and

210 scheduling tokens

Pipeflow
oneTBB

8 16 32 64
2

3

4

Number of threads

Ru
nt

im
e(

s)

16 pipes and
215 scheduling tokens

Pipeflow
oneTBB

8 16 32 64

0.2
0.3
0.4
0.5
0.6

Number of threads

Ru
nt

im
e(

s)

80 pipes and
210 scheduling tokens

Pipeflow
oneTBB

8 16 32 64
5

10

15

Number of threads

Ru
nt

im
e(

s)
80 pipes and

215 scheduling tokens

Pipeflow
oneTBB

Figure 1.8: Impacts of selecting the number of threads on the runtime
performance for the micro-benchmark. The number of pipes is not iden-
tical to the number of threads. The numbers of pipes are 16 and 80. The
pipeline processes 210 and 215 scheduling tokens.

VLSI Static Timing Analysis Algorithm

We applied Pipeflow to solve a large-scale VLSI static timing analysis
(STA) problem. The goal is to analyze the timing landscape of a circuit
design and report critical paths that do not meet the given constraints
(e.g., setup and hold). As presented in Figure 1.3, modern STA engines

24

leverage pipeline parallelism to speed up the timing propagations. How-
ever, nearly all of them count on OpenMP-based loop parallelism with
layer-by-layer synchronization [75]. With Pipeflow, we can directly formu-
late the problem as a task-parallel pipeline to improve task asynchrony.
As the analysis complexity continues to increase, more analysis tasks (e.g.,
RC, delay calculators, pessimism reduction) are incorporated into each
node in the STA graph. These tasks can be encapsulated in a sequence of
pipe functions to overlap in the graph across parallel lines. We modified a
large circuit design of 1.5 million nodes and 3.5 million edges from [9, 75]
and studied the performance under different pipe counts. Each node has
a pipe task to calculate delay values at a specific configuration using linear
interpolation. We levelized the STA graph and ran the nodes at the same
level in parallel, such that different analysis tasks overlaps across different
levels using pipeline parallelism, as illustrated in Figure 1.3.

Figure 1.9 evaluates the memory usage between Pipeflow and oneTBB
at different graph sizes (∥V∥ + ∥E∥) and thread counts. The number of
pipes and lines in the pipeline is identical to the number of threads. As
the pipeline size grows, the gap of memory usage starts to increase in
both 1.5 million and 5 million graph sizes. For instance, with 1.5 million
graph size Pipeflow needs 0.07% and 5.6% less than oneTBB at 32 and 80
threads, respectively. We can observe a similar trend when we process 5
million graph size. Since Pipeflow delegates data management directly
to applications without touching data abstractions, Pipeflow does not
allocate as much memory as oneTBB to perform pipeline scheduling.

25

8 16 32 64
64
66
68
70
72

Number of threads

M
ax

im
um

RS
S(

M
B)

1.5M graph size

Pipeflow
oneTBB

8 16 32 64240

250

260

270

Number of threads

M
ax

im
um

RS
S(

M
B)

5M graph size

Pipeflow
oneTBB

Figure 1.9: Maximum RSS comparison between Pipeflow and oneTBB at
different graph sizes (∥V∥+∥E∥) and thread counts for the timing analysis
workload. The number of threads is identical to the number of pipes in
the pipeline.

Figure 1.10 compares the runtime performance between Pipeflow and
oneTBB at different graph sizes (∥V∥ + ∥E∥) and thread counts. The
number of pipes and parallel lines of the pipeline is the same as the number
of threads in this experiment. We can see that Pipeflow outperforms
oneTBB when we increase the graph size. Taking 16 threads for example,
Pipeflow runs 62.02%, 57.44%, and 46.08% faster than oneTBB with 1, 3,
and 5 million graph size, respectively. The performance improvements
reduce because the overhead of setting up internal data buffers in oneTBB
is gradually amortized when we increase the graph size in this workload.
We also notice the runtime gap decreases when we use more threads.
For example, at 5 million graph size Pipeflow is 110.33%, 46.08%, and
20.08% faster with 8, 16, and 64 threads, respectively. The improvements
also reduce because the cost of data buffers is amortized gradually as the
pipeline size grows. Despite the runtime improvements gradually decrease
when the pipeline size grows or the graph size increases, Pipeflow still
outperforms oneTBB in all cases in the workload. Since our scheduling

26

algorithm does not deal with data passing between pipes, we can process
scheduling tokens more efficiently than oneTBB. In Pipeflow all pipe tasks
perform computations directly on a global graph data structure captured
in the pipe callable instead of passing data between successive pipes using
buffers. The data passing interface between successive pipes in oneTBB
thus becomes an unnecessary overhead.

1 2 3 4 5
0

10

20

30

40

Graph size (106)

Ru
nt

im
e(

s)

8 Threads
Pipeflow
oneTBB

1 2 3 4 50

10

20

30

Graph size (106)

Ru
nt

im
e(

s)

16 Threads
Pipeflow
oneTBB

1 2 3 4 50
10
20
30
40
50

Graph size (106)

Ru
nt

im
e(

s)

64 Threads
Pipeflow
oneTBB

1 2 3 4 50

20

40

60

Graph size (106)

Ru
nt

im
e(

s)

80 Threads
Pipeflow
oneTBB

Figure 1.10: Runtime comparison between Pipeflow and oneTBB at dif-
ferent graph sizes (∥V∥+ ∥E∥) and thread counts for the timing analysis
workload. The number of threads is identical to the number of pipes in
the pipeline.

Next, we compare the throughput by corunning the same program

27

up to 8 times. Corunning the STA program is very common for report-
ing the timing data of a design at different input library files [92]. The
effect of pipeline scheduling propagates to all simultaneous processes.
Hence, throughput is a good measurement for the inter-operability of
a pipeline-based STA algorithm. We corun the same analysis program
up to 8 processes that compete for 40 cores. Again, we use the weighted
speedup to measure the throughput. Figure 1.11 plots the throughput
across 8 coruns at 16 and 80 pipes. The number of pipes is identical to
the number of threads. We can see that Pipeflow outperforms oneTBB
at all coruns. For instance, at 8 coruns Pipeflow is 1.04x and 1.14x better
than oneTBB with 16 and 80 pipes, respectively. This is because Pipeflow
leverages lightweight atomic operations and oneTBB relies on complex
data buffer management in pipeline scheduling. Corunning a lightweight
program has a higher throughput than corunning a heavy program. Be-
sides, with more coruns both Pipeflow and oneTBB have a decreasing
throughput.

2 4 6 8

0.4

0.6

0.8

1

Number of coruns

Th
ro

ug
hp

ut

16 pipes

Pipeflow
oneTBB

2 4 6 80
0.2
0.4
0.6
0.8

1

Number of coruns

Th
ro

ug
hp

ut

80 pipes

Pipeflow
oneTBB

Figure 1.11: Throughput of corunning STA programs with 16 and 80 pipes
and 1.5 million graph size(∥V∥+ ∥E∥).

So far, we ran the experiments of this workload using the number
of threads same as the number of pipes. This configuration may not

28

always give us the best runtime performance because of different hardware
environment and workloads. Next, we demonstrate the importance of
selecting the number of threads in this workload. Figure 1.12 shows the
runtime performance of Pipeflow and oneTBB processing 1.5 million and
5 million graph size with different numbers of threads in 16-pipe and 80-
pipe pipelines. For 16 pipes, we observe that both Pipeflow and oneTBB
have a similar runtime trend, and both achieve the best performance with
64 threads for 1.5 million graph size. With 5 million graph size Pipeflow
has the best performance with 80 threads while oneTBB with 64 threads.
For 80 pipes, both Pipeflow and oneTBB have the best performance with
32 threads. From Figure 1.12 we learn that the alignment of threads and
pipes does not achieve the best runtime performance in the workload.
Hence, selecting the thread counts is an important factor while exploring
pipeline parallelism in applications.

29

8 16 32 64
5

6

7

8

9

Number of threads

Ru
nt

im
e(

s)
16 pipes and

1.5M graph size

Pipeflow
oneTBB

8 16 32 64
15

20

25

30

35

Number of threads
Ru

nt
im

e(
s)

16 pipes and
5M graph size

Pipeflow
oneTBB

8 16 32 64
10

20

30

40

Number of threads

Ru
nt

im
e(

s)

80 pipes and
1.5M graph size

Pipeflow
oneTBB

8 16 32 64
40
60
80

100
120
140

Number of threads

Ru
nt

im
e(

s)
80 pipes and

5M graph size

Pipeflow
oneTBB

Figure 1.12: Impacts of selecting the number of threads on the runtime
performance for the timing analysis workload. The number of pipes is not
identical to the number of threads. The numbers of pipes are 16 and 80.
The graph sizes (∥V∥+ ∥E∥) are 1.5 million and 5 million.

Importance of Task-Parallel Pipeline

As experienced parallel CAD researchers, Pipeflow has assisted us in over-
coming many programming challenges. For example, in the previous
experiments, the data is explicitly managed by the application algorithms
and there is no need to go through any data abstraction. The real need is a

30

task-parallel pipeline programming framework that (1) gives applications
full control over data and (2) allows applications to probe each scheduled
task. For instance, when implementing the STA algorithm, we captured
the data from a global STA graph structure in each pipe callable and used
the pipeflow variable to get the parallel line number of a scheduled task
to index the corresponding entry in a result vector. However, oneTBB ab-
stracts these components out, and we have to implement another mapping
strategy to get these data from each filter, both of which incur signifi-
cant yet unnecessary runtime overheads. Similar situations exist in other
libraries too.

Selection of the Number of Parallel Lines

Selecting the number of parallel lines (or threads) for the best performance
is application-dependent. For example, Figure 1.8 illustrates that Pipeflow
obtains the best performance while aligning the pipe sizes and thread
counts and oneTBB should run with 32 threads in the micro-benchmark.
From Figure 1.12 when running the STA workload, both Pipeflow and
oneTBB obtain the best runtime results with 32 threads in an 80-pipe
pipeline. From the micro-benchmark and STA algorithm, we learn that
the selection of the number of parallel lines (or threads) is a critical factor
regarding the runtime performance. Moreover, as the performance of an
application tends to saturate or peak at a certain limit, increasing the num-
ber of parallel lines exceeds the limit could negatively affect the runtime.
As a result, Pipeflow makes the number of parallel lines a tunable parame-
ter (similarly in oneTBB). Based on our experience, most applications can
obtain decent performance when the number of parallel lines is equal to
the number or twice the number of the cores.

31

1.6 Conclusion
In this chapter, we have introduced Pipeflow, an efficient task-parallel
pipeline programming framework to explore pipeline parallelism in appli-
cations. We have introduced a simple yet efficient scheduling algorithm
based on our work-stealing runtime with dynamic load balancing. We
have evaluated the performance of Pipeflow on a micro-benchmark and
an industrial application. For example, in a VLSI static timing analysis
workload that adopts pipeline parallelism to speed up the runtime per-
formance, the Pipeflow’s implementation is up to 110.33% faster than the
oneTBB’s implementation. Our future plans are to (1) apply Pipeflow
to other applications than CAD applications to bring interdisciplinary
ideas to the parallel computing community and (2) extend Pipeflow to
task-parallel GPU computing platforms [28, 29, 89, 115, 116, 117] and
distributed environment [66, 69, 70].

32

2 a task-parallel pipeline programming model
with token dependency

2.1 Abstract
Task-parallel pipeline framework explores pipeline parallelism in appli-
cations and is critical in many parallel and heterogeneous areas, such as
VLSI static timing analysis and data similarity search. However, existing
solutions only deal with certain types of applications in which data depen-
dency exists between preceding data and succeeding data in a forward
direction. Some applications, such as video encoding, exhibit data depen-
dency in both forward and backward directions and cannot be processed
with existing solutions. To address the limitation, we introduce a token
dependency-aware pipeline framework. Our framework associates each
data element with a token as its identifier, supports explicit definitions of
forward and backward token dependency with an expressive program-
ming model, resolves token dependency using simple data structures, and
schedules tokens with lightweight atomic counters. We have evaluated the
framework on applications that exhibit both forward and backward token
dependency. For example, our framework is 8.6% faster than PARSEC’s
implementation in x.264 video encoding applications.

2.2 Introduction
Task-parallel pipeline framework (TPF) explores pipeline parallelism in ap-
plications and plays a critical role in parallel and heterogeneous computing
workloads, such as static timing analysis [8, 26, 31, 43, 45, 50, 63, 67, 72, 76,
81, 113, 154], data similarity search workload (ferret benchmark [12, 13]),
quantum circuit simulation [91], and others [24, 89, 106, 115, 153, 154].
TPF models a pipeline application as a task graph that describes a function

33

call as a task and a functional dependency as an edge. Through task graph
scheduling, pipeline parallelism arises when multiple tasks are scheduled
and executed concurrently once the dependency constraints are met. As
a result, recently Chiu et al. introduced the state-of-the-art task-parallel
pipeline framework, Pipeflow [31] (or Chapter 1).

Although Pipeflow has demonstrated good runtime performance [31],
we find out Pipeflow only deals with specific applications in which data
dependencies exist between preceding data and succeeding data in a for-
ward direction. However, some applications exhibit data dependency from
succeeding data back to preceding data. For instance, in video encoding
applications, frames would reference encoded frames to reduce stream size
for online transmission [138]. In real-world applications, three frame types
are employed, intra (I) frame, predicted (P) frame, and bi-directional (B)
frame. I frames are encoded independently without reference to other
frames. P frames require references from a preceding I frame. B frames
require references from both a preceding and a succeeding (future) I or P
frames. Figure 2.1 illustrates such frame dependency in a video encoding
application. The presence of B frames introduces bi-directional depen-
dency, where the encoding of a frame relies on information from both past
and future frames. This characteristic poses a significant challenge for
existing pipeline frameworks, including Pipeflow, which primarily focus
on uni-directional dependency. As a result, Pipeflow cannot effectively
schedule the encoding of B frames, limiting its applicability in real-world
video encoding scenarios.

I P P B P P I P P B P P

Figure 2.1: A sample dependency diagram in a video encoding application
of an x.264 standard. Edges denote the dependencies between two frames.
I denotes frames, P denotes predicted, B denotes bi-directional frames.

34

To handle the data dependency in both forward and backward direc-
tions, the most common way is to reorder the execution order of data using
low-level synchronization primitive, condition variable [1], and then feed
the reordered data to the pipeline framework as PRASEC does [12, 13].
However, we notice three limitations of this approach: (1) Manipulating
condition variable requires a deep understanding of this low-level synchro-
nization primitive from users and is error-prone when dependency is
intricate. (2) The approach is not an end-to-end implementation as users
need to additionally reorder the data outside the original pipeline applica-
tion. (3) The implementation could encounter deadlock when the data
dependency is complex and insufficient threads are spawned.

To overcome the limitations, we have associated each data element
with a token as its identifier and introduced a new task-parallel pipeline
framework with token dependency enabled on top of Pipeflow [31]. We
summarize our technical contributions as follows:

• New Programming Model. We have developed a new programming
model for applications to explicitly define generalized bi-directional
token dependency. With our programming model, applications can
easily specify the token dependency with a single and intuitive API
and do not need to touch low-level synchronization primitives.

• New Scheduling Algorithm. We have designed a new scheduling
algorithm to support our new programming model. Our scheduling
algorithm leverages simple data structures to efficiently determine
the execution order of tokens and to avoid potential deadlock when
dealing with intricate token dependency and insufficient threads are
spawned.

• End-to-end Implementation. We have integrated the step of reorder-
ing tokens into the pipeline to achieve an end-to-end implementation.
With our seamless integration, users can eliminate the need for ex-

35

ternal token reordering mechanisms, simplifying the overall system
design while providing an end-to-end solution for scheduling tokens
with bi-directional dependency within the pipeline itself.

We have evaluated the framework on applications that exhibit both
forward and backward token dependency. For example, our framework
is 8.6% faster than PARSEC’s implementation in x.264 video encoding
applications.

2.3 Background
In this chapter, we will focus on token dependency and the state-of-the-art
Pipeflow programming framework [31], rather than providing a compre-
hensive discussion of pipeline frameworks. For a broader discussion of
other pipeline frameworks, readers are referred to [31] (or Chapter 1).

Token Dependency

Token dependency constrains the order in which tokens should execute
in the pipeline and is defined by the applications, e.g., the x.264 applica-
tion [12, 13]. A dependency exists between token t1 and t2 in which t1
must complete before t2 can begin. We categorize token dependency into
two types: forward token dependency (FTD), which refers to dependency
connecting from preceding to succeeding token, and backward token de-
pendency (BTD), which refers to dependency in the opposite direction.
Figure 2.2(a) shows a diagram in which all dependencies are FTDs, which
are implicitly assumed in existing task-parallel pipeline framework. Since
all dependencies are FTDs, there is no need to reorder the tokens to get
the correct execution order. Figure 2.2(b) shows a diagram combining
both FTDs and BTDs. As BTDs exist, we need to reorder the tokens to get

36

the correct execution order. For example, token 16 pointing to 7 and 12
are BTDs, we need to reorder 16 before 7 and 12.

(a)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16Execution order :

FTD :

(b)

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 7, 12Execution order :

FTD + BTD :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.2: (a) The diagram of all FTDs and the corresponding execution
order of tokens. (b) The diagram of both FTDs and BTDs and its corre-
sponding execution order of tokens. Red edges pointing from token 6 and
7 to 12 are FTDs, and those from 16 to 7 and 12 are BTDs. Black edges are
implicit dependencies and red ones are explicit dependencies. Execution
order denotes the order in which the tokens should be executed.

To get the correct execution order of tokens when BTDs exist, exist-
ing frameworks adopt the condition variable primitive, such as PARSEC’s
pthread implementation, to first determine the execution order and then
flow the reordered tokens through the pipeline. Figure 2.3 illustrates PAR-
SEC’s implementation using C++. Every token has its own condition
variable cv and a mutex mutex and is handled by one thread. A token will
wait on the cv of its dependent token until that dependent token finishes.
For example, token 7 has a dependent token 16, meaning token 7 must
wait until 16 finishes. 7 will acquire 16’s mutex and wait on 16’s cv until 16
finishes. Once token 16 finishes, token 7 can start the execution and then
notify all the other waiting tokens that token 7 has finished.

The implementation of using condition variable is able to reorder the
tokens whenever BTDs exist with higher data locality because a thread
continues processing the same token before and after sleeping. However,
we notice four challenges: (1) Manipulating condition variable requires a
deep understanding of this low-level synchronization primitive from users.

37

… 6 7 12 16… … …

Figure 2.3: PARSEC’s implementation of Figure 2.2(b) to reorder tokens
using the condition variable primitive.

This can be particularly challenging for users, especially when dealing with
complex token dependency, such as those involving tokens with multiple
forward and backward dependencies (e.g., token 12 in Figure 2.3). (2)
This solution is not an end-to-end implementation as users require manual
token reordering outside the core pipeline execution logic. This introduces
additional complexity and increases the risk of errors in the overall system.
(3) The reliance on low-level synchronization primitives can increase
the risk of deadlocks, especially in resource-constrained environments
(insufficient threads) with complex dependency graphs. For instance,
consider a scenario where token 6 has backward dependencies on tokens 1
through 5, and only 5 threads are available. These 5 threads are all waiting
for token 6 to complete, a deadlock occurs, as no thread is available to
process token 6. (4) It is not a lock free implementation. Every token has
its own condition variable and a mutex lock. A thread has to acquire the
mutex lock before accessing a token. In addition to deadlock, using locks
can suffer from contention between threads, which increases overhead
from the locking mechanism itself. As a result, we need a lock-free solution
that is able to avoid deadlock when application’s token dependency is
complex and insufficient threads are spawned.

38

Pipeflow: Task-parallel Pipeline Framework

Pipeflow [31] represents a state-of-the-art task-parallel pipeline frame-
work, offering significant advancements over prior work such as oneTBB [3].
By decoupling task scheduling from data abstraction, Pipeflow introduces
an efficient scheduling algorithm that optimizes pipeline execution. Fur-
thermore, Pipeflow provides an expressive programming model, simplify-
ing the process of defining complex pipeline applications for developers.

Pipeflow models pipeline applications as circular task graphs, as de-
picted in Figure 2.4. This representation facilitates the scheduling of tasks
across multiple parallel execution units. For instance, in a scenario with
three parallel execution lines, Pipeflow can effectively schedule token 0
on parallel line 0, token 1 on parallel line 1, and token 2 on parallel line 2
and so on, adhering to the execution order obtained by the dependency
illustrated in Figure 2.2(a).

Figure 2.4 illustrates the concept of parallel execution within the Pipeflow
framework. In this example, the first and second pipeline stages (or pipes)
are serial pipes, meaning tokens within these stages must execute sequen-
tially. For instance, token q in pipe 0 and parallel line 1 cannot commence
execution until token p in pipe 0 and parallel line 0 has completed. In
contrast, the third pipe is a parallel pipe. This allows for concurrent pro-
cessing of tokens within this stage. For example, token p in pipe 2 and
parallel line 0 can execute concurrently with token q in pipe 2 and parallel
line 1.

2.4 Our Framework
We introduce a new task-parallel pipeline framework with token depen-
dency enabled shown in Figure 2.5. At a high level, we first determine the
execution order of tokens and then flow the ordered tokens through the
circular task graph. We provide an expressive programming model for

39

p = 0, 3, 6, 9, 12, 15, …

q = 1, 4, 7, 10, 13, 16, …

r = 2, 5, 8, 11, 14, …

token p on

pipe 0,

parallel line 0

token p on

pipe 1,

parallel line 0

token p on

pipe 2,

parallel line 0

token q on

pipe 0,

parallel line 1

token q on

pipe 1,

parallel line 1

token q on

pipe 2,

parallel line 1

token r on

pipe 0,

parallel line 2

token r on

pipe 1,

parallel line 2

token r on

pipe 2,

parallel line 2

Figure 2.4: Pipeflow’s circular task graph of an application in which every
token is processed by a chain of 3 pipes (in the red dashed rectangle,
referred to a parallel line) and up to 3 tokens can be processed concur-
rently. Edges denote dependencies.

users to explicitly express generalized bi-directional token dependency
and provide a pipeline scheduling framework to support our program-
ming model.

p = 0, 3, 6, 10, 14, 7

q = 1, 4, 8, 11, 15, 12

r = 2, 5, 9, 13, 16

token p on

pipe 0,

parallel line 0

token p on

pipe 1,

parallel line 0

token p on

pipe 2,

parallel line 0

token q on

pipe 0,

parallel line 1

token q on

pipe 1,

parallel line 1

token q on

pipe 2,

parallel line 1

token r on

pipe 0,

parallel line 2

token r on

pipe 1,

parallel line 2

token r on

pipe 2,

parallel line 2

Reordering

tokens

Token dependency-aware Pipeflow

Application with both

FTDs and BTDs

Figure 2.5: Overview of token dependency-aware Pipeflow running an
application with both FTDs and BTDs, as illustrated in Figure 2.2(b). After
determining the execution order of tokens, our framework schedules token
0, 3, 6, 10, 14, and 7 on parallel line 0 and so on.

40

Programming Model

We extend the Pipeflow framework [31] by introducing a novel program-
ming model that explicitly supports bi-directional token dependency. Our
new programming model leverages a two-tiered approach. Firstly, it re-
tains Pipeflow’s core structure for defining the pipeline structure. Secondly,
we introduce a mechanism for explicitly defining token dependency within
this framework. Listing 2.1 exemplifies an application of a serial-serial-
parallel pipeline structure with token dependency in Figure 2.2(b). To
define the pipeline structure, we follow Pipeflow’s programming model.
We use the API Pipeline to instantiate an object pl and define the pipeline
structure. In the API, we specify the number of parallel lines and the ab-
stract function of every pipe. For every pipe, we define the pipe type and
a pipe callable using Pipe. We use PipeType::SERIAL to specify the type
for the first pipe and the second pipe, and PipeType::PARALLEL for the
third pipe. The pipe callable takes an argument pf which is used to query
the status of a token that is executing the pipe callable. In this example,
the first pipe stores a float in the buffer buffer, the second pipe stores a
string in buffer, and the third pipe prints the value.

The second part of our new programming model is to specify the token
dependency. To achieve an end-to-end implementation, we integrate this
step into the pipeline by explicitly specifying the token dependency at the
first pipe before the tokens flows to the pipes. To specify token depen-
dency, we first use the number returned by Pipeflow::num_deferrals
to start defining the token dependency. Initially, all tokens have zero
num_deferrals. Then we specify token 12’s three dependencies and token
7’s dependency using Pipeflow::defer, respectively. For tokens that do
not have dependencies or tokens whose execution orders are determined
can resume execution, we define the corresponding function. Finally, we
call run to submit the object pl to a runtime and execute it.
std : : var iant <f l o a t , s td : : s t r i n g > data_type ;

41

std : : array<data_type , number_lines> b u f f e r ;

P i p e l i n e pl (3 ,
// Define the f i r s t pipe
Pipe { PipeType : : SERIAL ,

[&](Pipeflow& pf) {
// Stop when 100 tokens are done
i f (pf . token () == 100) {

pf . stop () ;
}
e l s e {

i f (pf . num_deferrals () == 0) {
// Spec i fy token 12 ’ s dependencies
i f (pf . token () == 12) {

pf . defer (6) ;
pf . defer (7) ;
pf . defer (1 6) ;

}
// Spec i fy token 7 ’ s dependency
e l s e i f (pf . token () == 7) {

pf . defer (1 6) ;
}
e l s e {

// Save a f l o a t in b u f f e r
b u f f e r [pf . l i n e ()] = 0 . 0 f ;

}
}
e l s e {

// Save a f l o a t in b u f f e r
b u f f e r [pf . l i n e ()] = 0 . 0 f ;

}
}

}
} ,
// Define the second pipe
Pipe { PipeType : : SERIAL ,

[&](Pipeflow& pf) {

42

// Save a s t r i n g in b u f f e r
b u f f e r [pf . l i n e ()] =

make_string (std : : get <0>(b u f f e r [pf . l i n e ()])) ;
}

} ,
// Define the t h i r d pipe
Pipe { PipeType : : PARALLEL,

[&](Pipeflow& pf) {
// P r i n t the s t r i n g stored in b u f f e r
std : : cout << std : : get <1>(b u f f e r [pf . l i n e ()]) ;

}
}

) ;
// Execute the p i p e l i n e
pl . run () ;

Listing 2.1: The implementation of a pipeline application consisting of
3 parallel lines and 3 pipes with a serial-serial-parallel type. The token
dependency for the application is shown in Figure 2.2(b). Assume the
first pipe stores a float in buffer, the second pipe stores a string in buffer,
and the third pipe prints the value.

In contrast to existing approaches, such as PARSEC [12, 13], our frame-
work eliminates the need for low-level synchronization primitives like con-
dition variables, significantly simplifying dependency management. This
not only reduces development complexity but also improves developer
productivity by minimizing the risk of errors. Our framework introduces
a concise and intuitive API for defining dependency, pf.defer. For ex-
ample, specifying the dependencies for token 12 requires only three lines
of code in Listing 2.1, compared to the 23 lines of code required in the
PARSEC implementation (see Figure 2.3) for handling same dependencies.
This significant reduction in code complexity simplifies debugging and
maintenance, particularly in scenarios involving complex dependency
graphs.

43

Scheduling Algorithm

To support our programming model, we design a new scheduling al-
gorithm which includes two components: (1) Determining the correct
execution order of tokens. (2) Scheduling the reordered tokens in the
pipeline.

(1) Determining the Correct Execution Order of Tokens. The first part
of our scheduling algorithm is to determine the correct execution order of
tokens. The idea is to defer the execution of a token with unresolved token
dependency and save the token until its dependency is resolved. Once
that token becomes ready, we run it as soon as possible in order to resolve
possible dependency for other tokens. To realize the idea, we use three
data structures,

• deferred_tokens (DT): An associative container that stores deferred
tokens and their respective dependencies. For example, in Figure
2.2(b), token 7 has one dependent token 16, meaning 16 must reorder
before 7. We consider token 7 as a deferred token and represent the
relationship as the entry {key:7, value:16} in DT.

• token_dependencies (TD): Another associative container that stores
the reverse mapping of dependencies. For example, for the depen-
dency between token 7 and 16 in Figure 2.2(b) TD stores {key:16,
value:7}, allowing for efficient identification of tokens that depend
on a given token. This enables rapid updates to DT when a depen-
dency is resolved. Specifically, once token 16’s order is determined
later, we can quickly use the value obtained at TD[16], which is token
7, to locate and remove the entry at DT[7].

• ready_tokens (RT): A queue that stores tokens whose dependencies
have been resolved and are ready for execution.

44

Figure 2.6 visualizes how we use the three data structures to determine
the correct execution order of tokens in Figure 2.2(b). In (a), token 0 to 6
do not have BTDs and we put them in the EST list in order. In (b), token 7
has a dependent token 16 because of 7.defer(16). We first insert {key:7,
value: 16} in DT, meaning 7 needs to be reordered after 16. Then we insert
{key:16, value:7} in TD in order to locate 7 in DT quickly. EST does not have
7 as its’ execution order is not yet decided. In (c), token 8 to 11 do not have
BTDs and appear in EST. Token 12 has three dependencies, token 6, 7, and
16. As token 6’s order has been determined in (a), we only insert {key:12,
value:{7, 16}} in DT and then update TD to reflect the new dependency. In
(d), token 13 to 15 do not have BTDs and appear in EST. In (e), token 16
does not have BTDs and appears in EST. As TD[16] exists, we use the value
of that entry, token 7 and 12, to locate the corresponding entry in DT. Then
we resolve 16’s related dependency by deleting 16 from DT[7] and DT[12].
As a result, DT[7] is empty, meaning 7’s order can be determined and we
insert it in RT. In (f), RT is not empty and we append token 7 in EST. Next,
TD[7] has token 12, and we directly use 12 to locate DT[12] and delete 7
from that entry. As a result, DT[12] is empty, meaning 12’s order can be
determined and be inserted in RT. In (g), we find 12 in RT and then append
it in EST. In the end, we obtain the correct execution order of tokens as
shown in Figure 2.2(b) using only three simple data structures, DT, TD, and
RT.

45

DT

TD

RT

EST

(a)

0,1,2,3,4,5,6

7

12 7

7 12

0,1,2,3,4,5,6,8,9,

10,11,13,14,15,

16, 7

0,1,2,3,4,5,6,8,9,

10,11,13,14,15

7 16

12 7, 16

16 7, 12

7 12

(d)

7 16

12 7, 16

16 7, 12

7 12

12.defer(6)

12.defer(7)

12.defer(16)

0,1,2,3,4,5,6,8,9,

10,11

(c)

7 16

16 7

(b)

0,1,2,3,4,5,6

7.defer(16)

DT

TD

RT

EST

7 16

12 7, 16

16 7, 12

7 12

0,1,2,3,4,5,6,8,9,

10,11,13,14,15,

16

(e)

1

2

1
2

3

12

0,1,2,3,4,5,6,8,9,

10,11,13,14,15,

16, 7, 12

(f) (g)

1

2

1

2

Figure 2.6: Visualization of how DT, TD, and RT determine the correct exe-
cution order of tokens with the token dependency in Figure 2.2(b). EST
denotes the execution order of tokens and is used for illustration. We sim-
plify pf.defer(16) in line 15 in Listing 2.1 to 7.defer(16) for explanation
purposes. The encircled numbers denote the operation sequence in each
sub-figure.

(2) Scheduling Reordered Tokens in the Pipeline. After determining
the correct execution order of tokens, we schedule the reordered tokens
over the circular task graph as Pipeflow does [31]. We place one token per
parallel line and schedule all tokens in a circular way across all parallel
lines. As a result, we schedule the reordered tokens as shown in Figure
2.5. For example, we schedule token 0, 3, 6, 10, 14, 7 over parallel line 0 and
so on.

46

Pseudocode

To implement the algorithm discussed in Section 2.4, we formulate each
parallel line as a task, which defines a function object to run by a thread in
the thread pool. Each task (1) determines the execution order of tokens at
the first pipe, (2) deals with one scheduling token per parallel line, and
(3) decides which adjacent task to run on its next parallel line and pipe.
Algorithm 3 implements such a task. When a task is to be scheduled, we
must know which pipe and which parallel line for the token to run at.
Each task owns an object pf of a specific line l (line 1). Once a token is
done at a pipe, there are two cases for its corresponding task to proceed:
(1) for a parallel pipe, the task moves to the next pipe at the same parallel
line; (2) for a serial pipe, the task additionally checks if it can move to the
next parallel line. For example, in Figure 2.5 when a thread finishes token
p at pipe 1 and parallel line 0, we check whether the thread goes to the
pipe 2 at the same parallel line 0 or pipe 1 at the adjacent parallel line 1.
To carry out such a task dependency constraint, each pipe keeps a join
counter of an atomic integer to represent its dependency value. The values
of a serial pipe and a parallel pipe can be up to 2 and 1, respectively. We
create a 2D array join_counters to store the join counter of each pipe at
each parallel line. Line 2 initializes these join counters to either 2 (serial)
or 1 (parallel) based on the corresponding pipe types. At the first pipe
(line 3), a task either takes a ready token (i.e., a token whose order has
been determined) (line 4:7) or a new token (line 8:11), and then invokes
the pipe callable on that token (line 12). Then, we increment the number
of processed tokens num_tokens by one if the task processes a new token
(line 13:15).

When a task finds the token has dependency (line 16:18), we call
with_dependents (line 17, defined in Algorithm 4) to keep valid depen-
dents and remove invalid ones. After a token finishes at the first pipe,
we call resolve_token_dependencies (line 20, defined in Algorithm 7)

47

to resolve its associated token dependency up to longest_deferral (line
19:21). longest_deferral keeps track of the biggest deferred token ID and
is used to avoid redundant invocations of resolve_token_dependencies.
For example, there is no need to invoke resolve_token_dependencies
for applications that do not exhibit BTDs, such as Figure 2.2(a). At the
first pipe (line 3:22), we perform the above operations. For other pipes,
we simply invoke the pipe callables (line 23:25). After the pipe callable
returns, we call schedule_tasks(pf) (line 26, defined in Algorithm 8) to
determine the next possible tasks to run.

48

Algorithm 3: build_tasks(l)
global: tasks: an array of tasks
global: ready_tokens: a queue of ready tokens
global: join_counters: a two-dimensional array of join counters
global: longest_deferral: an integer of longest deferral
global: num_tokens: the number of processed tokens
Input: l: a parallel line id

1 pf← tasks[l];
2 AtomicStore(join_counters[pf.line][pf.pipe], join_counter_of_pf.type);

3 if pf.pipe == 0 then
4 if ready_tokens.empty() == false then
5 pf.token← ready_tokens.front();
6 ready_tokens.pop();
7 end
8 else
9 pf.token← num_tokens;

10 pf.num_deferrals← 0;
11 end
12 invoke_pipe_callable(pf);
13 if pf.token == num_tokens then
14 Increment(num_tokens);
15 end
16 if pf.dependents.empty() == false then
17 with_dependents(pf);
18 end
19 if pf.token ⩽ longest_deferral then
20 resolve_token_dependencies(pf);
21 end
22 end
23 else
24 invoke_pipe_callable(pf);
25 end
26 schedule_tasks(pf);

49

Algorithm 4 shows the implementation of with_dependents in line 17
in Algorithm 3 to check if a token has valid dependents and construct
deferred tokens. When a task finds the token has dependency, we call
check_dependents (line 1, defined in Algorithm 5) to keep valid depen-
dents and remove invalid ones. Invalid dependents refer to tokens whose
order has been determined. If the token still has dependents after the
first check (line 2:5), we construct it as a deferred token (line 3, defined
in Algorithm 6) and reiterate the task with another token (line 4). If the
token has no dependent, we reiterate the task with the same token (line
6:8).

Algorithm 4: with_dependents(pf)
Input: pf: a pipeflow object

1 check_dependents(pf);
2 if pf.dependents.empty() == false then
3 construct_deferred_tokens(pf);
4 goto Line 2 in Algorithm 3;
5 end
6 else
7 goto Line 12 in Algorithm 3;
8 end

Algorithm 5 shows the implementation of check_dependents in line 1
in Algorithm 4 to check if a token has valid dependents. We increment
the number of deferrals of that token to track how many times this token
has been deferred (line 1). We iterate the token’s dependents to check
the validity for two cases (line 2:15). Firstly, the dependent whose ID
is bigger than the number of processed tokens (num_tokens) is a future
token and thus is valid. We insert pf.token in token_dependencies[dep]
(line 4) and update longest_deferral (line 5). Secondly, the dependent
that is a deferred token is valid, and we insert the corresponding entry in

50

token_dependencies (line 8:10). The remaining dependents are invalid
and are removed from the token’s dependents (line 11:13).

Algorithm 5: check_dependents(pf)
global: token_dependencies: a hashmap of a token and the

deferred tokens
global: longest_deferral: an integer of longest deferral
global: num_tokens: the number of processed tokens
Input: pf: a pipeflow object

1 Increment(pf.num_deferrals);
2 for dep ∈ pf.dependents do
3 if num_tokens ⩽ dep then
4 token_dependencies[dep].push(pf.token);
5 longest_deferral← max(longest_deferral,dep);
6 end
7 else
8 if dep ∈ deferred_tokens then
9 token_dependencies[dep].push(pf.token);

10 end
11 else
12 pf.dependents.erase(dep);
13 end
14 end
15 end

51

Algorithm 6 shows the construction of a deferred token in line 3
in Algorithm 4. For a deferred token, we insert the key-value pair in
deferred_tokens, where the key is the token ID, and the value includes
the token’s ID, num_deferrals, and its dependents.

Algorithm 6: construct_deferred_tokens(pf)
global: deferred_tokens: a hashmap of a token and its deferred

object
Input: pf: a pipeflow object

1 deferred_tokens[pf.token].token← pf.token;
2 deferred_tokens[pf.token].num_deferrals←

pf.num_deferrals;
3 deferred_tokens[pf.token].dependents← pf.dependents;

52

Algorithm 7 implements resolve_token_dependencies in line 20 in
Algorithm 3. When a token whose order has been determined at the
first pipe and has an entry in token_dependencies, we need to resolve
the associated token dependency (line 1:9). We iterate over every ele-
ment (deferred_token) of the entry in token_dependencies[pf.token]
and remove the token from deferred_token’s dependents (line 3). If
deferred_token does not have any dependent left, it is no longer a deferred
token and becomes ready. We insert deferred_token in ready_tokens and
remove it from deferred_tokens.

Algorithm 7: resolve_token_dependencies(pf)
global: token_depencencies: a hashmap of a token and its

related deferred tokens
global: deferred_tokens: a hashmap of a token and its deferred

object
global: ready_tokens: a queue of ready tokens
Input: pf: a pipeflow object

1 if pf.token ∈ token_dependencies then
2 for deferred_token ∈ token_dependencies[pf.token] do
3 deferred_token.dependents.erase(pf.token);
4 if deferred_token.dependents.empty() == true then
5 ready_tokens.push(deferred_token);
6 deferred_tokens.erase(deferred_token);
7 end
8 end
9 end

53

Algorithm 8 shows how we schedule tasks when a token finishes at a
pipe in line 26 in Algorithm 3. We update variables (line 1:4) and define
an array to track next tasks (line 5). We update the join counters based
on the pipe type and determine the next possible tasks to run (line 6:11).
When the join counter of a pipe reaches zero, we bookmark this pipe as a
task to run next (line 7 and line 10). If two next tasks exist (line 12), the
current task informs the scheduler to call a worker thread to run the task
at the next parallel line (line 13) and reiterates itself on the next pipe (line
14). The idea here is to facilitate data locality as applications tend to deal
with the next pipe as soon as possible. If only one task exists, the current
task directly runs the next task with the updated pf object (line 16:20).

54

Algorithm 8: schedule_tasks(pf)
global: num_pipes: the number of pipes
global: num_lines: the number of parallel lines
global: join_counters: a two-dimensional array of join counters
Input: pf: a pipeflow object

1 curr_pipe← pf.pipe;
2 next_pipe← (pf.pipe+ 1)%num_pipes;
3 next_line← (pf.line+ 1)%num_lines;
4 pf.pipe← next_pipe;
5 next_tasks = {};
6 if curr_pipe is SERIAL and

AtomicDecrement(join_counters[next_line][curr_pipe]) == 0
then

7 next_tasks.insert(1);
8 end
9 if AtomicDecrement(join_counters[pf.line][next_pipe]) == 0

then
10 next_tasks.insert(0);
11 end
12 if next_tasks.size() == 2 then
13 call_scheduler(tasks[next_line]);
14 goto Line 2 in Algorithm 3;
15 end
16 if next_tasks.size() == 1 then
17 if next_tasks[0] == 1 then
18 pf← tasks[next_line];
19 end
20 goto Line 2 in Algorithm 3;
21 end

55

2.5 Experimental Results
We implemented our framework using C++20 and evaluated the runtime
performance on a x.264 application. We compiled all programs using
g++11.4 with -std=c++20 and -O3 enabled. We ran all the experiments
on a Ubuntu Linux 22.04 machine with 20 Intel i5-13500 CPU cores at 4.8
GHz and 128 GB RAM. All data is an average of ten runs.

Real-world x.264 Application

We evaluated our framework with x.264 applications and demonstrated
the advantages of our approach to effectively handle generalized token
dependency. The goal of x.264 is to generate H.264-compatible video
streams [12, 13]. In H.264 standard, there are three types of video frames,
I, P, and B frames. To encode frames, different frame types would reference
either preceding or succeeding frames. I frames do not reference other
frames, P frames reference one preceding I frame, and B frames reference
one preceding and one succeeding I or P frame. Figure 2.1 illustrates a
sample dependency diagram between these three frames. The backward
dependency of B frames cannot be easily handled using existing pipeline
frameworks without using condition variable to first reorder the tokens
as PARSEC [12, 13] does. We modified the x.264 benchmark from [12, 13]
by duplicating the frames to a bigger benchmark to evaluate the perfor-
mance under different frame sizes and thread sizes. In addition, we added
more B frames in the modified benchmark to further mimic the H.264
standard.

We considered PARSEC’s pthread implementation [12, 13] as the base-
line because PARSEC is the popular pipeline benchmark for many appli-
cations, such as ferret and x.264. To apply pipeline parallelism to x.264
applications, PARSEC assigns a thread to each frame. Every frame has
a condition variable associated with its dependency. If a frame has unre-

56

solved dependency, its condition variable will wait until its dependency
is resolved. When the frame becomes ready, its condition variable will
broadcast the frame’s readiness to any other frames that are waiting for the
frame to finish. We implemented PARSEC’s condition variable solution
using C++. Figure 2.3 illustrates the implementation in which we use
token 12 to simulate a B frame. This fine-grained control requires a high
familiarity with low-level synchronization primitives from developers and
is error-prone. With our framework, applications can directly specify the
frame dependencies at the first pipe. Besides, PARSEC’s solution could
lead to deadlock when insufficient threads are spawned as discussed in
Section 2.3. Our framework can avoid deadlock regardless of the thread
counts.

Figure 2.7 compares the frame reordering time between our framework
and PARSEC with up to 2 million frames and using up to 20 threads. We
find out that the gap between our solution and PARSEC increases as the
frame sizes grow. For example, when using 8 threads, the gap increases
from 0.7 second at 1 million frames (220) to 1.4 seconds at 2 million frames
(221). For the largest 2 million frame sizes, our framework is consistently
faster than the baseline. For example, ours is 8.2%, 8.6%, 5.4%, 6.8%, 7.8%,
and 5% faster than PARSEC when using 8, 10, 12, 14, 16, and 20 threads,
respectively. We also notice that all of the plots show one trend that our
framework outperforms PARSEC regardless of the frame sizes and thread
sizes. For example, when running 1 million frames we are 0.7 second faster
with both 8 and 16 threads; when using 16 threads, we are 8%, 8%, and
7.8% faster running 0.5, 1, and 2 millions frames, respectively. We attribute
the observations to the reasons: (1) PARSEC uses fine-grained low-level
condition variable to address the bi-directional frame dependencies. When
a frame has unresolved dependency, the thread that processes the frame
has to wait until the dependency is resolved. When a frame finishes, the
thread needs to broadcast the completeness of the frame to other waiting

57

217 218 219 220 221
0

5

10

15

Frame Size

Ru
nt

im
e(

s)
8 Threads

Ours
PARSEC

217 218 219 220 221
0

5

10

15

Frame Size

Ru
nt

im
e(

s)

10 Threads
Ours

PARSEC

217 218 219 220 221
0
2
4
6
8

10
12

Frame Size

Ru
nt

im
e(

s)

12 Threads
Ours

PARSEC

217 218 219 220 221
0
2
4
6
8

10

Frame Size

Ru
nt

im
e(

s)

14 Threads
Ours

PARSEC

217 218 219 220 221
0
2
4
6
8

Frame Size

Ru
nt

im
e(

s)

16 Threads
Ours

PARSEC

217 218 219 220 221
0

2

4

6

Frame Size

Ru
nt

im
e(

s)

20 Threads
Ours

PARSEC

Figure 2.7: Runtime comparison between our framework and PARSEC at
different frame and thread sizes.

58

frames. This mechanism that puts waiting threads to sleep and wakes
up threads to resume the operations causes overheads. (2) Our solution
does not wait for the frame but stores a deferred frame in deferred_token
and continues to schedule other frames without waiting. This design
could avoid the overheads that condition variable brings. As a result, our
framework demonstrates the runtime advantages over the baseline in all
cases regardless of the frame sizes and thread sizes.

2.6 Conclusion
In this chapter, we have introduced a new task-parallel pipeline program-
ming framework on top of the state-of-the-art Pipeflow to explore pipeline
parallelism in applications with token dependency. We have introduced
an expressive programming model for applications to explicitly specify
generalized token dependency. We have introduced a simple yet effi-
cient scheduling algorithm to reorder tokens and schedule reordered
tokens in the pipeline. We have evaluated the performance of our frame-
work on an x.264 video encoding application. For example, our frame-
work is 8.6% faster than PARSEC’s implementation. We have integrated
Pipeflow into the open-source task-parallel programming system, Task-
flow [72] to benefit the HPC community. Our future plans are to (1)
apply the framework to more different types of applications and bring
interdisciplinary ideas to the parallel computing community, (2) extend
token dependency-aware Pipeflow to task-parallel GPU computing plat-
forms [21, 28, 29, 89, 106, 115, 116, 117, 153] and distributed environ-
ment [66, 69, 70], (3) leverage machine learning techniques to further
improve the scheduling performance [27, 30, 132], and (4) improve the
data locality for a thread while reordering tokens.

59

3 programming dynamic task parallelism for
heterogeneous eda algorithms

3.1 Abstract
Many EDA applications are extremely sparse, irregular, and control-flow
intensive. Parallelizing this type of application can benefit from the abil-
ity to express dynamic task parallelism across arbitrary decision-making
points at runtime. Unlike the traditional construct-and-run models, dy-
namic task parallelism offers programmers great flexibility to parallelize
EDA algorithms that incorporate complex execution logic under dynamic
control flow, such as branch-and-bound techniques, on-the-fly pruning,
and recursive decomposition strategies. In this paper, we introduce a new
programming model that supports the dynamic building of a computa-
tional task graph. We will cover scheduling details and best practices for
exploring task parallelism under dynamic control flow. We will present a
real use case of our model that has successfully parallelized a static timing
analysis workload.

3.2 Introduction
Task graph programming (TGP) has inspired many new parallel and het-
erogeneous electronic design automation (EDA) algorithms [25, 26, 34, 43,
45, 47, 48, 49, 50, 61, 62, 63, 64, 73, 79, 114, 119, 120, 122, 123, 152] and large-
scale machine learning problems [28, 84, 86, 87, 89, 116, 117]. Different
from traditional loop-based models that explore parallelism across parallel
loops, TGP formulates a workload as a task graph that models a function call
as a task and a functional dependency as an edge. Figure 3.1(a) gives a task
graph example of four tasks and four dependencies. By leveraging TGP,
applications can enable top-down optimization to implement irregular

60

parallel decomposition strategies that consist of many tasks and dependen-
cies. Then, a TGP runtime can scale these dependent tasks across a large
number of processors with dynamic load balancing [113]. As a result,
the parallel computing community has yielded many successful TGP in
various application domains, such as OpenMP [5], Kokkos-DAG [35], PaR-
SEC [17, 58], OpenCilk [16, 141], HPX [93], Taskflow [59, 67, 72, 75, 111],
and Fastflow [10].

A

B

D

C

(a) Task graph

A B DC

A B

C

D

(c) Dynamic task graph parallelism Runtime

A B DC A B

C

D

(b) Static task graph parallelism Runtime

Figure 3.1: An illustration of the execution diagram of a task graph. White
blocks denote the task creation and gray rectangles denote the task execu-
tion. Edges refer to the dependencies. (a) A task graph. (b) The execution
diagram of STGP. (c) The execution diagram of DTGP.

Typically, TGP is categorized to two types: static task graph programming
(STGP) and dynamic task graph programming (DTGP). In STGP, applica-
tions define the task graph first and submit it to an STGP runtime for
execution, as shown in Figure 3.1(b). Since the graph structure is known
in advance, the runtime can perform whole-graph optimization. On the
other hand, DTGP defines the task graph structure dynamically. Tasks
and dependencies are created on the fly depending on runtime variables
and control-flow results, allowing the task creation time to overlap with
the task execution time (see Figure 3.1(c)). Thus, DTGP is often more
flexible than STGP when dealing with many EDA algorithms that fre-

61

quently incorporate dynamic control flow to implement irregular parallel
decomposition strategies.

In this chapter, we introduce a new DTGP library called AsyncTask to as-
sist EDA applications in quickly leveraging the power of DTGP. Compared
to existing DTGP libraries, such as OpenMP [5] and PaRSEC [17, 58],
AsyncTask is more expressive and transparent. For example, Listing 3.1
demonstrates the AsyncTask code for Figure 3.1(a). The code explains itself
through a clean graph description language. The program creates a task
graph of four tasks, A, B, C, and D. The dependency constraints state that
task A runs before task B and task C, and task D runs after task B and task
C. We summarize our contributions as follows.

• Programming Model. We present a simple and efficient dynamic
task graph programming model. Our programming model provides
a clear graph description language for applications to easily and
quickly describe dynamic task graph parallelism. The expressiveness
of our model improves programmer’s productivity when coding
large and complex task graphs for EDA applications.

• Task Scheduling Algorithm. We present an efficient task schedul-
ing algorithm to support our programming model. Unlike existing
solutions that mostly count on heavy mutexes to schedule dependent
tasks [5, 17, 58], we only use lightweight atomic counters to resolve de-
pendencies between tasks, enabling a more efficient task scheduling
algorithm.

We have evaluated AsyncTask on a real-world static timing analysis
application. Compared with the widely-used OpenMP [5] library, Async-
Task achieves a significant speed-up of 3.41× on a large design of 420K
tasks and 530K dependencies.
i n t main (){

Executor executor ;

62

// Create task A
auto [A, fu_A]=executor . dependent_async ([] () {

p r i n t f (" Task A\n") ;
}) ;

// Create task B , which has A as the dependent task
auto [B , fu_B]=executor . dependent_async ([] () {

p r i n t f (" Task B\n") ;
} , A) ;

// Create task C, which has A as the dependent task
auto [C, fu_C]=executor . dependent_async ([] () {

p r i n t f (" Task C\n") ;
} , A) ;

// Create task D, which has B and C as the dependent t a s k s
auto [D, fu_D]=executor . dependent_async ([] () {

p r i n t f (" Task D\n") ;
} , B , C) ;

// Wait u n t i l D f i n i s h e s
fu_D . get () ;

}

Listing 3.1: AsyncTask implementation of Figure 3.1(a).

3.3 Background
Mainstream DTGP libraries used by EDA applications include OpenMP [5],
PaRSEC [17, 58], and OpenCilk [16, 141]. In this section, we discuss their
implementations of Figure 3.1(a) and compare them with AsyncTask (List-
ing 3.1). Then, we discuss their scheduling algorithms and highlight their
limitations.

63

OpenMP

OpenMP [5] is a popular library that simplifies the development of par-
allel applications by adding parallelism to existing serial code through
the use of compiler directives, pragmas, and runtime library routines. To
implement Figure 3.1(a), OpenMP uses #pragma omp task construct to
define a task and depend clause to specify that task’s dependencies. Since
OpenMP relies on a task’s input and output data to describe a task’s de-
pendencies, applications need a data storage to store the data of every
task. Listing 3.2 demonstrates the OpenMP implementation. Applica-
tions define a dynamic array dependency to store the execution results
of the four tasks in the A-B-C-D order. Then applications use the entries
in dependency as the inputs and outputs for a task. For example, appli-
cations use #pragma omp task to create task D and specify D’s inputs to
be dependency[1] (i.e., B’s output) and dependency[2] (i.e., C’s output),
and output to be dependency[3] in the dependend clause with in or out
flags. To schedule tasks, OpenMP implements a lock-based hash table,
in which the key of each entry is the address of a task’s input or output
data, and the value of that entry is a list of tasks accessing that address.
As scheduling tasks require frequent accessing and updating the hash
table, the overhead of using mutexes is heavy and can impact the overall
runtime performance when running large and complex task graphs with
multiple threads.
i n t main (){

i n t ∗dependency = new i n t [4] ;
#pragma omp p a r a l l e l
{

#pragma omp s i n g l e
{

// Create task A
#pragma omp task depend(out : dependency [0])
{ p r i n t f (" Task A\n") ; }

64

// Create task B , which has a dependency from A
#pragma omp task depend(in : dependency [0])

depend(out : dependency [1])
{ p r i n t f (" Task B\n") ; }

// Creae task C, which as a dependency from A
#pragma omp task depend(in : dependency [0])

depend(out : dependency [2])
{ p r i n t f (" Task C\n") ; }

// Create task D, which has depdnencies from B and C
#pragma omp task depend(in : dependency [1] ,

dependency [2])
depend(out : dependency [3])

{ p r i n t f (" Task D\n") ; }
}

}
d e l e t e [] dependency ;

}

Listing 3.2: OpenMP implementation of Figure 3.1(a).

PaRSEC

PaRSEC [17, 58] is a task-based runtime for distributed system. It leverages
Domain Specific Languages (DSL) in its dataflow model to implement
applications. To program a PaRSEC implementation, applications need the
following steps: (1) Initialize a Message Passing Interface (MPI) engine
as PaRSEC is a runtime for distributed system. (2) Define an applica-
tion data structure using PaRSEC memory allocator to correctly build
up the dependencies between tasks. (3) Initialize a PaRSEC taskpool
to execute the tasks. (4) Define PaRSEC tasks and their function defi-
nitions. We simplify some implementation details to save more space

65

and do our best to keep the implementation as real as possible. For in-
stance, the original API of creating task D in Figure 3.1(a) needs 15 ar-
guments and we simplify those to 8 arguments. Listing 3.3 implements
the PaRSEC code for Figure 3.1(a). Applications first define a MPI en-
gine, an application data structure dependency, and a PaRSEC taskpool.
Since PaRSEC specifies dependencies through a task’s input and output
data as OpenMP does, the data structure dependency is used to store the
computation results of the four tasks in the A-B-C-D order. Next, applica-
tions create tasks using the parsec_dtd_insert_task API. The arguments
of the API include the task’s function label, the task’s input and output
data, and an end-of-argument PARSEC_DTD_ARG_END flag. The task’s inputs
(flagged with INPUT) and outputs (flagged with OUTPUT) are referenced
using tile_of_key together with the corresponding index in dependency.
For the individual task’s function definition, applications unpack the argu-
ments in the exact order as they are specified in parsec_dtd_insert_task.
For example, applications specify task D’s two inputs (indexed 1 and 2 at
dependency) in parsec_dtd_insert_task first and then one output (in-
dexed 3 at dependency). Applications must obey the order to unpack them
using unpack_args. To mark the end of a function definition, applications
need to use the PARSEC_HOOK_RETURN_DONE flag. The task scheduling al-
gorithm of PaRSEC is similar to OpenMP’s design. Both of them rely on
a lock-based hash table to manage the dependencies between tasks. The
main difference is that PaRSEC additionally considers where to execute
tasks that are created at a remote machine.
// Define task A
i n t A(p a r s e c _ t a s k _ t ∗ t h i s _ t a s k) {

i n t ∗out ;
unpack_args (t h i s _ t a s k , &out) ;
p r i n t f (" Task A\n") ;
re turn PARSEC_HOOK_RETURN_DONE; }

66

// Define task B
i n t B(p a r s e c _ t a s k _ t ∗ t h i s _ t a s k) {

i n t ∗in , ∗out ;
unpack_args (t h i s _ t a s k , &in , &out) ;
p r i n t f (" Task B\n") ;
re turn PARSEC_HOOK_RETURN_DONE; }

// Define task C
i n t C(p a r s e c _ t a s k _ t ∗ t h i s _ t a s k) {

i n t ∗in , ∗out ;
unpack_args (t h i s _ t a s k , &in , &out) ;
p r i n t f (" Task C\n") ;
re turn PARSEC_HOOK_RETURN_DONE; }

// Define task D
i n t D(p a r s e c _ t a s k _ t ∗ t h i s _ t a s k) {

i n t ∗ in1 , ∗ in2 , ∗out ;
unpack_args (

t h i s _ t a s k , &in1 , &in2 , &out) ;
p r i n t f (" Task D\n") ;
re turn PARSEC_HOOK_RETURN_DONE; }

i n t main () {
// 1 . I n i t i a l i z e MPI
// 2 . I n i t i a l i z e a p p l i c a t i o n data , dependency
// 3 . I n i t i a l i z e PaRSEC taskpool , dtd_tp
p a r s e c _ d t d _ i n s e r t _ t a s k (A,

t i l e _ o f _ k e y (dependency , 0) , INPUT ,
PARSEC_DTD_ARG_END

) ;
p a r s e c _ d t d _ i n s e r t _ t a s k (B ,

t i l e _ o f _ k e y (dependency , 0) , INPUT ,
t i l e _ o f _ k e y (dependency , 1) ,OUTPUT,
PARSEC_DTD_ARG_END

) ;
p a r s e c _ d t d _ i n s e r t _ t a s k (C,

t i l e _ o f _ k e y (dependency , 0) , INPUT ,

67

t i l e _ o f _ k e y (dependency , 2) ,OUTPUT,
PARSEC_DTD_ARG_END

) ;
p a r s e c _ d t d _ i n s e r t _ t a s k (D,

t i l e _ o f _ k e y (dependency , 1) , INPUT ,
t i l e _ o f _ k e y (dependency , 2) , INPUT ,
t i l e _ o f _ k e y (dependency , 3) ,OUTPUT,
PARSEC_DTD_ARG_END

) ;
parsec_taskpool_wai t () ;

}

Listing 3.3: PaRSEC implementation of Figure 3.1(a).

OpenCilk

OpenCilk [16, 141] is a software infrastructure for task-parallel program-
ming. A typical OpenCilk code is to spawn threads for tasks’ operations
and explicitly join threads for synchronization. Listing 3.4 demonstrates
OpenCilk implementation of Figure 3.1(a). Applications spawn a thread
to run A using the cilk_spawn directive, and explicitly join the thread to
finish A’s execution using cilk_sync, ensuring the completion of A. The
same pattern applies to task B, C, and D as well. As OpenCilk uses explicit
synchronization directives to manage dependencies between tasks, the
task scheduling algorithm is to wake up a thread from its thread pool to
do a task’s operation, and release that thread to the thread pool. When
reaching the synchronization directives, the program execution halts until
all threads finish and return to the thread pool.
// Define task A
void A(){ p r i n t f (" Task A\n") ; }

// Define task B
void B(){ p r i n t f (" Task B\n") ; }

68

// Define task C
void C(){ p r i n t f (" Task C\n") ; }

// Define task D
void D(){ p r i n t f (" Task D\n") ; }
i n t main () {

cilk_spawn A() ;
c i l k _ s y n c ;
cilk_spawn B () ;
cilk_spawn C() ;
c i l k _ s y n c ;
cilk_spawn D() ;
c i l k _ s y n c ;

}

Listing 3.4: OpenCilk implementation of Figure 3.1(a).

Limitations of Existing DTGP Libraries

Although OpenMP, PaRSEC, and OpenCilk have been used in many appli-
cations, we find several limitations of using them for DTGP: (1) Describing
a task’s dependencies through that task’s input and output data is not ex-
pressive. Applications need to figure out the dataflow between two tasks to
represent the task dependency, which is an indirect description and could
reduce the code readability. (2) Programming a large task graph is very
verbose. Applications have to explicitly indicate a task’s input and output
data, such as using in and out in OpenMP or INPUT and OUTPUT in PaRSEC.
For PaRSEC users, they have to additionally write PARSEC_DTD_ARG_END
to denote the end of input arguments and PARSEC_HOOK_RETURN_DONE to
indicate the end of function definition. (3) Relying on a lock-based hash
table to schedule tasks is not efficient. Their runtimes have to acquire a
mutex when accessing the hash table, which introduces non-negligible
lock overheads especially when running with multiple threads to schedule

69

a complex task graph.
Because of the above limitations, we have arrived at a conclusion that

we need a new DTGP library that provides an expressive programming
model to simplify the building of dynamic task graph parallelism. Ad-
ditionally, we need an efficient task scheduling algorithm to support the
programming model without much synchronization overhead.

3.4 AsyncTask
At a high level, AsyncTask enables an efficient implementation of irregular
parallel decomposition strategies through a top-down dynamic task graph.
We provide an expressive programming model for applications to describe
the task graphs easily. We also introduce a task scheduling algorithm to
support our programming model with only atomic counters to reduce the
overhead of managing the dependencies between tasks.

Dynamic Task Graph Programming Model

To enable expressive DTGP, we directly specify a task’s dependencies
with its dependent tasks without describing the dependencies through
the task’s input and output data. Our programming model provides a
simple interface dependent_async for applications to create tasks easily.
Applications specify a lambda to encapsulate a task’s operation followed
by a list of dependent tasks in the input arguments. dependent_async will
return a pair consisting of an instantiated task object and a future object
which holds the execution result of that task.

Listing 3.1 exemplifies the code of Figure 3.1(a) using dependent_async.
We define an executor which is a thread-safe object that manages a set of
worker threads and executes our tasks. We create four tasks, A, B, C, and
D. Every task defines its own lambda as the first argument followed by a
list of dependent tasks. The dependent tasks must be created before the

70

current task. For instance, task B defines its operation to print a string in
the lambda and specifies one dependent task A which is created before B.
Upon returning from dependent_async, we obtain a pair consisting of an
instantiated task object and a future object holding the execution result of
that task. After constructing all tasks, we call fu_D.get to wait for task D
to finish. As we construct tasks in the order A-B-C-D, the completion of D
in turns means that all the other tasks have finished their executions.

This programming model is simple and expressive. Applications only
need to write a callable (or lambda) and a list of dependent tasks to create
a task. There is no extra flag needed, such as in and out in OpenMP
or INPUT, OUTPUT, PARSEC_DTD_ARG_END, and PARSEC_HOOK_RETURN_DONE
in PaRSEC. Without these flags, our AsyncTask implementation is easy
to read and debug, enabling EDA developer’s high productivity when
programming large and complex task graphs.

Algorithm

To support our programming model, we design a new task scheduling algo-
rithm, as illustrated in Figure 3.2. After applications call dependent_async
to create a task, the executor checks if the new task has any dependent
tasks. If yes, AsyncTask builds up the dependencies between the new task
and each one of its dependents (denoted with 1), and then the new
task waits until all of its dependents finish executions (denoted with 2).
Otherwise, AsyncTask directly executes the new task (denoted with 3).
Next, we dive into the three parts in more details.

1 Building up the dependencies. If a new task has any dependent
tasks, we need to build up the dependencies between the new task and
each one of its dependent tasks (see 1 in Figure 3.2). In AsyncTask, we
express every dependency with the new task presenting in the successor
list of every dependent task. Assigning every task a successor list and
representing dependencies using successor lists simplifies our design

71

Call

executor.dependent_async

Execute

the task
Build dependencies

between

dependents and

the task

dependents = 0 # dependents > 0

Wait until

all dependents

finish

1

2

3

Figure 3.2: A flowchart of our task scheduling algorithm.

when it comes to resolving a dependency. For example, for the task graph
in Figure 3.1(a), both task B and C have task A as the dependent task,
and A’s successor list would have two successor tasks B and C. When
A finishes, AsyncTask can quickly resolve the dependencies by directly
checking A’s successor list rather than iterating every existing task to see
what dependency to resolve. To safely and successfully add tasks into a
dependent task’s successor list, there are two concerns. First, when an
executor adds tasks into a dependent task’s successor list, we need to
ensure that dependent task is alive. Since every task is an instantiated
task object, it will be destroyed and returned to the operating system
after it finishes the execution. To avoid adding tasks in an empty task
object’s successor list (see Figure 3.3(a)), we leverage the logic C++ smart

72

pointer std::shared_ptr to retain shared ownership of a task between the
main thread and the executor, ensuring that task remains alive throughout
the entire program (see Figure 3.3(b)). When a worker thread finishes a
task’s execution, it will remove the task from the executor, decrementing
the number of shared owners by one. If that counter reaches zero, the task
is then destroyed.

Figure 3.3: An illustration of shared ownership of task A and B in Figure
3.1(a). (a) A finishes and returns to operating system (OS). An executor
relates task B to an empty task. (b) Main thread owns A. An executor
successfully relates B and A.

Second, we need to protect every successor list from data race as multi-
ple threads can add tasks in a successor list simultaneously. To avoid data
race, we assign every task an atomic variable to protect its own successor
list. Every atomic variable has three states FINISHED, UNFINISHED, and
LOCKED. FINISHED denotes a task completion, UNFINISHED denotes an on-
going execution of a task, and LOCKED denotes that another task is adding
itself to the successor list of the current task. Figure 3.4 visualizes how
a three-state atomic variable can protect a successor list from data race.
In (a), assume A has finished its execution and its state is set to FINISHED.
There is no need to add B and C in A’s successor list. No data race on A’s

73

successor list. In (b), three tasks are performing compare-and-swap (CAS)
operations on A’s state at the same time. If A succeeds in this operation,
then we are in the situation of (a). If B succeeds, then B changes A’s to
LOCKED and can add itself in A’s successor list solely, as illustrated in (c).
After B finishes the adding, B changes A’s state back to UNFINISHED, and
the whole process repeats for C.

AF

B

C

AU

B

C

AL

B

C

Adding a task

Compare and swap

F FINISHED

U UNFINISHED

L LOCKED(a) (c)(b)

Figure 3.4: An illustration of using the atomic variable to change task A’s
state. A, B, and C refer to the tasks in Figure 3.1(a). A is trying to change
the state to FINISHED. B and C are trying to add themselves to A’s successor
list. (a) A is at the FINISHED state. (b) A is at the UNFINISHED state. (c) A is
at the LOCKED state.

2 Waiting for dependent tasks to finish. After AsyncTask success-
fully creates a new task and builds up its dependencies, the next step
for the new task is to wait for its dependent tasks to finish (see 2 in
Figure 3.2). To achieve this, we assign every task an atomic counter to keep
track of the number of its unfinished dependent tasks. The initial value is
the number of dependent tasks specified in dependent_async API. When
one of its dependent tasks finishes the execution, the dependent task will
decrease the atomic counter of that task by one. If that atomic counter
becomes zero, meaning the task has no unfinished dependent task and is
ready to execute. Figure 3.5 visualizes the process. In (a), task B’s initial
atomic counter is one and it is performing the CAS operation in order
to add itself in A’s successor list. In (b), task B successfully added itself
in A’s successor list. In (c), task A finishes the execution and decreases

74

the atomic counter of its successor B by one. Task B now has the atomic
counter equal to zero and is ready to execute. We refer the atomic counter
to join counter later and would use them interchangeably in the paper.

AU B

AC = 1

AL B

AC = 1

AF B

AC = 0
Compare and swap

Adding a task

Decrease counter

F FINISHED
U UNFINISHED
L LOCKED
AC Atomic counter(a) (b) (c)

Figure 3.5: An illustration of using atomic counters to represent the number
of dependent tasks. A and B refer to the tasks in Figure 3.1(a). (a) B is
performing the CAS operation on A’s state. (b) B is adding itself in A’s
successor list. (c) A finishes its execution and decreases B’s atomic counter
by one.

3 Executing a task and resolve dependencies. AsyncTask executes
a task when a task has no dependent task or all of its dependent tasks
have finished their executions(see 3 in Figure 3.2). When a task finishes
the execution, we need to resolve the associated dependencies between it
and all of its successor tasks. To achieve this, a task iterates its successor
list and decrease the atomic counter of every successor by one. Figure 3.6
visualizes how a task resolves the associated dependencies after it finishes
the execution. In (a), task A finishes the execution, iterates its successor
list, and decrease the atomic counter of B and C by one. Now, B and C have
zero join counter and are ready to execute. In (b), B and C have finished
the execution and both decrement D’s join counter by one. D has zero join
counter and is ready to execute.

75

A

B

C

AC = 0

B

D

AC = 1

C

D

AC = 1

D

AC = 2

(a)

0 0

A

AC = 0

B

D

AC = 0

(b)

C

D

AC = 0

D

AC = 2 0

Figure 3.6: An illustration of resolving dependencies after a task finishes.
A, B, C, and D refer to the tasks in Figure 3.1(a). (a) A finishes the execution
and decreases the atomic counter (AC) of B and C by one. (b) B and C
finish, and both decrease D’s AC by one.

Pseudocode

In this section, we implement the flowchart in Figure 3.2 based on the
design overview presented in the previous section. Algorithm 9 imple-
ments the dependent_async API which takes a callable (or lambda) and
a list of dependent tasks (deps) and returns a pair consisting of the cre-
ated task and a future. We first define a future object future which will
hold the calculation result of the task (line 1). Then, we calculate how
many dependent tasks the new task has (line 2). We initialize the new
task task (line 3). Next, we iterate every dependent task and build the
dependencies (line 4:6). We build the dependencies between task and
every dependent task in line 5 (details are given in Algorithm 10). Since

76

we are in a multi-threaded environment, some dependent tasks may have
finished before we build the dependencies between them and task. If all
dependents finished or the task has no dependent task specified (line 7:9),
we can directly schedule task (line 8). In the end, we return a pair of the
created task task and the future object future (line 10).

Algorithm 9: dependent_async(callable, deps)
Input: callable: a callable of the task
Input: deps: a list of dependent tasks
Output: (task, future): a pair of the created task and the

corresponding future object
1 Create a future

2 num_deps← sizeof(deps)
3 task←initialize_task(callable,num_deps, future)
4 for dep ∈ deps do
5 process_dependent(task,dep,num_deps)
6 end
7 if num_deps == 0 then
8 schedule_async_task(task)
9 end

10 Return (task, future)

Algorithm 10 implements process_dependent in which we build the
dependency between a task and one of its dependent tasks. This API
takes the task task, a dependent task dep, and the number of dependent
tasks num_deps in its inputs. We add task in dep’s successor list if dep
has not finished. First, we store the state of dep in dep_state (line 1).
We create a variable target_state to store the state UNFINISHED (line 2).
Next, we perform the CAS atomic operation on dep_state (line 3). If
dep_state is equal to target_state (i.e. dep has not yet finished), we
swap dep_state to LOCKED, which means we now enter the critical region
and have the exclusive access to dep’s successor list (line 4:5). We add task
in the successor list (line 4) and resume dep_state back to UNFINISHED
(line 5). If dep_state is not equal to target_state, target_state would

77

be set to dep_state atomically by the CAS operation. If target_state is
set to FINISHED, that means dep has finished and we decrement task’s join
counter by one and update num_deps accordingly (line 7:8). If target_state
is set to LOCKED, that means some other task enters the critical section in
line 4:5 first, we reiterate to the beginning to try the whole process again
(line 11).

Algorithm 10: process_dependent(task, dep, num_deps)
Input: task: a created task
Input: dep: a dependent task
Input: num_deps: the number of dependent tasks

1 dep_state← dep.state
2 target_state← UNFINISHED

3 if dep_state.CAS(target_state,LOCKED) then
4 dep.successors.push(task)
5 dep_state← UNFINISHED

6 end
7 else if target_state == FINISHED then
8 num_deps←AtomicDecrement(task.join_counter)
9 end

10 else
11 goto line 2
12 end

Algorithm 11 implements the schedule_async_task API in which we
execute a task, change its state to FINISHED, and then resolve the depen-
dencies for its successors. This API takes the task task in the input. Be-
fore executing task, we change its state to FINISHED to prevent any other
tasks from adding themselves in the task’s successor list. We define
target_state to be UNFINISHED (line 1). Then we perform the CAS op-
eration on task.state. If succeed, that means task.state is equal to
target_state (i.e. UNFINISHED) and is then set to FINISHED (line 2). If
failed, that means some other task enters the critical section in lines 4:5
in Algorithm 10 and is adding itself in task’s successor list. In such case,

78

we reset target_state to UNFINISHED and perform the CAS operation
again (line 3). When we successfully set task.state to FINISHED, we can
execute task (line 5). Next, we iterate the successor list and decrement
the join counter of each successor by one (line 6:10). If any successor
whose join counter becomes zero after the decrementation, we schedule
that successor directly (line 8). Now, we finish executing task, we can
decrement the number of task’s shared owners (ref_count) by one (line
11). If task does not have any shared owner, we can delete task and return
its allocated resource to the operating system (OS) (line 12).

Algorithm 11: schedule_async_task(task)
Input: task: a created task

1 target_state← UNFINISHED

2 while not task.state.CAS(target_state, FINISHED) do
3 target_state← UNFINISHED

4 end
5 Invoke(task.callable)
6 for successor ∈ task.successors do
7 if AtomicDec(successor.join_counter) == 0 then
8 schedule_async_task(successor)
9 end

10 end
11 if AtomicDecrement(task.ref_count) == 0 then
12 Delete task

13 end

3.5 Experimental Results
We implemented AsyncTask using C++20 and evaluated its performance
on an industrial static timing analysis (STA) application [63, 79] that lever-
ages task graph parallelism to parallelize graph-based analysis (GBA).
We consider the state-of-the-art open-source STA engine, OpenTimer[6],

79

as our experimental environment. OpenTimer formulates the GBA al-
gorithm into a task graph and schedules dependent tasks across many
heterogeneous cores for parallel execution. The task graph represents the
circuit graph itself and can contain millions of tasks and dependencies for
large designs. Each task computes the required timing information at its
corresponding node in the circuit graph (e.g., slew, delay, arrival time),
while each edge represents a dependency between two tasks. Table 3.1
lists the statistics of the three circuits we use. ∥V∥ denotes the number of
the tasks in a circuit and ∥E∥ denotes the number of the edges.

We compiled programs using Clang++17 with -std=c++20 and -O3
enabled. We ran all the experiments on a Centos Stream 8 machine with 8
Intel i7-9700K CPU at 3.60GHz and 32 GB RAM. All data is an average of
ten runs. The implementation of AsyncTask is available in the Taskflow
project [72].

Table 3.1: Task (∥V∥) and edge (∥E∥) counts of three circuits.

Circuits ∥V∥ ∥E∥ ∥V∥+ ∥E∥
wb_dma 13,125 16,593 29,718

tv80 17,038 23,087 40,125
ac97_ctrl 42,438 53,558 95,996

Baseline

Given the large number of parallel libraries, it is impractical to compare
AsyncTask with all of them. We consider OpenMP[5] as the baseline
because it is a mainstream DTGP library that has been widely employed
by many EDA applications. Compared with other existing DTGP libraries,
OpenMP allows applications to more flexibly define task dependencies
using directive-based programming (e.g., range iterator clauses).

80

Performance Comparison

Figure 3.7 compares the memory and runtime between AsyncTask and
OpenMP with up to 16 threads for completing the analysis of the three
circuits. In terms of memory usage, we see that OpenMP consistently
consumes more memory than AsyncTask in all cases. This is because
OpenMP implements a global lock-based hash table to track tasks and
their dependencies. The key of each entry in the table is the memory
address of a task’s input or output data and the value is the tasks that
access the corresponding memory address. The number of entries in
the table grows in proportion to the edge counts. On the other hand,
AsyncTask does not need a global data structure but assigns each task a
successor list, which can largely reduce the overhead of lock access.

Regarding runtime performance, AsyncTask outperforms OpenMP in
all cases. For example, AsyncTask is 3.19×, 3.19×, and 3.41× faster than
OpenMP at 16 threads for wb_dma, tv80, and ac97_ctrl, respectively. The
reason for the runtime difference comes from the design that OpenMP
needs mutexes to access its global hash table in order to resolve depen-
dencies between tasks. However, AsyncTask only uses lightweight atomic
counters to resolve task dependencies.

81

1 2 4 8 1660

80

100

Number of threads

M
em

or
y(

M
B)

Memory (wb_dma)

OpenMP
AsyncTask

1 2 4 8 16
20

40

60

80

Number of threads

Ru
nt

im
e(

m
s)

Runtime (wb_dma)

OpenMP
AsyncTask

1 2 4 8 16
80

100

120

Number of threads

M
em

or
y(

M
B)

Memory (tv80)

OpenMP
AsyncTask

1 2 4 8 16
20
40
60
80

100
120

Number of threads

Ru
nt

im
e(

m
s)

Runtime (tv80)

OpenMP
AsyncTask

1 2 4 8 16

200

250

300

Number of threads

M
em

or
y(

M
B)

Memory (ac97_ctrl)

OpenMP
AsyncTask

1 2 4 8 16
50

100
150
200
250
300

Number of threads

Ru
nt

im
e(

m
s)

Runtime (ac97_ctrl)

OpenMP
AsyncTask

Figure 3.7: Memory and runtime comparison of the STA workload on
three circuits (wb_dma, tv80, ac97_ctrl) between AsyncTask and OpenMP.

82

3.6 Conclusion
In this chapter, we have introduced a new DTGP library called AsyncTask
to support the programming of dynamic task graph parallelism. Async-
Task has introduced a new expressive programming model supported by
an efficient scheduling algorithm. We have also presented a real use case
in static timing analysis and demonstrated the promising performance of
AsyncTask over a mainstream DTGP library, OpenMP. AsyncTask has been
integrated into the open-source Taskflow project. Future work will focus
on applying AsyncTask to other EDA applications, such as distributed
computing [66, 69, 70, 78], macro modeling [102], and path-based analy-
sis [77, 79, 80, 81, 82].

83

4 a resource-efficient task scheduling system
using reinforcement learning

4.1 Abstract
Computer-aided design (CAD) tools typically incorporate thousands or
millions of functional tasks and dependencies to implement various syn-
thesis and analysis algorithms. Efficiently scheduling these tasks in a
computing environment that comprises manycore CPUs and GPUs is criti-
cally important because it governs the macro-scale performance. However,
existing scheduling methods are typically hardcoded within an applica-
tion that are not adaptive to the change of computing environment. To
overcome this challenge, this paper will introduce a novel reinforcement
learning-based scheduling algorithm that can learn to adapt the perfor-
mance optimization to a given runtime (task execution environment)
situation. We will present a case study on VLSI timing analysis to demon-
strate the effectiveness of our learning-based scheduling algorithm. For
instance, our algorithm can achieve the same performance of the baseline
while using only 20% of CPU resources.

4.2 Introduction
Computer-aided design (CAD) tools typically incorporate thousands or
millions of functional tasks and dependencies to implement various syn-
thesis and analysis algorithms [25, 26, 34, 43, 45, 47, 48, 49, 50, 61, 62,
63, 64, 73, 79, 114, 119, 120, 122, 123, 152]. For instance, [63] describes
timing analysis algorithms in a top-down task graph where each task rep-
resents a function and each edge represents a functional dependency.
Efficiently scheduling these tasks in a computing environment that com-
prises manycore central processing units (CPUs) and graphics processing

84

units (GPUs) is critically important because it governs the macro-scale
performance [43, 45, 47, 48, 49, 50, 51, 62, 68, 119, 120]. However, existing
scheduling solutions either resort to general-purpose heuristics (e.g., work
stealing [73, 75, 111, 113]) or a custom scheduling method (e.g., hard-
coded [152]). These solutions are typically not adaptive to the change in
the computing environment and often consume large scheduling resources
due to the randomness involved in dynamic load balancing.

Recent advances in machine learning have inspired us to design a new
scheduling framework that learns to interact with a computing environ-
ment [36]. Despite exciting progress in learning-based scheduling solu-
tions, most of them target independent job batches in a high-performance
computing (HPC) cluster. These solutions are not suitable for CAD prob-
lems where the goal is to find a resource-efficient scheduling plan for running
dependent tasks using minimal CPU resources. This type of scheduling
plan is very important because many CAD task graphs are much larger
and more complex than conventional HPC workloads. For instance, a
timing propagation task graph can compose up to 500 million tasks and
700 million dependencies to complete a full-timing analysis of a large
design [63, 72]. Due to the sparsity, we may just use a few CPU cores to
optimally complete the task graph, which in turn improves the resource
utilization and the overall system throughput performance.

To this end, we introduce in this paper a resource-efficient task-scheduling
system by harnessing the power of reinforcement learning. We summarize
our technical contributions below:

• Scheduling Algorithm. We have introduced a reinforcement learning-
based task scheduling algorithm to adapt the performance optimiza-
tion to the computing environment. With our scheduling algorithm,
applications are able to schedule tasks with few execution contexts
while achieving a comparable runtime performance to existing solu-
tions.

85

• Generalizability. We apply our RL-based scheduling algorithm to
schedule a wide range of task graphs and show its superior perfor-
mance. Surprisingly, our experimental results show that the RL-
based scheduling policy learned from limited classes of task graphs,
can generalize well to a wide range of diverse task graphs. Therefore,
our RL-based scheduling algorithm provides a universal scheduling
solution to multi-core systems.

• Extensible State Representations. We have introduced an easy-
to-extend state representation to accommodate new computing en-
vironment statistics, such as power consumption. With this state
representation, applications are able to quickly switch to a different
scheduling algorithm based on their specific needs.

We have evaluated our framework on a real static timing analysis
(STA) workload that executes a task graph to complete full timing analysis.
Compared to the popular heuristic-based scheduler that assigns tasks to
all 40 workers uniformly at random, our RL-based scheduler achieved a
slightly lower runtime on multiple task graphs using only 7-8 workers.

4.3 Background

System Overview

Our system targets at static timing analysis (STA) application, one of the
most important steps in the entire EDA flow, and describes a STA workload
as a task graph[63]. The goal is to efficiently schedule the tasks of the
task graph. The task graph consists of multiple nodes and edges, which
represent the tasks and the dependencies among the tasks, respectively.
In particular, the task dependencies not only constrain the execution order
of the tasks, but also determine the data flow among them. Take the task

86

(a)

A

B

C

D

W0

W1

W2

Wm-1

(c)

StateA

Agent

W1

W0

W1

W2

Wm-1

(d)

A

W0

W1

W2

Wm-1

Agent

(e)

StateB

W1

W0

W1

W2

Wm-1

(f)

B

W0

W1

W2

Wm-1

Agent

(g)

StateC

W0

B

W0

W1

W2

Wm-1

(h)

B

C
Transfer
A’s data

W0

W1

W2

Wm-1

Agent

(b)

State

Action

Figure 4.1: Illustration of our task scheduling system. Gray rectangles
denote the workloads of workers. (a) A task graph. (b) The task scheduler.
(b) The scheduler asks Agent for task A’s action. Agent suggests W1. (d)
W1 has A in its queue. (e) The scheduler asks Agent for task B’s action.
Agent suggests W1. (f) W1 has B in its queue. (g) The scheduler asks
Agent for task C’s action. Agent suggests W0. (h) W0 has C in its queue.
A’s data is transferred to W0.

graph shown in Figure 4.1(a) as an example. The task dependencies re-
quire that A executes before B and C, and D executes after B and C. Moreover,
the execution of B and C needs A’s data, and the execution of D needs both
B and C’s data. To schedule tasks across the execution contexts (e.g., CPUs)
in a non-stationary computing environment, we introduce a reinforcement
learning (RL)-based task scheduler as illustrated in Figure 4.1(b). Next,
we provide a high-level overview of this RL-based scheduler, and leave all
the technical details to Section 4.4.

We consider a multi-core system and denote the i-th worker as Wi.
Each worker has its own task queue to store the tasks assigned to it. We
denote the general computing environment as State, which includes the
total workloads assigned to the workers and some information about the
task to be scheduled (see Section 4.4 for the details). Then, based on the

87

current State, the reinforcement learning Agent determines an Action
that assigns the task to a certain worker. Figure 4.1(c)-(h) illustrate how
our task scheduler schedules the three tasks A, B, and C from the task graph
in Figure 4.1(a). To explain, in (c), the Agent first assigns A to worker W1
based on the current StateA. In (d), A is inserted intoW1’s queue. AfterW1
completes A, Agent assigns B and C to W1 and W0 according to StateB and
StateC, respectively, as shown in Figure4.1(e) and (g). As B is assigned
to the same worker (W1) as A, there is no data transfer cost for B shown in
Figure 4.1(f). In contrast, C requires an extra data transfer cost shown in
Figure 4.1(h).

4.4 Reinforcement Learning-Based Scheduling
In this section, we reformulate the task scheduling problem as a reinforce-
ment learning (RL) problem, and apply the Deep Q-Learning algorithm
[131] to train a good RL policy for autonomous task scheduling.

Reinforcement learning and Markov Decision Process

Reinforcement learning (RL) is a powerful machine learning framework
for learning optimal decision-making in a so-called Markov Decision Process
(MDP) [11, 39, 98, 99, 125, 144, 150]. In RL, an agent interacts with a
complex environment through an MDP, and the interaction data are used
to further improve the agent’s decision-making. Specifically, MDP is an
abstract sequential decision-making process that consists of the following
key elements.

• State st. At any time t, the agent observes the global state st of the
environment, which contains all information that the agent needs to
take an action.

88

• Policyπ and actionat. Based on the current state st, the agent follows
its policy π(·|st) to take an action at. Here, policy π is regarded as a
probability distribution over all possible actions conditioned on the
state st.

• State transition kernel P. After action at is taken, the global state
st transfers to a new state st+1 following the environment’s transi-
tion kernel P(·|st,at), which is a distribution over all possible states
conditioned on st,at.

• Reward rt. The agent receives a reward signal rt after the state
transition at time t. Here, the reward rt generally depends on st,at

and st+1.

Equation (4.1) below illustrates the evolution of MDP. In RL, the goal
of the agent is to learn the optimal policy π∗, following which yields
the highest accumulated reward when interacting with the environment
through the MDP.

(MDP): s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · · (4.1)

Formulate Task scheduling as an MDP

We view task scheduling as an MDP. Specifically, consider a multi-core
system with m workers. Denote Tk as the k-th task to be assigned to the
workers, and denote P(Tk) the set of parent tasks of Tk. Then, the elements
of this MDP can be specified as follows.

• State. Consider the time when the k-th task Tk is ready for scheduling,
the state of the RL agent is a vector containing 2m+ 1 coordinates.
The first m coordinates record the current total workload of the
queues of the m workers (each coordinate records the workload of
one queue). The next m coordinates record the distribution of the

89

total workload of the parent tasks P(Tk) over the m workers, i.e., each
coordinate records the amount of workload of P(Tk) done by one
worker. Finally, the last coordinate of the state vector records the total
workload of the task Tk to be scheduled. We can see Figure 4.2 for
the state vectors for task A and B from the task graph in Figure 4.1(a).
These state information are queried from the system whenever a
new task is ready for scheduling, and we take logarithm to reduce
the scale of large numerical values in this state. In particular, these
information is directly related to the balance of workload assigned to
the workers and the data transfer cost, which are two critical factors
that affect the overall system performance.

• Policy and action. There are m possible actions since the task Tt will
be assigned to one of the m workers. The policy is specified based
on a so-called state-action value table Q(s,a), which evaluates the
expected return of taking action a in state s. In the next subsection,
we describe the deep Q-learning algorithm used to learn Q(s,a) in
a data-driven way.

• State transition. Once task Tk is assigned to a worker based on the
action generated by the policy, the workload of that worker’s queue
will change. This will further lead to a new system state. We note
that the new state depends only on the previous state and the action
taken, which satisfies the Markov property required by MDP.

• Reward. After each state transition, the agent receives a reward
signal, which is designed based on two system performance-related
characteristics: the balance of total workload assigned to the workers
and the data transfer cost induced by scheduling the task Tk.
The balance of workload is defined as the gap between the maximum
queue load and the minimum queue load among the workers, which
quantifies the level of imbalance of the workers’ queues.

90

B

StateB

A

W0

W1

W2

Wm-1

StateA

A

W*0

W*1

W*2

W*m-1

3. Workload of a task

1. Workload of each worker

2. The parent task’s
workload that is finished
at each worker

Figure 4.2: Illustration of the state representations when scheduling task
A and B in the task graph of Figure 4.1(a). The first column refers to the
State for task A and the second for B. Gray rectangles denote the workloads.
Every state includes 1) the workload of each worker, 2) the parent task’s
workload that is finished at each worker, and 3) the workload of a task.
The first m rows of StateA and StateB correspond to Figure 4.1(c) and
4.1(e), respectively. As task A is executed by W1, W∗

1 for StateB is the
workload of task A. The workload of other W∗ is empty.

For the data transfer cost, suppose Tk is assigned to worker i, then
the induced data transfer cost is the total data load of its parent tasks
P(Tk) that are not assigned to worker i (these parent tasks’ data need
to be transferred to worker i in order to execute task Tk).
Mathematically, the reward signal is defined as follows,

rt := − log10(workload balance) − α log10(transfer cost), (4.2)

91

where α > 0 is a hyper-parameter, and we take logarithm to reduce
the scale of large numerical values. Intuitively, the above reward
design penalizes taking actions that would cause imbalanced queue
workloads and high data transfer cost.

Deep Q-Learning Algorithm

Deep Q-learning is a popular algorithm that aims to learn the optimal pol-
icy that maximizes the expected accumulated reward [131]. This problem
is formulated as follows,

max
π

J(π) := E
[∞∑

t=0
γtrt

∣∣π],

where γ ∈ (0, 1) is a pre-selected discount factor. In particular, given state
st at time t, the policy generates an action at based on a state-action value
function Q according to

π(at|st) = arg max
a

Q(st,a). (4.3)

Intuitively, Q(s,a) evaluates the expected return of taking action a in state
s, and the policy π simply suggests the action that leads to the highest Q
value in a given state. It is well-known that the Q-function satisfies the
following Bellman equation [143],

Q(st,at) = rt + γE
[

max
a

Q(st+1,a)
]
. (4.4)

The main idea of deep Q-learning is to parameterize the Q-function
using a deep neural network Qθ(s,a), where θ denotes the network pa-
rameters. This network takes state as the input and outputs the Q values
associated with all possible actions, as illustrated in Figure 4.3. Specifically,
the deep Q-learning algorithm is summarized in Algorithm 12, and it

92

consists of the following key steps.

• Data collection. At each time step t, the agent takes an action at fol-
lowing an ϵ-greedy strategy, i.e., at is chosen uniformly at random
with probability ϵ(t) (called exploration), otherwise, it is chosen
based on the Q-network as at = arg maxaQθ(st,a) (called exploita-
tion). Here, ϵ(t) is a pre-defined parameter that decays over t to
encourage exploration at the beginning and exploitation later on. Af-
ter taking the action at, we collect the transition data (st,at, rt, st+1)

and add it to the Experience Replay memory, which stores the latest
N transition data and will be used in the training phase.

• Data sampling. In each iteration of the training phase, we query B

random samples from the Experience Replay memory. Then, for each
sampled transition data (assume collected at time T), we compute
the following target based on the Bellman equation in Equation (4.4).

yT = rT + γmax
a

Qθ ′(sT+1,a), ∀ T ∈ B. (4.5)

Here, Qθ ′ corresponds to the so-called target Q-network, whose
parameters θ ′ are copied from the original Q-network Qθ every K

time steps. The purpose is to decouple the original Q-network from
the target and allows to properly use automatic back propagation in
the model update later.

• Model update. With the computed targets, we build the following
loss function associated with the sampled data.

L =
1
B

∑
T∈B

(
yT −Qθ(sT ,aT)

)2. (4.6)

Then, we update the Q-network’s parameters θusing back-propagation
through the computed loss L.

93

Algorithm 12: Deep Q-Learning Algorithm
1 Initialize: Q-network θ, copy to target network θ ′ ← θ

2 for Iterations t = 0, 1, . . . do
3 ▶ Take action at following the ϵ(t)-greedy policy.
4 ▶ Get data (st,at, rt, st+1) and add to replay buffer.
5 ▶ Sample a batch of B samples from the replay buffer and

compute the target

yT = rT + γmax
a

Qθ ′(sT+1,a), ∀ T ∈ B.

6 ▶ Update θ via back-propagation via the following loss.

L =
1
B

∑
T∈B

(
yT −Qθ(sT ,aT)

)2.

7 ▶ if t mod K = 0, θ ′ ← θ.
8 end

4.5 Experimental Results
We evaluated the performance of our reinforcement learning-based task
scheduling system on an industrial static timing analysis (STA) applica-
tion [63, 79] that exploits task graph parallelism to parallelize graph-based
analysis (GBA). STA is a critical step in the overall EDA flow because it veri-
fies the expected timing behavior of a circuit design and reports the critical
paths that violate the given timing constraints (e.g., set-up, hold). As our
system schedules task graphs, we used the state-of-the-art open-source
STA engine, OpenTimer [6], to generate a task graph for us. OpenTimer
formulates the GBA algorithm into a task graph. The task graph repre-
sents the corresponding circuit graph and can contain millions of tasks
and dependencies for large designs. Each task computes the required tim-
ing information at its corresponding node in the circuit graph (e.g., slew,

94

delay, arrival time), while each edge represents a dependency between
two tasks. After OpenTimer generates a task graph, our scheduler directly
performs the scheduling on the task graph. Table 4.1 lists the statistics of
the nine circuits we used.

We compiled programs using gcc-12 with -std=c++17 and -O3 enabled.
We ran all the experiments on a Ubuntu 19.10 (Eoan Ermine) machine
with 80 Intel Xeon Gold 6138 CPU at 2.00GHz and 256 GB RAM.

Baseline and Deep Q-Learning

For comparison, we implemented a baseline method based on the random
action (RA) engine, which assigns each task to one of the 40 workers
uniformly at random. Such a baseline method is widely used to schedule
STA workloads. It randomly assigns the tasks to the workers without
adapting to the dynamic and non-stationary computing environment.

To learn our RL-based task scheduler, we implemented Algorithm 12
to train the RL policy using a mixed graph composed of the following
three graphs: aes_core, tv80 and c6288. Specifically, we implemented
Algorithm 12 with the following set of hyper-parameters: batch sizeB = 64,
target network synchronization period K = 10, reward discount factor
γ = 0.95, reward weight α = 0.01, and experience replay memory size N =

10k. In particular, for the ϵ(t)-greedy policy, we adopt the initialization
ϵ(0) = 1.0 (at t = 0) and multiply ϵ(t) by a factor of ϵ_decay = 0.99998
after every iteration. Also, we used a four-layer fully-connected neural
network to parameterize the Q-function [55] and the network architecture
is illustrated in Figure 4.3. To update the model parameters θ via back-
propagation, we use the standard Adam optimizer with learning rate
η = 1e− 4 [96].

Figure 4.4 plots the training loss (left figure) and the accumulated re-
ward (right figure) achieved by the RL policy during the training process.
From the left figure, it can be seen that the training loss decays quickly, indi-

95

s[0]

s[1]

s[80]

Input layer

(81, 256)

Hidden layer

(256, 256)

Hidden layer

(256, 128)

Output layer

(128, 40)

Q(s, a = 0)

Q(s, a = 39)

Figure 4.3: Illustration of the Q-network architecture. The network takes in
the state vector as input (input dimension=81), then propagates it forward
through 2 hidden layers and finally outputs the Q-values corresponding to
each of the 40 possible actions (output dimension=40). The task at hand
is then scheduled to the worker corresponding to the highest Q-value.

cating that the learned policy performs well on the training data. Moreover,
the right figure shows that the RL policy eventually achieved an accumu-
lated reward at around −6.0. Next, we further test the trained RL policy
on some unseen test graphs and demonstrate its superior generalization
performance.

Performance Comparison

We tested and compared the runtime performance of the baseline RA
scheduler and our RL-based scheduler on various graphs with different
configurations, and the results are summarized in Table 4.1. We note that
the mixed graph used in the test phase is composed of the same three
types of graphs (aes_core, tv80 and c6288) as those used in the training
phase, but with different configurations. Hence, the mixed graph used in

96

Figure 4.4: Left: Training loss v.s. iterations in the training. Right: Accu-
mulated reward v.s. epochs in the training. Every epoch consists of 1K
iterations, and the accumulated reward for each epoch is calculated by
R =

∑1000
t=1 γ

trt.

the test phase is very different from the one used in the training phase.

Table 4.1: Runtime comparison between the random action (RA) scheduler
and our reinforcement learning (RL) scheduler. ∥V∥ and ∥E∥ respectively
denote the number of nodes and edges of a graph. Impr. denotes the
performance of RL over RA.

Graph ∥V∥ ∥E∥ Runtime (Seconds) # Workers
RA RL Impr. RA RL Impr.

mixed graph 88,626 115,777 38.44 38.29 0.39% 40 7 471%
aes_core 66,751 86,446 29.55 28.89 2.28% 40 8 400%
ac97_ctrl 42,438 53,558 18.92 18.09 4.59% 40 8 400%

tv_80 17,038 23,087 7.76 7.04 10.22% 40 8 400%
wb_dma 13,125 16,593 5.52 5.33 3.56% 40 8 400%

c6288 4,837 6,244 2.01 1.98 1.52% 40 8 400%
c7552_slack 3,802 4,791 1.75 1.60 9.38% 40 7 471%

usb_phy_ispd 2,447 2,999 1.11 1.00 11% 40 7 471%
s1494 2,292 2,925 1.04 0.97 7.22% 40 7 471%

From Table 4.1, we can see that the total runtime of our RL-based

97

scheduler is consistently slightly lower than that of the RA scheduler for
all the test graphs. Surprisingly, these runtime results are achieved by our
RL-based scheduler using only 7-8 workers, which are much more efficient
compared to the RA scheduler that utilizes all of the 40 workers. Thus, the
experimental results clearly demonstrate the advantage of our RL-based
scheduler, indicating its superior memory efficiency and energy efficiency.
This also implies that, through the reinforcement learning framework
and our specialized reward design, the RL-based scheduler successfully
learned a policy that enhances workload balance among the workers and
reduces unnecessary data transfer cost.

In Figure 4.5 and 4.6, we further plot the distribution of tasks assigned
to each worker under the RA scheduler and our RL-based scheduler for
two task graphs, aes_core and mixed graphs, respectively. Specifically,
we can observe from Figure 4.5 that, in order to schedule the tasks of the
aes_core graph, the RA scheduler assigns tasks uniformly to all the 40
workers. As a comparison, our RL-based scheduler assigns tasks to only 8
workers, and moreover, most of the tasks are actually assigned to only 4
workers. We can make very similar observations in the Figure 4.6 for the
mixed graph.

98

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

10
0

10
1

10
2

10
3

10
4

W
or

ke
ri

d

Numberofassignedtasks

RA
sc

he
du

ler
RL

sc
he

du
ler

Fi
gu

re
4.5

:H
ist

og
ra

m
of

as
sig

ne
d

ta
sk

sp
er

wo
rk

er
fo

rt
he

ae
s_

co
re

gr
ap

h.

99

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

10
0

10
1

10
2

10
3

10
4

10
5

W
or

ke
ri

d

Numberofassignedtasks

RA
sc

he
du

ler
RL

sc
he

du
ler

Fi
gu

re
4.6

:H
ist

og
ra

m
of

as
sig

ne
d

ta
sk

sp
er

wo
rk

er
fo

rt
he

m
ixe

d
gr

ap
h.

100

4.6 Conclusion
In this chapter, we have introduced a resource-efficient reinforcement
learning-based task scheduling system to adapt the performance opti-
mization to the computing environment. We have evaluated our task
scheduling system on an industrial static timing analysis workload. Com-
pared to the popular heuristic-based scheduler, our RL-based scheduler
achieved a lower runtime on all task graphs while using only 20% of work-
ers. Our future work plans to extend our framework to a distributed envi-
ronment [65, 66, 69, 70, 78, 114] and consider GPU task graphs [28, 29, 116]
into our state model.

101

5 reinforcement learning-generated
topological order for dynamic task graph
scheduling

5.1 Abstract
Dynamic task graph scheduling (DTGS) has become a powerful tool for
parallel and heterogeneous applications, such as static timing analysis
and large-scale machine learning. DTGS allows applications to define the
task graph structure on-the-fly, enabling concurrent task creations and
task executions. However, to schedule tasks, DTGS relies on applications
to define a topological order for the task graph. Existing algorithms for
generating this order primarily rely on heuristics like level-by-level sort-
ing, which lack adaptability to dynamic computing environments. This
paper introduces a novel method that leverages reinforcement learning
to generate topological orders for DTGS systems. We will delve into the
details of our design and present a real-world use case. For instance, when
scheduling a large task graph with 3.9 million tasks and 7.4 million de-
pendencies in a large-scale static timing analysis workload, our method
achieves a speedup of up to 1.52× compared to the baseline.

5.2 Introduction
Dynamic task graph scheduling (DTGS) has emerged as a powerful tech-
nique for processing parallel and heterogeneous applications, such as
static timing analysis [19, 25, 26, 27, 29, 31, 34, 43, 45, 47, 48, 49, 50, 61, 62,
63, 64, 73, 79, 83, 114, 119, 120, 132, 152] and large-scale machine learning
problems [28, 89, 116, 117]. Unlike traditional loop-based models that
explores parallelism across loops, DTGS represents function calls as tasks

102

and dependencies between them as edges in a task graph. DTGS em-
powers applications to perform top-down optimization within complex
parallel decomposition strategies involving numerous tasks and depen-
dencies. A DTGS runtime then efficiently schedules these dependent
tasks across a large pool of execution units with dynamic load balanc-
ing [113]. As a result, the parallel computing community has seen the
rise of numerous successful DTGS libraries catering to various applica-
tions, such as OpenMP [5], Kokkos-DAG [35], PaRSEC [17, 58], HPX [93],
Taskflow [72, 75], and AsyncTask [29].

To leverage the power of DTGS, applications define the task graph
structure dynamically according to runtime variables and control-flow
results. As tasks and dependencies are created on-the-fly, DTGS allows
the task creation time to overlap with the task execution time, as shown in
Figure 5.1. Thus, DTGS is flexible when dealing with many algorithms that
frequently incorporate dynamic control flow in implementing irregular
parallel decomposition strategies, such as electronic design automation
(EDA) algorithms [63].

Figure 5.1: Scheduling a dynamic task graph with four tasks and four
edges. White rectangles denote the task creations and gray the task execu-
tions. Tasks are created in the topological order A-B-C-D. Task creations
overlap with task executions.

To schedule tasks under the task dependency constraints, DTGS run-
time requires applications to create tasks in a topological order of the task
graph. For example, in Figure 5.1, four tasks should be created either in
the topological order A-B-C-D or A-C-B-D. To obtain the order, topological

103

sorting algorithms, such as Kahn’s algorithm [4], are widely used. These
heuristic-based algorithms generate orders primarily based on the graph
structures, such as level-by-level sorting. However, such heuristic-based
approaches have limitations. First, solely relying on graph structure lacks
adaptability to dynamic changes in the computing environment. This
can lead to suboptimal scheduling and can consume large scheduling
resources due to the randomness involved in DTGS runtime’s dynamic
load balancing [113]. Second, heuristic algorithms generate deterministic
orders. But, topological orders of a task graph are not unique and dif-
ferent topological orders for the same task graph can lead to substantial
performance differences, as shown in Figure 5.2.

Order 1 Order 2 Order 3
250

260

270

280

Ru
nt

im
e(

m
s)

Figure 5.2: Runtime of DTGS system finishing one EDA application with
three different topological orders.

To overcome the limitations of heuristic approaches, we leverage recent
advancements in reinforcement learning (RL) [15, 36, 132] and develop
a method to interact with the computing environment while generating
topological orders. We summarize our technical contributions as follows:

• Reinforcement Learning-based Framework. We have designed a
reinforcement learning-based method to generate topological or-
ders for the dynamic task graph scheduling applications. With the

104

method, we are able to adapt to the computing environment through-
out the whole decision-making process, allowing us to generate the
topological order that achieves better runtime performance than the
baseline.

• Task Graph Encoding. We have designed a new task graph encoding
method to support our RL model. This technique allows us to encode
the task graph dynamically according to the runtime status instead
of encoding the whole graph.

• Decision Space Categorization. We have designed a new decision
space categorization method to support our RL model. This method
categorizes the timing-varying decision space into fixed number of
categories, allowing us to reuse the trained RL model for various
applications without the need for retraining.

• Evaluations. We have evaluated our method for generating the topo-
logical orders for a large-scale industrial static timing analysis (STA)
application. With our method, we are able to generate topological
orders that achieve up to 1.52× speedup over the baseline.

5.3 Background

Figure 5.3: System overview. An example circuit is described as a task
graph of four tasks and four edges. The trained RL model reads in the
task graph and generates a topological order A,B,C,D. The DTGS runtime
creates the four tasks in the order and executes them under the dependency
constraint.

105

We target scheduling a large-scale static timing analysis (STA) appli-
cation [63], one of the most important steps in the entire EDA flow, and
describe a STA workload as a task graph. The task graph consists of mul-
tiple nodes and edges, which represent the tasks and the dependencies
among the tasks, respectively. Every task has a known workload and the
task dependencies constrain the execution order of the tasks. Take the task
graph shown in Figure 5.3 as an example. We describe an example circuit
as a task graph of four tasks and four edges (or dependencies). The task
dependencies require that task A must execute before task B and task C,
and task D must execute after task B and task C.

To efficiently schedule the task graph, we build a DTGS system using a
recently released dynamic task graph library, AsyncTask [29]. AsyncTask
provides a clear and concise graph description language for applications
to easily explore dynamic task graph parallelism. The expressiveness
of AsyncTask’s programming model improves our productivity when
coding large and complex task graphs for the STA workloads. Listing 5.1
shows AsyncTask implementation of the task graph in Figure 5.3. We
create four tasks in the topological order A-B-C-D and use AsyncTask’s
dependent_async API to create each task. Every task defines its own
lambda as the first argument which is followed by a list of dependent
tasks. Upon returning from dependent_async, we obtain a pair consisting
of an instantiated task object and a future object holding the execution
result of that task. After constructing all tasks, we call future_D.get to
wait for task D to finish. Since we construct tasks in the order A-B-C-D, the
completion of task D in turn signifies the completion of all preceding tasks.
i n t main (){

Executor executor ;

// Create task A
auto [A, future_A]=executor . dependent_async (

[] () { p r i n t f (" Running task A\n") ; }) ;

106

// Create task B , which has A as the dependent task
auto [B , future_B]=executor . dependent_async (

[] () { p r i n t f (" Running task B\n") ; } , A) ;

// Create task C, which has A as the dependent task
auto [C, future_C]=executor . dependent_async (

[] () { p r i n t f (" Running task C\n") ; } , A) ;

// Create task D, which has B and C as the dependent t a s k s
auto [D, future_D]=executor . dependent_async (

[] () { p r i n t f (" Running task D\n") ; } , B , C) ;

// Wait f o r the task graph to f i n i s h via future_D
future_D . get () ;

}

Listing 5.1: AsyncTask implementation of the task graph in Figure 5.3.

In Listing 5.1, we must create tasks in a topological order because
we can not create a task until certain tasks it depends on have existed.
For example, we need to create task A before task B. That explains why
AsyncTask requires applications to create tasks in a topological order.
To obtain a topological order of a task graph, we design a method that
incorporates a reinforcement learning (RL) model in DTGS. Figure 5.3
illustrates the system overview. After we describe a circuit as a task graph,
the trained RL model reads in the task graph and outputs a topological
order of the task graph. Then the DTGS creates all of the tasks based
on the order and overlaps the task executions. We give the details of the
trained RL model in Section 5.4.

107

5.4 Our Method
Runtime status governs the macro-scale performance in a task schedul-
ing system [132]. To take the runtime status into account, we develop a
reinforcement leaning model to interact with the computing environment
while generating a topological order for the DTGS application. In this
section, we first formulate the dynamic task graph scheduling problem
as a reinforcement learning (RL) problem and then apply the Deep Q-
Learning algorithm [131] to train a good RL policy. Figure 5.4 shows the
training process in the DTGS application.

Figure 5.4: Overview of the training process. The input is a task graph of
four tasks and four edges. The output is a topological order of the four
tasks. The training process consists of seven steps, which iterates four
times as there are four tasks in the input task graph. The whole training
would iterate the task graph for several episodes.

108

Reinforcement Learning Formulation

To formulate the dynamic task graph scheduling problem as a reinforce-
ment learning problem, we need to define four major components as
follows:

• State. A state encodes the information that the RL agent needs to
suggest an action. We encode the normalized workloads of ready
tasks (tasks whose dependencies are resolved) and the graph struc-
ture in a vector of M coordinates as the state called State. M denotes
the number of maximum fanout (or the successor tasks) of a task in
the task graph. Each coordinate encodes the total workloads (WL) of
ready tasks of the same number of fanout. For example, in Figure
5.4, task A is the ready task and has two fanouts – task B and task
C. The current state would include task A’s workload in the third
coordinate, State[2], and the other coordinates are zero.

• Action. An action describes the operation that the RL agent suggests.
In this paper, the RL agent needs to select the next task from all
the ready tasks. We note that the number of the ready tasks may
vary over time. However, the RL agent can only select a task from
a fixed number of ready tasks. To accommodate the constraint, we
categorize the ready tasks to N groups based on the workloads. For
example, in Figure 5.4, when the RL agent needs to select the next
task between task B (suppose being categorized to group 0) and task
C (suppose being categorized to group 1), the RL agent selects the
next task from a certain group (say group 0) rather than selecting
the next task directly. This allows us to maintain a consistent action
space size regardless of the number of ready tasks at any given time.

• State Transition. After an action is performed (i.e., the next task is
created by the DTGS runtime), the current state will transfer to a

109

new state. For example, in Figure 5.4, after task A is created by the
DTGS runtime, the new state will have the sum of task B’s and C’s
workloads at the second coordinate (State[1]) because both task B
and C are now ready tasks and have one fanout.

• Reward. After the RL agent takes an action, we receive a reward feed-
back from the computing environment. This reward signal guides
the agent’s learning process towards actions that optimize a specific
resource utilization metric. Here, we focus on minimize free mem-
ory space (FMS) to keep all computing units as busy as possible.
Therefore, we design the following reward to reflect this objective:

reward = −(FMSafter − FMSbefore), (5.1)

where FMSbefore denotes the normalized FMS before performing the
action and FMSafter denotes the normalized FMS after the action.
Note that minimizing FMS is equivalent to maximizing the reward.

Next, we discuss how to train a good RL policy using the Deep Q-
Learning algorithm to maximize the accumulated reward over time.

Deep Q-Learning

Deep Q-Learning is a popular algorithm that aims to learn the optimal
policy that maximizes the expected accumulated reward over time [131].
We apply this algorithm to solve our dynamic task graph scheduling
problem which is now formulated as a RL problem. Figure 5.4 illustrates
the Deep Q-Learning algorithm for our scheduling system in seven steps.

1 Generate an action. Based on the current state, the policy network
generates an action. The policy network is a feed forward neural network,
as shown in Figure 5.5. The network reads in the current state vector with
dimension M as the input. It then processes the information through two

110

State[0]

State[1]

State[M-1]

State[M-2]

Input layer
(M, 128)

Hidden layer
(128, 128)

Hidden layer
(128, 128)

Output layer
(128, N)

Q(state=State, action=A0)

Q(state=State, action=A1)

Q(state=State, action=AN-2)

Q(state=State, action=AN-1)

Figure 5.5: Illustration of the policy network architecture. There is one
input layer of dimension M∗128, two hidden layers of dimension 128∗128,
and one output layer of dimension 128 ∗ N. The activation function is
ReLU [7].

hidden layers, each with a dimension of 128× 128. Finally, the network
outputs a set of Q-values corresponding to each of the N possible actions.
A Q-value represents the expected reward associated with taking a spe-
cific action in a given state. In essence, it estimates the long-term benefit
of choosing an action. To balance exploration and exploitation during
learning, we employ the ϵ-greedy strategy. During exploration (with prob-
ability ϵ), we randomly select an action from the available options. This
helps the RL agent discover potentially better actions outside of its current
knowledge. In contrast, during exploitation (with probability 1 − ϵ), we
select the action with the highest Q-value, favoring actions predicted to
yield the best rewards in the current state.

The parameter ϵ gradually decays over time, following the equation

111

below,
ϵ = ϵend + (ϵstart − ϵend) ∗ e−1∗steps/ϵdecay , (5.2)

where steps records the number of processed steps so far, ϵstart denotes
the initial value, ϵend denotes the final value, and ϵdecay denotes the decay
rate. This decay encourages exploration in the initial stages to learn the
environment and transitions to exploitation later for optimal performance.

As discussed in Section 5.4, an action represents a group of ready tasks
with the same range of workloads. If the selected group is empty (meaning
no ready tasks fall within that workload category), we implement the
following strategies. We randomly select another action at the exploration
phase, or select the group with the next highest Q-value at the exploitation
phase.

2 Decode the action to the next task. Upon selecting a non-empty
group (i.e., containing ready tasks), we randomly select a task from that
group and forward the selected task to the DTGS runtime for task creation
and execution.

3 Store the transition information in the replay buffer. To improve
the agent’s learning efficiency, we utilize a replay buffer. This buffer stores
transitions as tuples, allowing the agent to revisit and learn from past
experiences multiple times. Each tuple in the replay buffer contains four
key elements:

• Current State (s): The state representation captures information
relevant to the decision-making process at a specific point in time.

• Selected Action (a): The action is selected by the agent based on the
current state.

• Reward (r): The reward signal is received from the environment after
taking the selected action. This feedback guides the agent towards
actions that optimize resource utilization (here, we minimize the
free memory space).

112

• Next State (s ′): The state representation after the selected action is
executed, reflecting the updated environment.

By revisiting these transitions during training, the agent can learn from a
broader set of experiences and improve its decision-making capabilities.

4 Sample the replay buffer. During training, we leverage batch
sampling to learn from its past experiences stored in the replay buffer. This
involves randomly selecting a mini-batch of data points (size denoted by B)
from the buffer. By randomly selecting data points, we help to de-correlate
the training samples. This is important because consecutive transitions
in the replay buffer might be highly correlated, potentially hindering the
learning process. De-correlated samples provide a more diverse set of
experiences for the agent to learn from, improving the efficiency and
effectiveness of training.

5 Calculate the expected Q-value. We incorporate a target network,
which mirrors the architecture of the policy network (as illustrated in
Figure 5.5). However, we do not update the target network’s weights as
frequently as the policy network’s. This separation is crucial for reducing
overestimation bias [103]. The target network addresses this issue by
providing an unbiased estimate of the Q-value for the next state. We
achieve this by using the target network to evaluate the expected Q-value
of the action selected by the policy network, as shown in the following
equation:

Qexpected = r+ γmax
a

Q(s ′,a) (5.3)

where γ represents the discount factor, which balances the importance of
immediate rewards against the potential value of future rewards.

6 Optimize the model. During training, we calculate the difference
(loss) between the estimated Q-value for the current state and action
(denoted as Q(s,a)) and the target network’s unbiased estimate of the
expected Q-value for the next state (denoted as Qexpected). This loss

113

represents how well the policy network’s predictions align with reality, and
we aim to minimize it for effective learning. The equation for calculating
loss δ is the following,

δ = Q(s,a) −Qexpected. (5.4)

To address the issue of outliers in noisy Q-value estimates, we employ
the Huber loss function [2]. Unlike the standard quadratic loss, the Huber
loss is less sensitive to extreme values, making it a robust choice for this
scenario. The mathematical definition of the Huber loss is shown below,

L =
1
|B|

∑
(s,a,r,s ′)∈B

L(δ), (5.5)

where

L(δ) =

 1
2δ

2 if |δ| ⩽ 1,
|δ|− 1

2 otherwise.
Once we calculate the loss L, we leverage back-propagation to propa-

gate the error signal through the policy network. This process guides the
network in adjusting its internal parameters to minimize the loss in future
predictions. We utilize the Adam optimizer [95] with a learning rate of
LR.

7 Update the target network. To further enhance the stability and
performance of the learning process, we employ soft update for the target
network [110]. This approach balances the target network’s weights be-
tween those of the policy network and its own past values. The equation
to update the parameters of the target network is the following,

θ ′ = τθ+ (1 − τ)θ ′, (5.6)

where θ ′ denotes the weights of the target network, θ denotes the weights

114

of the policy network, and τ denotes the update rate of the target network.
In Figure 5.4, the task graph consists of four tasks. We iterate through

the seven steps four times, constituting one episode for the agent. By
running multiple episodes episodes (iterating through the entire process
several times), the agent has the opportunity to learn more effectively
from the environment and refine its policy for optimal task scheduling.

5.5 Experimental Results
We used the recently released dynamic task graph programming library
AsyncTask [29] to implement the dynamic task graph scheduling system.
We trained the RL model using Pytorch and compiled programs using
g++11.4 with -std=c++20 and -O3 enabled to schedule the task graphs.
We evaluated the runtime performance of scheduling tasks in the topolog-
ical orders generated by the reinforcement learning model. We ran all the
experiments on a Ubuntu 22.04.3 machine with 16 Intel i7-11700 CPU at
2.50 GHz and 125 GB RAM. All data is an average of 10 runs.

Baseline

We selected a heuristic approach as the baseline. This approach involves
traversing a task graph and identifying a task whose dependencies have
all been resolved. If multiple such tasks exist, we employ one of two pre-
defined heuristics throughout the entire process. In heuristic 1, a task
is selected randomly from the set of ready tasks. In heuristic 2, the task
with the highest number of outgoing dependencies (fanout) is selected.
In addition, we used Kahn’s algorithm [4] as the third heuristic. It’s im-
portant to note that we don’t dynamically switch between these heuristics.
Algorithm 13 details the implementation of the chosen approach.

115

Algorithm 13: baseline(task_graph)
Input: task_graph: a task graph
Output: order: a topological order

1 order← ∅;
2 array← ∅;
3 /* push ready task to array */
4 for task ∈ task_graph do
5 /* in_degree denotes the number of the fanin */
6 if task.in_degree == 0 then
7 array.push(task);
8 end
9 end

10 while order.size < task_graph.tasks.size do
11 /* Used either Heuristic 1 or 2 */
12 /* Heuristic 1 */
13 task← pop one task randomly in array;
14 /* Heuristic 2 */
15 task← pop one task with most fanout in array;
16 order.push(task);
17 /* Resolve dependencies for fanout tasks */
18 for ftask ∈ task.fanout do
19 ftask.in_degree← ftask.in_degree− 1;
20 if ftask.in_degree == 0 then
21 array.push(ftask);
22 end
23 end
24 end
25 return order

Static Timing Analysis Workload

We used the industrial static timing analysis (STA) as the workload [63, 79],
which exploits task graph parallelism to parallelize graph-based analy-
sis. STA is representative of many analysis-driven EDA applications, and
is a critical step in the overall EDA flow because it verifies the expected
timing behavior of a circuit design and reports the critical paths that vi-

116

olate the given timing constraints (e.g., set-up time, hold time). As our
system schedules task graphs, we used the state-of-the-art open-source
STA engine, OpenTimer [6], to generate task graphs for us. OpenTimer
formulates the graph-based analysis (GBA) algorithm into a task graph.
The task graph represents the corresponding circuit graph and can contain
millions of tasks and dependencies for large designs. Each task computes
the required timing information at its corresponding node in the circuit
graph (e.g., slew, delay, arrival time), while each edge represents a depen-
dency between two tasks. Table 5.1 lists the statistics of the 12 task graphs
we used. ∥V∥ denotes the number of the tasks in a task graph and ∥E∥
denotes the number of the edges.

Table 5.1: Task (∥V∥) and edge (∥E∥) counts of 12 task graphs.

Graphs ∥V∥ ∥E∥ ∥V∥+ ∥E∥
des_perf 371,587 464,810 836,397
vga_lcd 397,809 498,863 896,672

mgc_edit_dist 450,354 566,527 1,016,881
vga_lcd 679,258 823, 034 1,502,292

b19 782,914 1,048,609 1,831,523
b19_2 782,914 1,048,609 1,831,523

leon3mp 3,376,832 6,277,562 9,654,394
b19_3 3,914,570 5,243,045 9,157,615

netcard 3,999,174 7,404,006 11,403,180
leon2 4,328,255 7,984,262 12,312,517

leon3mp_2 6,753,664 8,297,576 15,051,240
netcard_2 7,998,348 9,806,794 17,805,142

Training and Hyper-parameters

We trained the RL policy with six task graphs, tv80, ac97_ctrl, des_perf,
usb_phy, c1355, and s1196. It’s important to note that the des_perf graph

117

used in training was a different instance from the one used in testing. The
hyper-parameters we used for training are the followings:

• The update rate of the target network, τ, is 0.005.

• The value of discount factor, γ, is 0.99.

• The number of training iterations, episodes, is 50.

• The initial value of ϵ, ϵstart, is 0.9.

• The final value of ϵ, ϵend, is 0.05.

• The decay rate of ϵ, ϵdecay, is 1000.

• The number of input neurons, M, is 20.

• The number of output neurons, N, is 6.

• The number of batch size, B, is 128.

• The learning rate of Adam optimizer, LR, is 1e− 4.

Scheduling Task Graphs

After obtaining the topological order for a task graph using the trained
RL policy and the baseline, we used AsyncTask’s dependent_async API to
create the tasks in the generated topological order [29]. This API takes
two arguments. The first argument is the callable function representing
each task. This function could perform various operations like parasitic
calculations, slew adjustments, delays, or arrival time calculations in STA.
The second argument is a list of dependent tasks.

118

Runtime Performance Comparison

Figure 5.6(a) compares the runtime performance of our approach against
the baseline. We only report the best runtime performance between two
heuristic methods for the baseline. We can see that the baseline exhibits
faster execution only for small-sized task graphs. For example, the baseline
is 1.06× and 1.02× faster in des_perf and mgc_edit_dist, respectively, al-
though these differences are minor. Conversely, our RL model outperforms
the baseline in all other 10 task graphs. For example, ours is 1.24×, 1.52×,
and 1.48× faster than the baseline in b19, netcard, and leon2, respectively.
We believe this advantage stems from our RL model’s ability to optimize
for free system memory. Our approach adapts to changing computing
environments and reduces scheduling resource consumption associated
with AsyncTask’s dynamic load balancing. In contrast, the baseline relies
solely on the task graph structure, neglecting runtime information. The
heuristic-based baseline can achieve good performance on small-sized
graphs (i.e., des_perf and mgc_edit_dist). However, as graphs grow
larger and more complex, with more concurrent tasks and scheduling
resource consumption, the baseline’s static strategy hinders adaptation,
leading to performance degradation. Figure 5.6(b) visualizes the speedup
achieved by our RL approach over the baseline. The speedup increases
with graph size and complexity, further highlighting the superiority of
our method particularly in modern industrial EDA flow that frequently
requires analyzing the same task graphs multiple times.

119

de
s_

pe
rf

vg
a_

lcd
m

gc
_e

di
t_d

ist
vg

a_
lcd

_2 b1
9

b1
9_

2
leo

n3
m

p
b1

9_
3

ne
tca

rd
leo

n2
leo

n3
m

p_
2

ne
tca

rd
_2

102.5

103

103.5

(a) Runtime

Ru
nt

im
e(

m
s)

Baseline
Ours

de
s_

pe
rf

vg
a_

lcd
m

gc
_e

di
t_d

ist
vg

a_
lcd b1

9
b1

9_
2

leo
n3

m
p

b1
9_

3
ne

tca
rd

leo
n2

leo
n3

m
p_

2
ne

tca
rd

_2

0.6
0.8

1
1.2
1.4
1.6
1.8

2

(b) Speedup

Sp
ee

du
p

Figure 5.6: Performance comparison between the baseline and our RL ap-
proach on running 12 task graphs. (a) Runtime comparison. (b) Speedup
of our approach over the baseline. The red horizontal line denotes the
speedup of one.

120

5.6 Conclusion
In this chapter, we have introduced a reinforcement learning model to
adapt to the dynamic runtime environment and generate a topological
order for a task graph application with a better runtime performance
running on a work-stealing runtime. In the future, we will apply our
approach to other parallel graph algorithms [24, 91, 118, 145].

121

6 optimizing cuda graph scheduling with
reinforcement learning: a case study in ssta
propagation

6.1 Abstract
CUDA Graph has shown potential in recent GPU-accelerated statistical
static timing analysis (SSTA) propagation applications. By representing
dependent SSTA tasks as a task graph and reusing the execution flow,
CUDA Graph eliminates repetitive kernel launch overhead and improves
task asynchrony. This enables more efficient scheduling of SSTA propaga-
tion tasks across logic gates. However, application-given CUDA graphs
are often suboptimal, as they focus on capturing circuit structures while
overlooking GPU resource availability and scheduling constraints. Un-
fortunately, the latter heavily relies on the CUDA Graph runtime, which
is essentially a black box. To tackle this challenge, we introduce a Rein-
forcement Learning (RL)-based framework that optimizes CUDA graphs
by learning to restructure SSTA graphs through interactions with the
CUDA Graph runtime. Specifically, we formulate graph restructuring as a
node-level adjustment problem and solve it by dynamically appending
auxiliary edges to the graph during RL decision-making. To enable more
informed decisions for our RL agent, we leverage Graph Neural Networks
(GNNs) to encode both the graph structure and the application needs.
Compared to the original application-given CUDA graph, our optimized
CUDA graph can achieve up to a 12% runtime improvement.

122

6.2 Introduction
Statistical static timing analysis (SSTA) is a critical step in Electronic De-
sign Automation (EDA) as it enables more accurate delay estimation
than traditional static timing analysis (STA) by modeling on-chip pro-
cess variation (OCV) as random variables [14, 37]. For example, [85]
uses numerical integration to estimate circuit yield by exploring device
parameter combinations, while [147] models gate delays as random vari-
ables and propagates rise and fall arrival time statistically through the
timing graph. As design complexity continues to grow, manufacturing
variations have introduced a broad range of OCVs that SSTA algorithms
must evaluate during propagation. Despite the daunting computational
cost, many computations are structurally independent across gates, transi-
tions, and variation dimensions, revealing substantial opportunities for
data parallelism. This parallelism makes SSTA propagation well-suited for
GPU acceleration, which has emerged as a promising solution to meet its
growing performance demands [23, 42, 45, 49, 121].

However, conventional GPU execution models (e.g., CUDA streams)
face significant challenges in efficiently scheduling SSTA workloads. In
practice, SSTA workloads involve repeated propagation over the circuit
graph across different inputs and statistical values [14]. This leads to
frequent kernel launches, which can accumulate to expensive synchro-
nization costs when kernels are iteratively offloaded through one or more
CUDA streams. To address this challenge, the recent state-of-the-art [23]
leverages CUDA Graph to model SSTA propagation as a GPU task graph.
Specifically, instead of launching kernels individually, CUDA Graph allows
the execution flow to be constructed once and replayed multiple times
with minimal CPU intervention, eliminating redundant kernel launches
and reducing synchronization costs. This particularly benefits many SSTA
propagation algorithms, where similar computational patterns are repeat-
edly executed across different timing scenarios [23].

123

c17 s27 c499 s344 s349 c432

280
290
300
310
320
330
340
350
360
370

11%

20%

9%
10%

8%

12%

Ru
nt

im
e(

s)
Original SSTA CUDA graph
Sampled best CUDA graph

Figure 6.1: The original SSTA CUDA graphs leave at least 8% to 20%
performance on the table, with the baseline derived from the minimum of
10,000 sampled graphs.

Despite the runtime improvement of CUDA Graph on SSTA work-
loads [23], application-given CUDA graphs are often suboptimal. For
instance, in Figure 6.1, we evaluate six SSTA benchmarks by generating
multiple variants of the application’s original CUDA graph. Each sam-
pled graph is created by randomly inserting a small number of auxiliary
edges to restructure the application’s original CUDA graph. We insert
edges rather than delete them, as insertions satisfy the execution order
of the application’s original CUDA graph. In contrast, deletions break
the physical interconnections between circuit gates and therefore violate
the execution order. When comparing runtime performance, we observe
that the original graph was 11% slower on c17 and 20% slower on s27

124

than the best-performing sampled graph. This highlights the potential for
graph restructuring to enhance execution efficiency. A key factor behind
this performance gap is that the application’s CUDA graphs prioritize
capturing circuit structure but overlook GPU resource availability and
scheduling constraints. This oversight often results in resource contention
(e.g., multiple tasks competing for limited GPU resources) and reduced
task parallelism, as tasks are forced to wait instead of executing concur-
rently. Unfortunately, the CUDA Graph runtime operates as a black box,
with scheduling details hidden as proprietary information. This constraint
makes it challenging to design a general-purpose heuristic that can opti-
mize SSTA CUDA graphs across different GPU environments.

Despite the black-box challenge, this problem is particularly well-suited
for Reinforcement Learning (RL) [30, 36, 131, 132], as RL can efficiently
explore the complex graph search space and adapt to hidden scheduling be-
haviors through interactions with the CUDA Graph runtime. For instance,
existing work [132] uses RL to adaptively optimize task scheduling for
resource efficiency, while DRAS [36] leverages RL to automatically learn
and converge to optimal scheduling policies in HPC clusters. Inspired
by the success of RL-based schedulers in adaptively optimizing decisions
under complex constraints and dynamic runtime conditions, we introduce
an RL-based framework to optimize CUDA Graph scheduling for SSTA
propagation workloads. We summarize our technical contributions as
follows:

• New Scheduling Description. We formulate the CUDA Graph
scheduling on SSTA propagation workloads as a node-level adjust-
ment problem. With this problem formulation, we transform a com-
plex scheduling challenge into a learnable problem that adjusts node
levels in the application’s CUDA graph.

• Informed Decision Making. We leverage Graph Neural Networks

125

(GNNs) to capture structural information from both the application
workload and the CUDA graph, enabling informed decisions and
enhancing the scheduling optimization process.

• Reinforcement Learning-based Framework. We introduce an RL-
based framework to solve the node-level adjustment problem. By
interacting with the CUDA Graph runtime, the RL agent adaptively
learns to restructure the graph, ultimately generating an optimized
CUDA graph for improved scheduling performance.

We have evaluated our framework on a set of industrial SSTA bench-
marks [23]. For an application-given CUDA graph (i.e., original input
CUDA graph), which mainly considers circuit graph structures, our frame-
work generates an optimized CUDA graph by learning to restructure the
original input CUDA graph through interactions with the CUDA Graph
runtime, achieving up to 12% runtime improvement over the application-
given CUDA graphs. Notably, our framework requires no changes to
application-level algorithms, but instead restructures the given CUDA
graph to guide the CUDA runtime toward better scheduling performance.

6.3 Scheduling SSTA Propagation Graph on
GPU

In this paper, we consider the SSTA propagation workload in [23] as our
problem formulation: Given an SSTA propagation graph, as illustrated in
Figure 6.2(a), timing variations for gates and interconnections are modeled
with random variables and stored in arrays, including voltage fluctuations
(∆V), temperature shifts (∆T), channel length deviations (∆L), and so on.
In order to deal with various corner cases, each gate has up to 65536 data

126

points where each point represents one statistical phase.1 During timing
propagation through the circuit, each gate contributes the gate delay to
the arrival times at its fan-in edges using statistical min/max operations.
Delay computations are repeatedly performed for early and late modes,
as well as for rise and fall transitions, across multiple corner cases within
the SSTA propagation graph. Due to their structural independence across
gates, rise/fall transitions, and variation dimensions, these computations
exhibit a high degree of data parallelism and are well-suited for GPU
acceleration.

1This problem formulation originates from a real-world challenge faced by our indus-
try partners at a leading EDA company. While proprietary details cannot be disclosed,
we abstract the core scheduling difficulties and practical constraints into a high-level
formulation.

127

PI1

PI2

PI3

PO1

PO2

a

b

c

d

e

f

g

h

j

k

max
min

max
min

max
min

ΔV ΔT ΔL du …

ΔV ΔT ΔL du …

ΔV ΔT du …

ΔV ΔT du …

i

Gate timing variations Arrival timing variations

a

b

d f

j

g

PO1

PI1

PI2

c e

h

k PO2
PI3

m16

m15

m14

m13

m9

m10

m11

m8

m7

m4

m5

m6

m3

m2

m1

(a)

(b)

: CUDA

 kernel

: Memory

 copy

: Timing

 dependency
i

m12

Figure 6.2: (a) An SSTA propagation graph. Gate timing (blue) and arrival
timing (red) are modeled as random variables in arrays and propagated
through the circuit graph using statistical max and min operators. (b) The
corresponding CUDA graph of (a). Circles are kernel operations and gray
rectangles are memory copy operations.

Figure 6.2(b) illustrates how [23] leverages CUDA Graph to execute
an SSTA propagation graph from Figure 6.2(a). The algorithm (1) models
circuit pins as CUDA kernels and timing dependencies as edges to capture
the graph structure, and (2) inserts a unique memory copy operation
before each kernel to transfer the corresponding statistical data points

128

from an array. After the construction, the algorithm outputs a CUDA
graph that represents the SSTA propagation graph. Our goal here is
to restructure the CUDA graph provided by the application. Instead
of modifying application-level algorithms or kernels, we insert a small
set of auxiliary edges to guide the CUDA Graph runtime toward better
scheduling performance.

6.4 Our Framework
We introduce an RL-based framework to generate an optimized CUDA
graph of SSTA workloads through interactions with CUDA Graph runtime.
We formulate the generation of an optimized CUDA graph as a node-level
adjustment problem, which simplifies the scheduling to an appending of
edges in the graph and is easy for the RL agent to learn in the decision-
making process. Specifically, we move nodes to new levels through the
insertion of auxiliary edges, which results in a new CUDA graph without
violating the topology order of the original graph description. Figure 6.3
shows this formulation.

Figure 6.3: Illustration of the node-level adjustment formulation. The red
edge moves node 2 from level 1 to level 3, resulting in a new graph that
potentially alleviates the contention among nodes 3, 4, and 5.

With the node-level adjustment formulation, our RL-based framework
comprises two modules. The first module generates a latent node embed-

129

ding, encapsulating both node attributes and graph topology. The second
module uses the node embedding to adjust node levels and generate a new
CUDA graph for the CUDA Graph runtime to execute. The framework
learns from the feedback returned by the CUDA Graph runtime to itera-
tively improve our CUDA graph. Figure 6.4 illustrates an overview of our
framework.

Node
Embedding

Adjacency
Matrix

Node
Feature

Message
Passing

G!!

CUDA
Graph

Runtime

RL

Action
to Graph

Target
Network

Policy
Network

Replay
Buffer

Elapsed
Time

Input

Output

Figure 6.4: Overview of the framework. The framework consists of two
modules: The first module is GNN and is used to encode the node at-
tributes and graph topology and generate a latent representation node
embedding. The second module is an RL model that uses the node embed-
ding as a state and generates a new CUDA graph for the CUDA Graph
runtime to run.

Graph Neural Network Module

To generate a better CUDA graph, we need structural information in mak-
ing the decisions. The information we consider includes both node at-
tributes, which capture the inherent characteristics of each kernel, and the
graph topology, which reflects the dependencies and connectivity between
kernels. To encode the information, we employ GNN [151] as the first
module, as shown in Figure 6.4. The GNN module comprises three essen-
tial components: adjacency matrix, which encodes the connectivity between
nodes; node feature, which represents the initial attributes of each node;
and message passing mechanism, which enables information propagation

130

across the graph. Using these components, the GNN module effectively
captures complex relationships and dependencies within the CUDA graph,
providing a rich representation for subsequent decision-making.

Adjacency Matrix

The adjacency matrix is the first component and is used to define the connec-
tivity structure of the graph and guide the process in the third component
message passing. The matrix represents the relationships between nodes. A
non-zero entry at position (i, j) indicates the presence of an edge pointing
from node i to node j, while a zero entry signifies the absence of such a
connection. In the third component message passing, the adjacency matrix
acts as a filter, determining which nodes exchange information with each
other.

Node Feature

The node feature is responsible for incorporating both node attributes and
graph topology into a unified representation. Each node in the input graph
represents a kernel operation (preceded by an implicit memory copy)
and is characterized by six distinct elements. Three of these elements
represent the node’s resource requirements. Thread counts indicate the
number of threads needed for a kernel execution, block counts indicate
the number of blocks required, and memory copy size represents the
data size copied from the CPU to the GPU for that node. The remaining
three elements encode the graph topology, capturing both local and global
properties of the graph. Node level indicates the node’s level within the
graph, fanin count represents the number of incoming edges, and fanout
count represents the number of outgoing edges. Figure 6.5 illustrates
the node feature for all nodes. To avoid larger-magnitude features from
overshadowing others and ensure that all features contribute equally to
the learning process, we normalize every element between 0 and 1.

131

Figure 6.5: Example of the node feature for all nodes on the left graph.

Message Passing

The message passing, the third component of our GNN, serves as the fun-
damental mechanism for encoding node feature and generating the latent
representation node embedding. This process involves iteratively propagat-
ing information between neighboring nodes, enabling the network to learn
complex relationships within the graph. During each iteration, each node
aggregates information from its neighbors’ previous representations and
combines it with the node’s own features. For example, for the graph in
Figure 6.5, node 6 aggregates information from both nodes 3 and 5. This
aggregation process allows information to flow between nodes across the
graph. By repeating this message passing procedure multiple times, we
can capture increasingly long-range dependencies, allowing the network
to learn sophisticated representations that reflect the global structure of
the graph. In this framework, we employ a two-hop message passing ap-
proach, meaning every node propagates its information to nodes two hops
away (e.g., node 2 propagates information to node 6 in Figure 6.5). We did
not consider approaches with higher hops because nodes around the adja-
cent levels are more likely to compete GPU resources together (e.g., node 1
to node 5 compete with node 6). We utilize a popular graph convolutional
network (GCN) [97] as the underlying network architecture because we
do not observe significant runtime difference in our evaluations using

132

other architectures, such as GraphSAGE [54].

Reinforcement Learning Module

We leverage an RL agent as the second module to learn to generate an
optimized CUDA graph through interactions with the CUDA Graph run-
time. The RL agent receives node embedding, which encapsulates structural
information, from the GNN module. Based on these embeddings, the
agent suggests actions, which correspond to node-level adjustments, ulti-
mately resulting in a new CUDA graph. After the CUDA Graph runtime
executes the new graph, the agent receives the execution time as feedback.
We model this learning process using RL’s four fundamental components:

• State (s): A representation of the current situation of the environ-
ment that the agent perceives, which is the node embedding in the
work.

• Action (a): A choice made by the agent that influences the environ-
ment, which is the level adjustment of nodes in this work. As each
node resides at a specific level, the agent adjusts a target node from
its current level to a new level. The action space is limited to three
elements: {0, 1, 2}. Action 0 denotes that the target node remains
at its current level. Action 1 denotes a transition to the next level
(current level plus one) and Action 2 denotes a transition to the
level two steps away (current level plus two). We intentionally limit
the action space to avoid higher-level adjustments, as they tend to
serialize CUDA Graph execution and degrade performance.

• State transition: The change in the environment’s state that occurs as
a result of the agent taking an action, including the changes of level,
fanin and fanout.

133

• Reward (r): A signal that CUDA Graph runtime provides to the RL
agent after the agent takes an action in a particular state. In this work,
we focus on minimizing the execution time (ET) of a CUDA graph.
Therefore, we design the reward function to reflect this objective:

reward = −(ET after − ET before), (6.1)

where ET before and ET after denote the normalized execution times
before and after the action, respectively. Note that minimizing ET is
equivalent to maximizing the reward.

To solve the RL problem, we leverage the Deep Q-learning (DQN)
algorithm [131]. We do not choose traditional methods [143], such as
value iterations, because they are computationally intractable in high-
dimensional environments. DQN solves the problem by employing deep
neural networks to approximate the Q-function, which represents the
expected cumulative reward for taking an action (a) in a given state (s),
denoted as Q(s,a). The Q-function effectively maps state-action pairs
to their corresponding Q-values, enabling the agent to make informed
decisions. Next, we discuss how to adapt the DQN algorithm to suggest
an action and obtain a CUDA graph with the components, policy network,
target network, replay buffer, and action to graph, as shown in Figure 6.4.

Policy and Target Network

The policy network, a fully connected neural network, maps a state (repre-
sented by node embedding) to an action, which corresponds to node-level
adjustments. The policy network has a layered architecture comprising
3072 neurons in the input layer, 256 neurons in the second layer, 64 neu-
rons in the third layer, and 3 neurons in the output layer. The network
receives the node embedding, forwarded by the GNN module, as its input
state. Then the network processes this state information through the two

134

hidden layers. Finally, the network outputs a set of three Q-values. Each
Q-value corresponds to the expected reward associated with a specific
action that adjusts the level of a target node in the graph. The first Q-value
corresponds to action 0, which does not adjust the target node’s level. The
second Q-value corresponds to action 1, which increments the current
level by 1, and the third Q-value corresponds to action 2, which increments
the current level by 2. To balance exploration and exploitation during the
learning process, we employ the ϵ-greedy strategy [143] in determining
the action. This strategy allows the agent to explore new actions with
probability ϵ and exploit the learned policy with probability 1 − ϵ.

In addition to the policy network, we incorporate a separate network, the
target network, which plays a crucial role in stabilizing the training process.
The target network maintains an identical architecture to the policy network,
but its weights are updated less frequently. This separation is essential
for mitigating the overestimation bias [103], a common issue in DQN that
can lead to unstable training. We periodically copy the weights from the
policy network to the target network using a soft update mechanism [110],
expressed in the equation:

θ ′ = τθ+ (1 − τ)θ ′, (6.2)

where θ ′ denotes the parameters of the target network, θ denotes the pa-
rameters of the policy network, and τ denotes the update rate of the target
network. This soft update approach allows for a gradual and controlled
transfer of learned information from the policy network to the target network.
We use the target network to evaluate the expected Q-value of the action
suggested by the policy network. This evaluation provides an unbiased
estimate of the Q-value for the next state, crucial for accurate learning.
The expected Q-value is calculated using the equation:

Qexpected = r+ γmax
a

Q(s ′,a), (6.3)

135

where γ represents the discount factor, reflecting the importance of future
rewards, and s ′ denotes the state after the action is executed, reflecting
the updated environment.

During the training phase, we employ the Huber loss function [2]
to address the challenge of outliers in noisy Q-value estimates, which
are common in RL. Our objective is to minimize the Huber loss. The
mathematical definition of the Huber loss is shown below:

L =

 1
|B|

∑
(s,a,r,s ′)∈B(

1
2δ

2) if |δ| ⩽ 1,
1
|B|

∑
(s,a,r,s ′)∈B(|δ|−

1
2) otherwise.

where
δ = Q(s,a) −Qexpected. (6.4)

Once we calculate the loss, we leverage backpropagation to propagate
the error signal through the entire model. To improve convergence, we
stop propagating the error signal to the GNN model after 10 epochs in
our evaluation. Finally, we utilize the Adam optimizer [95].

Action to Graph

The action-to-graph component serves as the link between the policy net-
work’s output and the physical modification of the CUDA graph. It per-
forms a transformation that converts the action proposed by the policy
network into a concrete change within the graph, that is, the appending of
a new auxiliary edge. Each action, taking values of 0, 1, or 2, corresponds
to a level adjustment for a given target node. These adjustments are : (1)
maintaining the current level (action 0), (2) incrementing the level by one
(action 1), or (3) incrementing the level by two (action 2). When action 0
is suggested by the policy network, it implies that no change is needed for
the target node’s level. However, when actions 1 or 2 are suggested, they
necessitate the addition of an auxiliary edge to facilitate the target node’s

136

transition to the new level.

Figure 6.6: Illustration of using bucket list to convert an action to an edge.
(a) A graph with 5 edges and 6 nodes within 3 layers. (b) A bucket list
for node 2. (c) A new graph after moving node 2 from level 1 to level 3.
The red dash edge is the auxiliary edge.

To add a new auxiliary edge for a target node, a straightforward ap-
proach is to connect the target node at its new level to a randomly selected
node at the immediately preceding level. For example, as illustrated in
Figure 6.6(a), an edge from node 1 to node 2 facilitates node 2’s transition
from level 1 to level 2. However, this design can introduce cycles within
the graph, particularly when a successor node is involved in the random
selection process. Consider Figure 6.6(a), if node 5, which is a successor
of node 2 and randomly selected from level 2, is connected to node 2 to
transition node 2 to a new level (level 3), a cycle is immediately introduced.
Therefore, we require a mechanism to explicitly exclude successors of a
target node from the random selection process, ensuring that the graph
remains acyclic.

To prevent cycles while introducing an auxiliary edge for a target node,
we construct a bucket list for each node. Each bucket list is an associative
container that stores key-value pairs. The key represents a level, and
the value is a set of nodes located at that level. Crucially, this bucket
list excludes all the successor nodes of the target node. For instance, as

137

illustrated in Figure 6.6(b), the bucket list for node 2 in Figure 6.6(a)
contains two entries: {level 1: node 1} and {level 2: {nodes 3, 4}}. Notably,
this bucket list intentionally omits node 2’s successors, nodes 5 and 6. This
design enables a straightforward selection of a non-successor node, such
as node 4 at level 2, to add a new edge to node 2. This edge addition
transitions node 2 from level 1 to level 3, as shown in Figure 6.6(c). With
this design, we can efficiently convert an action suggested by the policy
network into a new edge without introducing any cycles into the resulting
CUDA graph.

Replay Buffer

Replay buffer serves as a memory mechanism in the RL module for a stable
and effective learning. We store a collection of transitions which consists
of the current state, the suggested action, the received reward, and the
next state. By storing these transitions, the agent is able to learn from
past interactions. During training, the agent randomly samples batches
from the replay buffer, which breaks the correlation between consecutive
transitions and enables more efficient learning.

6.5 Experimental Results
We implemented our framework using C++17 and CUDA 12.2 and com-
piled the program with the nvcc compiler on a host compiler of g++11.4
with -std=c++17 and -O3 enabled. We used Pytorch to train and test the
model. We ran all the experiments on a Ubuntu Linux 22.04 machine with
20 Intel i5-13500 CPU cores at 4.8 GHz and 128 GB RAM, and an Nvidia
RTX A4000 GPU.

138

Benchmarks and Baseline

We evaluated the runtime performance on 12 circuit graphs derived from
the [23]. Each circuit graph represents an SSTA propagation graph, as
detailed in Section 6.3. The statistical timing quantities of varying batch
size B for each pin were sampled from a normal distribution. Table 6.1
presents the statistics of the 12 circuit graphs used in the evaluation, with
the default batch size B set to 64, meaning that we calculated a pin’s 64
data points concurrently per iteration. To finish 65536 data points, each
benchmark requires 1024 iterations. We used the application’s original
CUDA graph as the baseline, which also represents the GPU-accelerated
solution provided by [23, 116]. We did not include other baselines, as to
the best of our knowledge, this work is the first to address CUDA Graph
scheduling optimization for SSTA propagation.

Training

We trained our model on a synthetic circuit derived from [23]. To ensure
generalization, the training and testing phases used different circuit in-
stances. We used the following hyper-parameters: target network update
rate of 0.005, discount factor of 0.99, training iterations of 100, initial ϵ of
1.0, final ϵ of 0.05, ϵ decay rate of 0.997, learning mini batch size of 16, and
Adam optimizer learning rate of 0.0001. Figure 6.7 shows the training error
and the rewards achieved by the RL policy. The left plot demonstrates a
rapid decay in training loss, indicating effective policy learning. The right
plot shows the RL policy converging to rewards between 5 and 7.

139

Table 6.1: Runtime comparison and circuit statistics of the benchmarks.
The batch size in this table is 64. TB and TO denote the runtime of the
baseline and ours, respectively. ∆t denotes the runtime difference between
the baseline and ours. Impr. denotes the runtime improvement of our
CUDA graph over the baseline. ∥E∥ ′ denotes the number of edges in the
new CUDA graph generated by our framework.

Benchmark ∥V∥ ∥E∥ TB (s) TO (s) ∆t (s) Impr. ∥E∥ ′
c17 75 78 332.81 306.19 26.61 8% 89
s27 81 87 332.84 292.89 39.95 12% 95

c17_2 150 156 333.47 314.8 18.67 5.6% 162
s27_2 243 261 335.8 308.6 27.2 8.1% 271
c432 483 619 360.51 330.23 30.28 8.4% 633
c499 604 742 342.54 320.62 21.92 6.4% 760
s344 526 625 338 317.72 20.28 6% 640
s349 550 649 340.63 325.64 14.99 4.4% 664

c2670 1365 1665 437.76 422 15.76 3.6% 1685
s1196 1854 2344 494.74 474.95 19.79 4% 2366
s1494 2292 2925 539.96 524.84 15.12 2.8% 2950

usb_phy 2447 2999 540.8 524.58 16.22 3% 3036
Average 22.23 s 6%

0 20 40 60 80 100
0

0.2

0.4

0.6

Epoch

Tr
ain

in
gL

os
s

0 20 40 60 80 100
3
4
5
6
7

Epoch

Re
wa

rd

Figure 6.7: Training loss and rewards achieved by the RL policy.

140

Overall Performance Comparison

Table 6.1 presents the runtime performance of the baseline and our solution.
Our solution consistently outperforms the baseline across all benchmarks
with batch size 64. For instance, our solution achieves a 12% runtime
improvement over the baseline for s27. Similarly, for c2670, we observe
a 3.6%. The reason is the following. The baseline exhibits excessive task
parallelism, which, while seemingly beneficial, can introduce resource
contention that ultimately degrades runtime performance. Our framework
appends edges within the CUDA graph to slightly reduce task parallelism
in favor of improved resource utilization. This controlled parallelism aims
to achieve a balance between task execution and scheduling management,
leading to overall improved performance compared to the baseline. Note
that the runtime improvement may appear small for some benchmarks
(e.g., 3% on usb_phy), but in practice, the gain can accumulate to hours as
SSTA applications must run many iterations across different input values
and configurations [23]. More importantly, this runtime gain comes at little
cost to developers, as our framework requires no changes to application-
level algorithms but simply restructures the CUDA graph to guide the
runtime toward better scheduling performance.

These results highlight that batch size is a critical factor in maximizing
the benefits of our optimized CUDA graph. We observe that the runtime
improvement becomes smaller at a larger batch size. For example, in
Figure 6.8, when running s27_2, the improvement decreases from 8.1%
with batch size 64 to 2.6% with batch size 4096. We attribute this result
to the increased computational load associated with larger batch sizes.
Apparently, as kernel computation begins to dominate overall runtime, the
relative benefit of improved scheduling diminishes. However, we should
also notice that larger batch sizes incur higher GPU memory usage, which
in turn limits the maximum circuit size that can be processed on a single
GPU.

141

c17
c17_2

s27_2 c499
c2670

s1196
usb_phy

2

4

6

8

10

Circuit

Im
pr

ov
em

en
t(

%
) 64

128
256

1024
4096

Figure 6.8: Plot of runtime improvement of our framework over the base-
line on seven benchmarks with five different batch sizes.

(a) Original CUDA graph

1

2

3

4

5

6 7

8

9

10

11 12

13

14

16

15

(b) RL-optimized CUDA graph

14

1

2

3 4

5

6 7

8

9

10

11 12

13

16

15

m1 m9

m10

m1

m10

m9

Figure 6.9: Partial c17 CUDA graph visualization: (a) application’s orig-
inal, (b) our optimized CUDA graph. Blue/red dashed cycles indicate
changes due to blue/red edge additions. White circles denote kernels and
gray denote memory copies.

142

Our RL algorithm always brings positive benefits, as it does not modify
any application-level algorithms, but restructures the given CUDA graph
to guide the CUDA runtime toward better scheduling performance. These
edges facilitate improved scheduling by adapting the application’s needs
(i.e., application-level information) to the changing environment on GPU.
However, excessive edge additions can potentially serialize CUDA Graph
execution, leading to performance degradation. Our framework strikes a
balance by minimizing the number of auxiliary edges added. In Table 6.1,
our framework consistently introduces a small number of auxiliary edges.
For instance, in the usb_phy circuit with batch size 64, our CUDA graph
includes only 37 additional edges. Figure 6.9 visualizes the application’s
original CUDA graph and the optimized CUDA graph from our RL algo-
rithm. Our framework added two edges to reduce scheduling overhead
caused by excessive task parallelism in the application’s CUDA graphs.

Quality of Result

In addition to the runtime comparison, we evaluate the Quality of Result
(QoR) by judging how close each CUDA graph is to the potentially best
result. Specifically, we generated 10,000 distinct CUDA graphs per bench-
mark by randomly appending auxiliary edges to the application’s original
CUDA graph. Then, from these 10,000 sampled graphs, we extracted the
minimum and maximum runtimes and normalized them to [0, 1] to estab-
lish the potentially best and worst performance bounds. We can express
QoR as follows,

QoR = 1 − (
T − Tmin

Tmax − Tmin
), (6.5)

where Tmin and Tmax denote the sampled minimum and maximum run-
time, respectively. In Figure 6.10, our optimized graph consistently exhibits
a higher QoR compared to the baseline. For example, on the c2670 bench-
mark with batch size 128, our solution achieves a normalized QoR of 0.96,

143

c1
7

s2
7

c1
7_

2
s2

7_
2

c4
32

c4
99

s3
44

s3
49

c2
67

0
s1

19
6

s1
49

4
us

b_
ph

y

0
0.2
0.4
0.6
0.8

1

Circuit

Qo
R

Batch size 64
Baseline

Ours

c1
7

s2
7

c1
7_

2
s2

7_
2

c4
32

c4
99

s3
44

s3
49

c2
67

0
s1

19
6

s1
49

4
us

b_
ph

y

0
0.2
0.4
0.6
0.8

1

Circuit
Qo

R

Batch size 128
Baseline

Ours
c1

7
s2

7
c1

7_
2

s2
7_

2
c4

32
c4

99
s3

44
s3

49
c2

67
0

s1
19

6
s1

49
4

us
b_

ph
y

0
0.2
0.4
0.6
0.8

1

Circuit

Qo
R

Batch size 1024
Baseline

Ours
c1

7
s2

7
c1

7_
2

s2
7_

2
c4

32
c4

99
s3

44
s3

49
c2

67
0

s1
19

6
s1

49
4

us
b_

ph
y

0
0.2
0.4
0.6
0.8

1

Circuit

Qo
R

Batch size 4096
Baseline

Ours

Figure 6.10: QoR between the application-given and our optimized CUDA
graphs. A value closer to 1 indicates better QoR.

compared to 0.9 for the baseline. Furthermore, the majority of our op-
timized CUDA graphs have QoR over 0.8, indicating a close proximity
to the best sample, whereas the baseline typically falls between 0.6 and
0.8. This result highlights the effectiveness of our approach in consistently
generating higher-quality CUDA graphs.

144

Comparison with Random Edge Insertion

To further validate the effectiveness of our framework, we implemented
a method that randomly inserts the same quantity of auxiliary edges as
ours into the original CUDA graph. The goal is to show that blindly in-
serting edges without a learning-guided process yields limited or even
negative performance improvement. As shown in Figure 6.11, we ran-
domly inserted 11 and 37 edges into the application’s c17 and usb_phy
CUDA graphs, ran this experiment 2000 times, and recorded the runtime
for each run. We notice that only a small fraction of CUDA graphs can
achieve performance comparable to our RL-based solution. For example,
on the usb_phy benchmark, fewer than 5% of CUDA graphs match the
performance of our RL-optimized CUDA graph. We attribute this finding
to the fact that our framework learns to identify beneficial edge insertions
by interacting with the CUDA Graph runtime and adapting to its hidden
scheduling mechanisms. In contrast, the non-learning approach inserts
edges randomly without leveraging system feedback. While random inser-
tion may occasionally yield good performance after many attempts, most
resulting CUDA graphs fail to deliver decent improvements.

145

300 350 400
0

10

20

30 Ours
94%6%

Runtime (s)

Fr
eq

ue
nc

y
c17 benchmark

517 555 592
0

5

10

15

20
95%5%

Ours

Runtime (s)
Fr

eq
ue

nc
y

usb_phy benchmark

Figure 6.11: Histogram of the random edge insertion approach on c17
and usb_phy. 2000 different CUDA graphs were generated by randomly
appending the same amounts of auxiliary edges as our solution to the
application’s original CUDA graph. Only a small portion (∼ 5%) of the
2000 CUDA graphs perform better runtime performance as our optimized
CUDA graph (indicated by the vertical red line).

6.6 Conclusion
We have introduced a reinforcement learning-based framework to op-
timize CUDA Graph scheduling on SSTA propagation workloads. We
have formulated the CUDA Graph scheduling as a node-level adjustment
problem. To solve the problem formulation, we have leveraged a graph
neural network to encode structural information and employed a deep Q
learning algorithm to interact with CUDA Graph runtime and generate
an optimized CUDA graph. Compared to the baseline, we achieved up
to 12% runtime improvement. Notably, this performance improvement
is almost free, as our framework requires no changes to application-level
algorithms, but simply restructures the application’s given CUDA graph
to guide the CUDA Graph runtime toward better scheduling performance.

146

In the future, we plan to extend our algorithms to other applications pow-
ered by task graph parallelism [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
32, 34, 38, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 78, 83, 88, 89, 90, 91, 100, 101, 102, 105, 106,
107, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 132, 133, 145, 146,
152, 153, 154, 155].

147

7 conclusion

In conclusion, this thesis highlights several significant advancements in
the discipline of task-parallel programming and task graph scheduling
with efficient algorithms and frameworks to enhance runtime performance
and efficiency. The main contributions are summarized as follows:

1. An Efficient Task-parallel Pipeline Programming Framework. We
have introduce a new task-parallel pipeline programming framework
called Pipeflow to separate data abstractions and task scheduling,
enabling a more efficient implementation of task- parallel pipeline al-
gorithms than existing frameworks. We have demonstrated Pipeflow
outperforms existing solutions by up to 111.33% faster to avoid re-
dundant data abstractions in task-parallel applications.

2. A Task-parallel Pipeline Programming Model with Token Depen-
dency. We have extended our Pipeflow framework to support both
forward and backward token dependencies. We have demonstrated
our token-aware Pipeflow is 8.6% faster than existing solutions and
is more efficient in programming video encoding applications.

3. Programming Dynamic Task Parallelism for Heterogeneous EDA
Algorithms. We have introduced a new programming model, call
AsyncTask, that supports the dynamic building of a computational
task graph. We have demonstrated AsyncTask outperforms a main-
stream library by up to 3.19× faster on real-wold applications through
a straightforward programming model and an efficient dynamic task
graph scheduling.

4. Resource-efficient Task Scheduling. We have introduced a novel
reinforcement learning-based scheduling algorithm that learns to
adapt the performance optimization to a given runtime situation. We

148

have demonstrated our scheduling algorithm achieves a promising
runtime performance on all evaluations while using only 20% of
computing units. This highlights the effectiveness of our reinforce-
ment learning model in scheduling tasks across resource-conscious
subset of computing units.

5. Topological Order for Dynamic Task Graph Scheduling. We have
introduced a novel method that leverages reinforcement learning to
generate topological orders for dynamic task graph scheduling sys-
tems. We have demonstrated our reinforcement learning-generated
order achieves a speedup of up to 1.52× over the baseline on real-
world applications, showing the advantage of our method in effi-
ciently adapting the task scheduling to a work-stealing runtime.

6. CUDA Graph Scheduling Optimization. We have introduced a
reinforcement learning-based framework to optimize CUDA Graph
scheduling via graph restructure. We have demonstrated our opti-
mized CUDA graph can achieve up to a 12% runtime improvement
on statistical static timing analysis (SSTA) propagation workloads.
This runtime gain comes at little cost to developers, as our frame-
work requires no changes to application-level algorithms but simply
restructures the CUDA graph to guide the runtime toward better
scheduling performance.

Together, these contributions advance the state of the art in task-parallel
programming and intelligent task graph scheduling, offering practical
frameworks and algorithms applicable to a wide range of high-performance
computing scenarios. The research centers on efficient task graph schedul-
ing and algorithmic design to enhance runtime performance.

Future works should cover the following directions: (1) selecting the
pipeline architecture for the Pipeflow library using machine learning tech-
niques; (2) improving the data locality for the Pipeflow library; (3) apply-

149

ing AsyncTask to more applications, such as distributed computing, macro
modeling, and path-based analysis; (4) extending our resource-efficient
reinforcement learning-based framework to a distributed environment
and considering GPU task graphs into our model; (5) applying our re-
inforcement learning-based framework to more parallel parallel graph
algorithms, such as quantum circuit simulator, with better topological
orders and thus better runtime performance; (6) exploring the scalability
of our CUDA Graph optimization framework for larger and more complex
graphs, and extending the framework to more applications powered by
task graph parallelism. By following these directions, the frameworks
and algorithms introduced in this thesis can further contribute to ongoing
advancements in task-parallel programming and scheduling and hetero-
geneous programming.

150

bibliography

[1] C++ Condition Variable. https://en.cppreference.com/w/cpp/
thread/condition_variable

[2] Huber Loss. https://en.wikipedia.org/wiki/Huber_loss

[3] Intel oneTBB. https://github.com/oneapi-src/oneTBB

[4] Kahn’s Algorithm for Topological Sort-
ing. https://www.geeksforgeeks.org/
topological-sorting-indegree-based-solution/

[5] OpenMP. https://www.openmp.org/

[6] Opentimer. https://github.com/OpenTimer/OpenTimer

[7] Rectifier (Neural Networks). https://en.wikipedia.org/wiki/
Rectifier_(neural_networks)

[8] Taskflow. https://taskflow.github.io

[9] TAU 2018 Contest. https://sites.google.com/view/
taucontest2018/home

[10] Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: FastFlow:
High-Level and Efficient Streaming on Multicore. In: Programming
Multicore and Manycore Computing Systems. pp. 261–280 (2017)

[11] Basaklar, T., Goksoy, A.A., Krishnakumar, A., Gumussoy, S., Ogras,
U.Y.: DTRL: Decision Tree-based Multi-Objective Reinforcement
Learning for Runtime Task Scheduling in Domain-Specific System-
on-Chips. In: ACM Transactions on Embedded Computing Systems.
pp. 1–22 (2023)

[12] Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC Benchmark
Suite: Characterization and Architectural Implication. In: Interna-
tional conference on Parallel Architectures and Compilation Tech-
nique (PACT). pp. 72–81 (2008)

https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.cppreference.com/w/cpp/thread/condition_variable
https://en.wikipedia.org/wiki/Huber_loss
https://github.com/oneapi-src/oneTBB
https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/
https://www.geeksforgeeks.org/topological-sorting-indegree-based-solution/
https://www.openmp.org/
https://github.com/OpenTimer/OpenTimer
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://taskflow.github.io
https://sites.google.com/view/taucontest2018/home
https://sites.google.com/view/taucontest2018/home

151

[13] Bienia, C., Li, K.: Scaling of the PARSEC Benchmark Inputs. In:
International Conference on Parallel Architectures and Compilation
Techniques (PACT). pp. 561–562 (2010)

[14] Blaauw, D., Chopra, K., Srivastava, A., Scheffer, L.: Statistical Tim-
ing Analysis: From Basic Principles to State of the Art. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD). pp. 589–607 (2008)

[15] Blanco, F.G., Russo, E., Palesi, M., Patti, D., Ascia, G., Catania, V.:
Deep Reinforcement Learning based Online Scheduling Policy for
Deep Neural Network Multi-Tenant Multi-Accelerator Systems. In:
Design Automation Conference (DAC). pp. 1–6 (2024)

[16] Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K.,
Zhou, Y.: Cilk: An Efficient Multithreaded Runtime System. In:
ACM SIGPLAN Notices. pp. 207–216 (1995)

[17] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Don-
garra, J.J.: PaRSEC: Exploiting Heterogeneity to Enhance Scalability.
In: Computing in Science Engineering. pp. 36–45 (2013)

[18] Bosilca, G., Harrison, R., Herault, T., Javanmard, M., Nookala, P.,
Valeev, E.: The Template Task Graph (TTG) - An Emerging Practi-
cal Dataflow Programming Paradigm for Scientific Simulation at
Extreme Scale. In: ACM ESPM2. pp. 1–7 (2020)

[19] Chang, C., Chiu, C.H., Zhang, B., Huang, T.W.: Incremental Critical
Path Generation for Dynamic Graphs. In: IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). pp. 771–774 (2024)

[20] Chang, C., Huang, T.W., Lin, D.L., Guo, G., Lin, S.: Ink: Efficient
Incremental k-Critical Path Generation. In: ACM/IEEE Design Au-
tomation Conference (DAC). pp. 1–6 (2024)

[21] Chang, C., Zhang, B., Chiu, C.H., Lin, D.L., Chung, Y.H., Lee, W.L.,
Guo, Z., Lin, Y., Huang, T.W.: PathGen: An Efficient Parallel Critical
Path Generation Algorithm. In: IEEE/ACM Asia and South Pacific
Design Automation Conference (ASP-DAC). pp. 416–424 (2025)

152

[22] Chang, C.C., Huang, T.W.: uSAP: An Ultra-Fast Stochastic Graph
Partitioner. In: IEEE High-performance and Extreme Computing
Conference (HPEC). pp. 1–7 (2023)

[23] Chang, C.C., Huang, T.W.: Statistical Timing Graph Scheduling Al-
gorithm for GPU Computation. In: ACM/IEEE Design Automation
Conference (DAC) (2025)

[24] Chang, C.C., Zhang, B., Huang, T.W.: GSAP: A GPU-Accelerated
Stochastic Graph Partitioner. In: ACM International Conference on
Parallel Processing (ICPP). pp. 565–575 (2024)

[25] Chiu, C.H., Huang, T.W.: Composing Pipeline Parallelism using
Control Taskflow Graph. In: ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC).
pp. 283–284 (2022)

[26] Chiu, C.H., Huang, T.W.: Efficient Timing Propagation with Simul-
taneous Structural and Pipeline Parallelisms. In: ACM/IEEE Design
Automation Conference (DAC). pp. 1388–1389 (2022)

[27] Chiu, C.H., Huang, T.W.: An Experimental Study of Dynamic Task
Graph Parallelism for Large-Scale Circuit Analysis Workloads. In:
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). pp.
766–770 (2024)

[28] Chiu, C.H., Lin, D.L., Huang, T.W.: An Experimental Study of
SYCL Task Graph Parallelism for Large-Scale Machine Learning
Workloads. In: International Workshop of Asynchronous Many-
Task systems for Exascale (AMTE). pp. 468–479 (2021)

[29] Chiu, C.H., Lin, D.L., Huang, T.W.: Programming Dynamic Task
Parallelism for Heterogeneous EDA Algorithms. In: IEEE/ACM In-
ternational Conference on Computer-aided Design (ICCAD). pp. 1–
8 (2023)

[30] Chiu, C.H., Morchdi, C., Zhou, Y., Zhang, B., Chang, C., Huang,
T.W.: Reinforcement Learning-generated Topological Order for Dy-
namic Task Graph Scheduling. In: IEEE High-performance and
Extreme Computing Conference (HPEC) (2024)

153

[31] Chiu, C.H., Xiong, Z., Guo, Z., Huang, T.W., Lin, Y.: An Efficient
Task-Parallel Pipeline Programming Framework. In: International
Conference on High Performance Computing in Asia-Pacific Region
(HPC-Asia). pp. 95–106 (2024)

[32] Chung, Y.H., Jiang, S., Lee, W.L., Zhang, Y., Ren, H., Ho, T.Y., Huang,
T.W.: SimPart: A Simple Yet Effective Replication-aided Partitioning
Algorithm for Logic Simulation on GPU. In: International Euro-
pean Conference on Parallel and Distributed Computing (Euro-Par)
(2025)

[33] Ding, X., Wang, K., Gibbons, P., Zhang, X.: BWS: Balanced Work
Stealing for Time-sharing Multicores. In: ACM European Confer-
ence on Computer Systems (EuroSys). pp. 365–378 (2012)

[34] Dzaka, E., Lin, D.L., Huang, T.W.: Parallel And-Inverter Graph
Simulation Using a Task-graph Computing System. In: IEEE Inter-
national Parallel and Distributed Processing Symposium Workshop
(IPDPSw) (2023)

[35] Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling Many-
core Performance Portability Through Polymorphic Memory Access
Patterns. In: Journal of Parallel and Distributed Computing. pp.
3202–3216 (2014)

[36] Fan, Y., Lan, Z., Childers, T., Rich, P., Allcock, W., Papka, M.E.: Deep
Reinforcement Agent for Scheduling in HPC. In: IEEE International
Parallel and Distributed Processing Symposium (IPDPS). pp. 807–
816 (2021)

[37] Forzan, C., Pandini, D.: Statistical Static Timing Analysis: A survey.
In: Integration. pp. 409–435 (2009)

[38] Gener, S., Hassan, S., Chang, L., Chakrabarti, C., Huang, T.W., Ogras,
U., , Akoglu, A.: A Unified Portable and Programmable Framework
for Task-Based Execution and Dynamic Resource Management on
Heterogeneous Systems. In: ACM International Workshop on Ex-
treme Heterogeneity Solutions (ExHET). pp. 1–9 (2025)

154

[39] Goksoy, A.A., Kanani, A., Chatterjee, S., Ogras, U.: Runtime Moni-
toring of ML-based Scheduling Algorithms Toward Robust Domain-
specific SoCs. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD). pp. 4202–4213 (2024)

[40] Griebler, D., Danelutto, M., Torquati, M., Fernandes, L.: SPar: A
DSL for High-Level and Productive Stream Parallelism. In: Parallel
Processing Letters (2017)

[41] Griebler, D., Hoffmann, R., Danelutto, M., Fernandes, L.: High-
Level and Productive Stream Parallelism for Dedup, Ferret, and
Bzip2. In: The Journal of Parallel Programming. pp. 253–271 (2019)

[42] Gulati, K., Khatri, S.: Accelerating Statistical Static Timing Analysis
using Graphics Processing Units. In: Asia and South Pacific Design
Automation Conference (ASP-DAC). pp. 260–265 (2009)

[43] Guo, G., Huang, T.W., Lin, C.X., Wong, M.: An Efficient Critical Path
Generation Algorithm Considering Extensive Path Constraints. In:
ACM/IEEE Design Automation Conference (DAC). pp. 1–6 (2020)

[44] Guo, G., Huang, T.W., Lin, Y., Guo, Z., Yellapragada, S., Wong, M.:
A GPU-Accelerated Framework for Path-Based Timing Analysis. In:
IEEE Transactions on Computer-aided Design of Integrated Circuits
and Systems (TCAD). pp. 4219–4232 (2023)

[45] Guo, G., Huang, T.W., Lin, Y., Wong, M.: GPU-accelerated Critical
Path Generation with Path Constraints. In: IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). pp. 1–9 (2021)

[46] Guo, G., Huang, T.W., Lin, Y., Wong, M.: GPU-accelerated Path-
based Timing Analysis. In: IEEE/ACM Design Automation Confer-
ence (DAC). pp. 721–726 (2021)

[47] Guo, G., Huang, T.W., Wong, M.D.F.: Fast STA Graph Partitioning
Framework for Multi-GPU Acceleration. In: IEEE/ACM Design,
Automation and Test in Europe Conference (DATE) (2023)

[48] Guo, Z., Huang, T.W., Lin, Y.: A Provably Good and Practically
Efficient Algorithm for Common Path Pessimism Removal in Large
Designs. In: IEEE/ACM International Conference on Computer-
aided Design (ICCAD). pp. 3466–3478 (2020)

155

[49] Guo, Z., Huang, T.W., Lin, Y.: GPU-accelerated Static Timing Anal-
ysis. In: IEEE/ACM International Conference on Computer-Aided
Design (ICCAD) (2020)

[50] Guo, Z., Huang, T.W., Lin, Y.: HeteroCPPR: Accelerating Com-
mon Path Pessimism Removal with Heterogeneous CPU-GPU Par-
allelism. In: IEEE/ACM International Conference on Computer-
Aided Design (ICCAD) (2021)

[51] Guo, Z., Huang, T.W., Lin, Y.: Accelerating Static Timing Analy-
sis using CPU-GPU Heterogeneous Parallelism. In: IEEE Transac-
tions on Computer-aided Design of Integrated Circuits and Systems
(TCAD). pp. 4973–4984 (2023)

[52] Guo, Z., Huang, T.W., Zhou, J., Zhuo, C., Lin, Y., Wang, R., Huang,
R.: Heterogeneous Static Timing Analysis with Advanced Delay
Calculator. In: IEEE/ACM Design, Automation and Test in Europe
Conference (DATE) (2024)

[53] Guo, Z., Zhang, Z., Li, W., Huang, T.W., Shi, X., Du, Y., Lin, Y.,
Wang, R., Huang, R.: HeteroExcept: Heterogeneous Engine for Gen-
eral Timing Path Exception Analysis. In: IEEE/ACM International
Conference on Computer-aided Design (ICCAD). pp. 1–9 (2024)

[54] Hamilton, W.L., Ying, R., Leskovec, J.: Inductive Representation
Leanring on Large Graphs. In: Conference on Neural Information
Processing Systems (NIPS) (2017)

[55] Haykin, S.: Neural Networks: A Comprehensive Foundation. In:
Prentice Hall PTR (1994)

[56] Hoffman, R., Loff, J., Griebler, D., Fernandes, L.: OpenMP as Run-
time for Providing High-Level Stream Parallelism on Multi-Cores.
In: The Journal of Supercomputing. pp. 7655–7676 (2022)

[57] Hoffmann, R., Korch, M., Rauber, T.: Performance Evaluation of
Task Pools Based on Hardware Synchronization. In: ACM Super-
computing (2004)

156

[58] Hoque, R., Herault, T., Bosilca, G., Dongarra, J.J.: Dynamic Task Dis-
covery in PaRSEC: A Data-flow Task-based Runtime. In: Workshop
on Latest Advances in Scalable Algorithm for Large-Scale Systems
(ScalA). pp. 1–8 (2017)

[59] Huang, T.W.: A General-purpose Parallel and Heterogeneous Task
Programming System for VLSI CAD. In: IEEE/ACM International
Conference on Computer-aided Design (ICCAD). pp. 1–2 (2020)

[60] Huang, T.W.: TFProf: Profiling Large Taskflow Programs with Mod-
ern D3 and C++. In: IEEE International Workshop on Programming
and Performance Visualization Tools (ProTools). pp. 1–6 (2021)

[61] Huang, T.W.: Enhancing the Performance Portability of Hetero-
geneous Circuit Analysis Programs. In: IEEE High-Performance
Extreme Computing Conference (HPEC) (2022)

[62] Huang, T.W.: qTask: Task-parallel Quantum Circuit Simulation
with Incrementality. In: IEEE International Parallel and Distributed
Processing Symposium (IPDPS). pp. 746–756 (2023)

[63] Huang, T.W., Guo, G., Lin, C.X., Wong, M.D.F.: OpenTimer v2: A
New Parallel Incremental Timing Analysis Engine. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) (2021)

[64] Huang, T.W., Hwang, L.: Task-parallel Programming with Con-
strained Parallelism. In: IEEE High-Performance Extreme Comput-
ing Conference (HPEC) (2022)

[65] Huang, T.W., Lin, C.X., , Wong, M.: Distributed Timing Analysis
at Scale. In: ACM/IEEE Design Automation Conference (DAC).
pp. 1–2 (2019)

[66] Huang, T.W., Lin, C.X., Guo, G., Wong, M.: A General-purpose
Distributed Programming System using Data-parallel Streams. In:
ACM Multimedia Conference (MM). pp. 1360–1363 (2018)

[67] Huang, T.W., Lin, C.X., Guo, G., Wong, M.: Cpp-Taskflow: Fast
Task-based Parallel Programming using Modern C++. In: IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS)
(2019)

157

[68] Huang, T.W., Lin, C.X., Guo, G., Wong, M.: Essential Building
Blocks for Creating an Open-source EDA Project. In: ACM/IEEE
Design Automation Conference (DAC). pp. 1–4 (2019)

[69] Huang, T.W., Lin, C.X., Wong, M.: DtCraft: A Distributed Execu-
tion Engine for Compute-intensive Applications. In: IEEE/ACM
International Conference on Computer-aided Design (ICCAD). pp.
757–764 (2017)

[70] Huang, T.W., Lin, C.X., Wong, M.: DtCraft: A High-performance
Distributed Execution Engine at Scale. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
(TCAD). pp. 1070–1083 (2019)

[71] Huang, T.W., Lin, C.X., Wong, M.: OpenTimer v2: A Parallel Incre-
mental Timing Analysis Engine. In: IEEE Design and Test (DAT)
(2021)

[72] Huang, T.W., Lin, D.L., Lin, C.X., Lin, Y.: Taskflow: A Lightweight
Parallel and Heterogeneous Task Graph Computing System. In:
IEEE Transactions on Parallel and Distributed Systems (TPDS). pp.
1303–1320 (2022)

[73] Huang, T.W., Lin, D.L., Lin, Y., Lin, C.X.: Taskflow: A General-
purpose Parallel and Heterogeneous Task Programming System.
In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) (2022)

[74] Huang, T.W., Lin, Y.: Concurrent CPU-GPU Task Programming
using Modern C++. In: IEEE International Workshop on High-
level Parallel Programming Models and Supportive Environments
(HIPS). pp. 588–597 (2022)

[75] Huang, T.W., Lin, Y., Lin, C.X., Guo, G., Wong, M.D.F.: Cpp-
Taskflow: A General-Purpose Parallel Task Programming System
at Scale. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD) (2021)

[76] Huang, T.W., Wong, M.: OpenTimer: A High-Performance Tim-
ing Analysis Tool. In: IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). pp. 895–902 (2015)

158

[77] Huang, T.W., Wong, M.: UI-Timer 1.0: An Ultra-Fast Path-Based
Timing Analysis Algorithm for CPPR. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
(TCAD). pp. 1862–1875 (2016)

[78] Huang, T.W., Wong, M., Sinha, D., Kalafala, K., Venkateswaran, N.:
A Distributed Timing Analysis Framework for Large Designs. In:
IEEE/ACM Design Automation Conference (DAC). pp. 1–6 (2016)

[79] Huang, T.W., Wong, M.D.: Accelerated Path-Based Timing Analysis
with MapReduce. In: International Symposium on Physical Design
(ISPD). pp. 103–110 (2015)

[80] Huang, T.W., Wong, M.D.: On Fast Timing Closure: Speeding up
Incremental Path-based Timing Analysis with Mapreduce. In: Inter-
national Workshop on System Level Interconnect Prediction (SLIP)
(2015)

[81] Huang, T.W., Wu, P.C., Wong, M.: Fast Path-Based Timing Analysis
for CPPR. In: IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). pp. 596–599 (2014)

[82] Huang, T.W., Wu, P.C., Wong, M.D.F.: UI-Timer: An Ultra-fast Clock
Network Pessimism Removal Algorithm. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
(TCAD). pp. 758–765 (2014)

[83] Huang, T.W., Zhang, B., Lin, D.L., Chiu, C.H.: Parallel and Het-
erogeneous Timing Analysis: Partition, Algorithm, and System.
In: ACM International Symposium on Physical Design (ISPD). pp.
51–59 (2024)

[84] Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M.X., Chen, D., Lee,
H., Ngiam, J., Le, Q.V., Wu, Y., Chen, Z.: GPipe: Efficient Training
of Giant Neural Networks using Pipeline Parallelism. In: Advances
in Neural Information Processing Systems. pp. 103–112 (2019)

[85] Jess, J., Kalafala, K., Naidu, S., Otten, R., Visweswariah, C.: Statistical
Timing for Parametric Yield Prediction of Digital Integrated Circuits.
In: ACM/IEEE Design Automation Conference (DAC). pp. 932–937
(2003)

159

[86] Jia, Z., Lin, S., Qi, C.R., Aiken, A.: Exploring Hidden Dimensions
in Accelerating Convolutional Neural Networks. In: International
Conference on Machine Learning. pp. 2274–2283 (2018)

[87] Jia, Z., Zahari, M., Aiken, A.: Beyond Data and Model Parallelism
for Deep Neural Networks. In: Proceedings of Machine Learning
and Systems. pp. 1–13 (2019)

[88] Jiang, S., Huang, T.W., Ho, T.Y.: GLARE: Accelerating Sparse DNN
Inference Kernels with Global Memory Access Reduction. In: IEEE
High-performance and Extreme Computing Conference (HPEC)
(2023)

[89] Jiang, S., Huang, T.W., Ho, T.Y.: SNICIT: Accelerating Sparse Neural
Network Inference via Compression at Inference Time on GPU. In:
ACM International Conference on Parallel Processing (ICPP). pp.
51–61 (2023)

[90] Jiang, S., Chung, Y.H., Chang, C.C., Ho, T.Y., Huang, T.W.: BQSim:
GPU-accelerated Batch Quantum Circuit Simulation using Deci-
sion Diagram. In: ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS). pp. 79–94 (2025)

[91] Jiang, Shui and Fu, Rongliang and Burgholzer, Lukas and Wille,
Robert and Ho, Tsung-Yi and Huang, Tsung-Wei: FlatDD: A High-
Performance Quantum Circuit Simulator using Decision Diagram
and Flat Array. In: ACM International Conference on Parallel Pro-
cessing (ICPP). pp. 388–399 (2024)

[92] Kahng, A.: Reducing Time and Effort in IC Implementation: A
Roadmap of Challenges and Solutions. In: ACM/IEEE Design Au-
tomation Conference (DAC). pp. 1–6 (2018)

[93] Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX:
A Task Based Programming Model in a Global Address Space. In:
International Conference on Partitioned Global Address Space Pro-
gramming Mod (PGAS). pp. 1–11 (2014)

160

[94] Kamruzzaman, M., Swanson, S., Tullsen, D.: Load-Balanced
Pipeline Parallelism. In: International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. pp. 1–12
(2013)

[95] Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization.
In: International Conference on Learning Representations (ICLR)
(2014)

[96] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization.
In: International Conference on Learning Representations (ICLR)
(2015)

[97] Kipf, T., Welling, M.: Semi-Supervised Classification with Graph
Convolutional Networks. In: International Conference on Learning
Representations (ICLR) (2017)

[98] Konda, V.R., Borkar, V.S.: Actor-Critic–Type Learning Algorithms
for Markov Decision Processes. In: Journal on Control and Opti-
mization. pp. 94–123 (1999)

[99] Krishnakumar, A., Arda, S.E., Goksoy, A.A., Mandal, S.K., Ogras,
U.Y., Sartor, A.L.: Runtime Task Scheduling Using Imitation Learn-
ing for Heterogeneous Many-core Systems. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
(TCAD). pp. 4064–4077 (2020)

[100] Lai, K.M., Huang, T.W., Ho, T.Y.: A General Cache Framework for
Efficient Generation of Timing Critical Paths. In: ACM/IEEE Design
Automation Conference (DAC) (2019)

[101] Lai, K.M., Huang, T.W., Lee, P.Y., Ho, T.Y.: ATM: A High Accu-
racy Extracted Timing Model for Hierarchical Timing Analysis. In:
IEEE/ACM Asia and South Pacific Design Automation Conference
(ASP-DAC). pp. 278–283 (2021)

[102] Lai, T.Y., Huang, T.W., , Wong, M.: Libabs: An Effective and Accu-
rate Macro-modeling Algorithm for Large Hierarchical Designs. In:
IEEE/ACM International Conference on Computer-aided Design
(ICCAD). pp. 1–6 (2017)

161

[103] Lan, Q., Pan, Y., andMartha White, A.F.: Maxmin Q-learning: Con-
trolling the Estimation Bias of Q-learning. In: International Confer-
ence on Learning Representations (ICLR) (2020)

[104] Lee, I.T.A., Leiserson, C., Schardl, T., Zhang, Z., Sukha, J.: On-the-Fly
Pipeline Parallelism. In: ACM Transactions on Parallel Computing
(TOPC) (2015)

[105] Lee, W.L., Jiang, S., Lin, D.L., Chang, C., Zhang, B., Chung, Y.H.,
Schlichtmann, U., Ho, T.Y., , Huang, T.W.: iG-kway: Incremental k-
way Graph Partitioning on GPU. In: ACM/IEEE Design Automation
Conference (DAC) (2025)

[106] Lee, W.L., Lin, D.L., Chiu, C.H., Schlichtmann, U., Huang, T.W.: Hy-
perG: Multilevel GPU-Accelerated k-way Hypergraph Partitioner.
In: IEEE/ACM Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). pp. 1031–1040 (2025)

[107] Lee, W.L., Lin, D.L., Huang, T.W., Jiang, S., Ho, T.Y., Lin, Y., Yu, B.:
G-kway: Multilevel GPU-Accelerated k-way Graph Partitioner. In:
ACM/IEEE Design Automation Conference (DAC). pp. 1–6 (2024)

[108] Leijen, D., Schulte, W., Burckhardt, S.: The Design of a Task Parallel
Library. In: ACM SIGPLAN Notices. pp. 227–242 (2009)

[109] Leiserson, C.: The Cilk++ Concurrency Platform. In: The Journal
of Supercomputing. pp. 244–257 (2010)

[110] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-
ver, D., Wierstra, D.: Continuous Control with Deep Reinforcement
Learning. In: International Conference on Learning (ICLR) (2016)

[111] Lin, C.X., Huang, T.W., Guo, G., Wong, M.: A Modern C++ Paral-
lel Task Programming Library. In: ACM Multimedia Conference
(MM). pp. 2284–2287 (2019)

[112] Lin, C.X., Huang, T.W., Guo, G., Wong, M.: An Efficient and
Composable Parallel Task Programming Library. In: IEEE High-
performance and Extreme Computing Conference (HPEC) (2019)

162

[113] Lin, C.X., Huang, T.W., Wong, M.: An Efficient Work-Stealing Sched-
uler for Task Dependency Graph. In: IEEE International Conference
on Parallel and Distributed Systems (ICPADS). pp. 64–71 (2020)

[114] Lin, C.X., Huang, T.W., Yu, T., Wong, M.: A Distributed Power Grid
Analysis Framework from Sequential Stream Graph. In: ACM Great
Lakes Symposium on VLSI (GLSVLSI). pp. 183–188 (2018)

[115] Lin, D.L., Huang, T.W.: A Novel Inference Algorithm for Large
Sparse Neural Network using Task Graph Parallelism. In: IEEE
High-performance and Extreme Computing Conference (HPEC)
(2020)

[116] Lin, D.L., Huang, T.W.: Efficient GPU Computation using Task
Graph Parallelism. In: European Conference on Parallel and Dis-
tributed Computing (Euro-Par). pp. 435–450 (2021)

[117] Lin, D.L., Huang, T.W.: Accelerating Large Sparse Neural Network
Inference using GPU Task Graph Parallelism. In: IEEE Transactions
on Parallel and Distributed Systems (TPDS). pp. 3041–3052 (2022)

[118] Lin, D.L., Huang, T.W., Miguel, J.S., Ogras, U.: TaroRTL: Acceler-
ating RTL Simulation using Coroutine-based Heterogeneous Task
Graph Scheduling. In: International European Conference on Paral-
lel and Distributed Computing (Euro-Par). pp. 151–166 (2024)

[119] Lin, D.L., Ren, H., Zhang, Y., Khailany, B., Huang, T.W.: From RTL
to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch
Stimulus. In: ACM International Conference on Parallel Processing
(ICPP). pp. 1–12 (2022)

[120] Lin, D.L., Zhang, Y., Ren, H., Wang, S.H., Khailany, B., Huang,
T.W.: GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic
Algorithm with Multiple Inputs. In: ACM/IEEE Design Automation
Conference (DAC). pp. 1–6 (2023)

[121] Lin, S., Guo, G., Huang, T.W., Sheng, W., Young, E., Wong, M.: GCS-
Timer: GPU-Accelerated Current Source Model Based Static Timing
Analysis. In: ACM/IEEE Design Automation Conference (DAC).
pp. 1–6 (2024)

163

[122] Lin, Y., Li, W., Gu, J., Ren, H., Khailany, B., Pan, D.Z.: ABCDPlace:
Accelerated Batch-Based Concurrent Detailed Placement on Mul-
tithreaded CPUs and GPUs. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD). pp. 5083–
5096 (2020)

[123] Liu, S., Pu, Y., Liao, P., Wu, H., Zhang, R., Chen, Z.: FastGR: Global
Routing on CPU–GPU With Heterogeneous Task Graph Scheduler.
In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD). pp. 2317–2330 (2023)

[124] Loff, J., Hoffman, R., Griebler, D., Fernandes, L.: High-Level Stream
and Data Parallelism in C++ for Multi-Cores. In: Brazilian Sympo-
sium on Programming Languages (SBLP). pp. 41–48 (2021)

[125] Mack, J., Arda, S.E., Ogras, U.Y., Akoglu, A.: Performant, Multi-
objective Scheduling of Highly Interleaved Task Graphs on Hetero-
geneous System on Chip Devices. In: IEEE Transactions on Parallel
and Distributed Systems (TPDS). pp. 2148–2162 (2022)

[126] Mastoras, A., Gross, T.: Understanding Parallelization Tradeoffs for
Linear Pipelines. In: ACM International Workshop on Programming
Models and Applications for Multicores and Manycores (PMAM).
pp. 1–10 (2018)

[127] Mastoras, A., Gross, T.: Unifying Fixed Code Mapping, Commu-
nication, Synchronization and Scheduling Algorithms for Efficient
and Scalable Loop Pipelining. In: IEEE Transactions on Parallel and
Distributed Systems (TPDS). pp. 2136–2149 (2018)

[128] Mastoras, A., Gross, T.: Efficient and Scalable Execution of Fine-
Grained Dynamic Linear Pipelines. In: ACM Transactions on Archi-
tecture and Code Optimization (TACO). pp. 1–26 (2019)

[129] Mastoras, A., Gross, T.: Load-balancing for Load-imbalanced Fine-
grained Linear Pipelines. In: Parallel Computing. pp. 2136–2149
(2019)

164

[130] Mastoras, A., Yzelman, A.J.N.: Studying the Expressiveness and
Performance of Parallelization Abstractions for Linear Pipelines. In:
Workshop on Programming Models and Applications for Multi-
cores and Manycores (PMAM). pp. 29–38 (2023)

[131] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M.: Playing Atari with Deep Reinforcement
Learning. In: Arxiv.org (2013)

[132] Morchdi, C., Chiu, C.H., Zhou, Y., Huang, T.W.: A Resource-
efficient Task Scheduling System using Reinforcement Learning.
In: IEEE/ACM Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). pp. 89–95 (2024)

[133] Mower, M., Majors, L., Huang, T.W.: Taskflow-San: Sanitizing Er-
roneous Control Flow in Taskflow Programs. In: IEEE Workshop
on Extreme Scale Programming Models and Middleware (ESPM2)
(2021)

[134] Navarro, A., Asenjo, R., Tabik, S., Cascaval, C.: Load Balancing Us-
ing Wok-Stealing for Pipeline Parallelism in Emerging Applications.
In: ACM International Conference on Supercomputing. pp. 517–518
(2009)

[135] Ottoni, G., Rangan, R., Stoler, A., August, D.: Automatic Thread
Extraction with Decoupled Software Pipelining. In: IEEE/ACM
International Symposium on Microarchitecture (MICRO). pp. 105–
118 (2005)

[136] Raman, E., Ottoni, G., Raman, A., Bridges, M., August, D.: Parallel-
Stage Decoupled Software Pipelining. In: IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). pp. 114–
123 (2008)

[137] Rangan, R., Vachharajani, N., Ottoni, G., August, D.: Performance
Scalability of Decoupled Software Pipelining. In: IEEE/ACM In-
ternational Symposium on Code Generation and Optimization
(TACO). pp. 1–25 (2008)

165

[138] Reed, E.C., Chen, N., Johnson, R.E.: Expressing Pipeline Parallelism
using TBB Constructs: A Case Study on What Works and What
Doesn’t. In: Conference on Systems, Programming, and Applica-
tions: Software for Humanity (SPLASH). pp. 133–138 (2011)

[139] del Rio Astorga, D., Dolz, M., Fernández, J., García, J.: A Generic
Parallel Pattern Interface for Stream and Data Processing. In: Con-
currency and Computation: Practice and Experience (2017)

[140] Sanchez, D., Lo, D., Yoo, R., Sugerman, J., Kozyrakis, C.: Dynamic
Fine-Grain Schedulig of Pipeline Parallelism. In: IEEE International
Conference on Parallel Architectures and Compilation Techniques
(PACT). pp. 22–32 (2011)

[141] Schardl, T., Lee, I.T.A.: OpenCilk: A Modular and Extensible
Software Infrastructure for Fast Task-Parallel Code. In: ACM SIG-
PLAN Annual Symposium on Principles and Practice of Parallel
Programmi (PPoPP). pp. 189–203 (2023)

[142] Suleman, M., Qureshi, M., Khubaib, Patt, Y.: Feedback-Directed
Pipeline Parallelism. In: IEEE International Conference on Parallel
Architectures and Compilation Techniques (PACT). pp. 147–156
(2010)

[143] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction.
In: MIT Press (2018)

[144] Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy Gradient
Methods for Reinforcement Learning with Function Approximation.
In: International Conference on Neural Information Processing
Systems. pp. 1057––1063 (1999)

[145] Tong, J., Chang, L., Ogras, U.Y., Huang, T.W.: BatchSim: Parallel RTL
Simulation using Inter-cycle Batching and Task Graph Parallelism.
In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
pp. 789–793 (2024)

[146] Tong, J., Lee, W.L., Ogras, U.Y., Huang, T.W.: Scalable Code Genera-
tion for RTL Simulation of Deep Learning Accelerators with MLIR.
In: International European Conference on Parallel and Distributed
Computing (Euro-Par) (2025)

166

[147] Visweswariah, C., Ravindran, K., Kalafala, K., Walker, S., Narayan,
S., Beece, D., Piaget, J., Venkateswaran, N., Hemmett, J.: First-Order
Incremental Block-Based Statistical Timing Analysis. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Sys-
tems (TCAD). pp. 2170–2180 (2006)

[148] Vogel, A., Griebler, D., Fernandes, L.: Providing High-level Self-
adaptive Abstractions for Stream Parallelism on Multicores. In: Jour-
nal of Software. pp. 1194–1217 (2021)

[149] Vogel, A., Mencagli, G., Griebler, D., Danelutto, M., Fernandes, L.:
Towards On-the-fly Self-Adaptation of Stream Parallel Patterns. In:
IEEE International Conference on Parallel, Distributed and Network-
Based Processing (PDP). pp. 89–93 (2021)

[150] Watkins, C.J.C.H., Dayan, P.: Q-learning. In: Machine Learning. pp.
279–292 (1992)

[151] Wu, L., Cui, P., Pei, J., Zhao, L.: Graph Neural Networks. In: Springer
(2022)

[152] Zamani, Y., Huang, T.W.: A High-Performance Heterogeneous Crit-
ical Path Analysis Framework. In: IEEE High-Performance Extreme
Computing Conference (HPEC) (2021)

[153] Zhang, B., Chang, C., Chiu, C.H., Lin, D.L., Sui, Y., Chang, C.C.,
Chung, Y.H., Lee, W.L., Guo, Z., Lin, Y., Huang, T.W.: iTAP: An
Incremental Task Graph Partitioner for Task-parallel Static Timing
Analysis. In: IEEE/ACM Asia and South Pacific Design Automation
Conference (ASP-DAC). pp. 407–415 (2025)

[154] Zhang, B., Lin, D.L., Chang, C., Chiu, C.H., Wang, B., Lee, W.L.,
Chang, C.C., Fang, D., Huang, T.W.: G-PASTA: GPU Accelerated
Partitioning Algorithm for Static Timing Analysis. In: ACM/IEEE
Design Automation Conference (DAC). pp. 1–6 (2024)

[155] Zhou, K., Guo, Z., Huang, T.W., Lin, Y.: Efficient Critical Paths
Search Algorithm using Mergeable Heap. In: IEEE/ACM Asia and
South Pacific Design Automation Conference (ASP-DAC). pp. 190–
195 (2022)

	Contents
	List of Tables
	List of Figures
	Abstract
	Previous Work
	An Efficient Task-Parallel Pipeline Programming Framework
	Abstract
	Introduction
	Background
	Pipeflow
	Experimental Results
	Conclusion

	A Task-parallel Pipeline Programming Model with Token Dependency
	Abstract
	Introduction
	Background
	Our Framework
	Experimental Results
	Conclusion

	Programming Dynamic Task Parallelism for Heterogeneous EDA Algorithms
	Abstract
	Introduction
	Background
	AsyncTask
	Experimental Results
	Conclusion

	A Resource-efficient Task Scheduling System using Reinforcement Learning
	Abstract
	Introduction
	Background
	Reinforcement Learning-Based Scheduling
	Experimental Results
	Conclusion

	Reinforcement Learning-generated Topological Order for Dynamic Task Graph Scheduling
	Abstract
	Introduction
	Background
	Our Method
	Experimental Results
	Conclusion

	Optimizing CUDA Graph Scheduling with Reinforcement Learning: A Case Study in SSTA Propagation
	Abstract
	Introduction
	Scheduling SSTA Propagation Graph on GPU
	Our Framework
	Experimental Results
	Conclusion

	Conclusion
	Bibliography

